Fusion08 : Summary talk. L.Corradi

Size: px
Start display at page:

Download "Fusion08 : Summary talk. L.Corradi"

Transcription

1 σ Fusion08 : Summary talk V E L.Corradi Laboratori Nazionali di Legnaro INFN, Italy r Fusion08, Chicago, September 22-26, 2008

2 A schematic view view of of fusion fusion reactions E << E b E ~ E b E > E b σ σ µb - mb σ ~ mb nb - µb E E E V V V r r r - σ steep fall off - CC effects - fusion hindrance -structure of V N at r < r B - connection with astrophysics - D(B) from fusion and QE processes - connection with surface vibrations and transfer - σ fusion < σ capture - connection with QF, MNT, DIC, BU

3 binary reactions QE/MNT mechanism, DIC collisions, nuclear spectr. in n-rich regions weakly bound/clusters reactions with He,Li,Be,B effects of break up, cluster structures fission dynamics QF processes, fission fragment distributions, entrance channel effects near barrier region D(B) from QE scattering, CC methods, mean field dynamics, heavy RIB s σ heavy/superheavy SHE formation, SHE decay studies and spectroscopy, DIC for SHE production sub-sub-barrier fusion positive Q-val. systems, density dependent forces, structure of V N E astrophysics radiative capture, Hoyle states,screening effects, r-process Fusion08 : an overview

4 Astrophysics

5 Late stages of stellar evolution 12 C+ 12 C importance: evolution of massive stars Gamow region: 1 3 MeV min. measured E: 2.1 MeV (by -ray spectroscopy) Strieder, J. Phys. G35 (2008) Crab Nebula SN Spillane et al. Aguilera et al. Becker et al. High and Cujec Patterson et al Jiang et al. Gasques et al. Caughlan and Fowler PA KNS [MeV b] S * tot E cm [MeV] still far from required accuracy for stellar models Aliotta

6 Extrapolation to stellar energies? Different potential models leads to different extrapolation of low energy cross section (S-factor). Extreme case, standard potential model hindrance potential model S( E) ( E) E exp(2 ) Caughlan & Fowler ADNDT 40 (1988) 283; Gasques et al. PRC 72 (2005) Yakovlev et al. PRC 74 (2006) ; Jiang et al. PRC 75 (2007) Wiescher

7 New calculations for 16 O+ 16 O Jiang T. Neff et al., arxiv: v2(07) Fermionic Molecular Dynamics model A.Diaz-Torres et al., Phys.Lett.B652,255(08) Realistic two-center Shell Model C.J.Horowitz et al., Phys.Rev.C77,045807(08) Barrier-penetration model H.Esbensen, Phys.Rev.C77,054608(08) Shallow potential model

8 First measurement for heavy-ion fusion hindrance in a positive Q-value system Hindrance observed C.L.Jiang et al., Phys. Rev. C78, (2008)

9 What happens in medium-light systems? Heavy, Q<0 Light, Q>0? 36 S + 48 Ca Q>0 36 S + 64 Ni Q<0 It is easy to show that for Q>0 S(E) may not show any maximum no fusion hindrance! C.L.Jiang et al., PRC 75, (2007) Stefanini

10 The excitation functions of 36 S + 48 Ca and 36 S + 64 Ni have different slopes below the barrier Stefanini Montagnoli

11 Nucleus-nucleus potential

12 M3Y+repulsion vs. Akyüz-Winther Misicu

13 S-factors (from Medium Heavy to medium Light Ions) ARGONNE DATA : red circles ( C.L. Jiang, Phys.Rev. C 78, (2008). C.L. Jiang, Phys.Lett.B. B640, 18(2006).

14 Deep Subbarrier Fusion Reactions (i) Subbarrier energies (E > V touch ) The inner turning point is outside of the touching point. (ii) Deep subbarrier energies (E < V touch ) The inner turning point is in the overlap region. The steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other. Ichigawa Sudden Approach The fusion takes place so rapidly Adiabatic Approach The dynamical change in the density

15 Difference Between Two Approaches Both the sudden and adiabatic models provide similar results for the fusion cross sections. What is a difference between these two models? The average angular momentum of compound nuclei! Adiabatic Mişicu and Esbensen, Phys. Rev. C 75, (2007) Sudden By measuring the average angular momentum, we may discriminate the two approaches.

16 Where do dissipative effects start to occur? Dissipative Coherent quantum superposition If dissipation starts well inside - then current methods to model fusion ok - no effect on observables Dissipation can occur at larger separations Dasgupta

17 Real energy loss before fusion reduction in fusion Does this play a role in reduced fusion σ at above barrier energies? O Pb (mb) 500 Suppression 0.86 ± CC calc., WS pot. (a = 0.66 fm) E V b (MeV)

18 Correlation between reaction channels quasi elastic, deep inelastic fusion quasi fission, [...] In the presence of couplings the energy of relative motion is not well defined. An exchange of energy from the relative motion to the intrinsic degrees of freedom takes place Corradi (Fusion06)

19 Quasi-elastic reactions

20 Quasielastic barrier distributions : : role role of of particle transfer channelsc Data : Mitsuoka et al, PRL99,182701(2007) G.Pollarolo,PRL100,252701(2008)

21 Szilner

22 New results for N 28 Ca and K isotopes Identification of new short-lived states in 49Ca ( p, f 1/2 5/2 single particle energies) and 50Ca ( 2+2 ) R. Broda et al. A new 7/2 isomer in 47K Observation of excited states in 48K and 49K R. Broda et al. Broda W. Królas et al. 6

23 multinucleon transfer : : experiment vs. vs. theory theory data : LNL theory : GRAZING code and CWKB Corradi

24 exp. neutron transfer yield Ni+ Ni Sn Sn coupling scheme near and sub-barrier transfer sub-barrier fusion Fusion+Deep Inel. Fusion Evap.Res. +Multiphonon Tr+Inel 2 +,3 - Transfer 1-dim. C.L.Liang et al, PRC57(1998)2393 H.Esbensen et al, PRC57(1998)2401

25 MNT, MNT, Fission, ER ER and and Capture cross cross sections Argonne data G.Pollarolo

26 Unstable/Weakly bound bound nuclei nuclei

27 Raabe

28 Lemasson

29 Shapira

30 Cluster effects in in nuclear reactions

31 Resonances in heavy-ion collisions The case of the identical boson collisions 12 C+ 12 C, 14 C+ 14 C, 16 O+ 16 O, 24 Mg+ 24 Mg, 28 Si+ 28 Si Weak absorption and the number of open channels Resonant structures in the excitation functions of various channels: elastic, inelastic, transfer and fusion Haas

32 Funaki RIKEN Itoh, M. et al. Nucl. Phys. A 738, (2004) Funaki - RIKEN Freer

33 Effects of the transfer coupling : Minimum coupling Solid : Full calculation S S S f,i 2 f,i 2 f,i 2 1 S f,i He x He+ y He 5He+7He I=0 5He+7He I=2 Elastic ( X 1/4 ) 6He+6He E c.m. ( MeV ) Sharp resonant structures are generated by Transfer Coupling New aspects!! Dotted curves + 8 He g.s. + 8 He(2 1+ ) 5 He(3/2 - ) + 7 He(3/2 1- ) 5 He(3/2 - ) + 7 He(1/2 1- ) 5 He(3/2 - ) + 7 He(5/2 1- ) 5 He(1/2 - ) + 7 He(3/2 1- ) 6 He g.s. + 6 He g.s. 6 He g.s. + 6 He(2 1+ ) 6 He(2 1+ ) + 6 He(2 1+ ) Ito

34 Quasi-fission, Heavy Heavy and and Superheavy elements

35 Do shell effects drive or modulate Q-F mass distributions? 48 Ti: M R distribution vs. 2 and Z C.N. Gaussian standard deviation M at E ~ V B E ~ V B M Static Z C.N M Hinde

36 46,48,50 Ti + 186,184,182 W 232 Cm 96 Deformation alignment dominant 50 Ti E X 48 Ti (E X +7) 46 Ti (E X +13) Hinde et al., PRL 100 (2008)

37 Summary and outlook - Present and Near Future 120 shellcorrection ms [MeV] ms 6 ms 20ms 50ms ** ms 0.1 s s 0.5 s 0.6 s 3 s s 73ms 0.1 s 0.5 s s 1 ms 4 s 0.1 s 30 s Rg 3 ms 6 ms 4.2ms 0.2 s 4 s Ds? 200 s 100 s 56 s 170 s 0.2 s 10 s Mt 2 ms 30ms 5 ms 0.44 s 10ms 0.8 s s 108 Hs? 0.5ms 2 ms 2 ms 50ms 14 s 4 s 107 Bh 10ms 0.1 s 1 s 1 s 1 s 17 s 61 s? 10 s decay SHE SHE synthesis 106 Sg 3 ms 0.5 s 4 ms 0.1 s 7 ms 1 s 7 s 21 s 2 m mode h 105 Db 1.6 s 1.6 s 1.5 s 4 s 0.5 s 1.5 s 2 s 30 s 30 s 22 m 29 h Ca- Ca Ni+ Ni U 104 Rf 50 s 20 s 1.6 s 6 ms 4 s 10ms 3 s 20ms 1 m 2 s 15 m 1,3 h 185 mid-term 103 Lr 0.4 s 0.6 s 10 s 20 s 30 s 0.5 s 4 s 6 s 3 m 40 m 4 h 102 No 50 s 6 s 1 s 3 s 2 m 1 m 3 m 3 s 30 s 1 ms 1 h 0.1 s 5 ms heavier actinide targets (e.g. (e.g Cm) Cm) SF 101 Md 1 s 0.2 s 7 s 30 s 1 m 4 m 2 m 6 m 30 m30 m 1 h 6 h 50 d 1 h 30 d + /EC 40 s 100 Fm nuclear structure 4 s 1 s 40 s 3 m 30 m 5 h 25 h 3 d 3 h 20 h 3 h 100d 400 s 1.5 s - 99 Es 37 s 1 m 8 m 5 m 30 m 2 h 8 h 33 h 1 yr 20 d 1 yr 40 d 30 m 8 d trend trend of of single single particle levels 98 Cf 10 m19 m45 m 35 h 3 h 1 yr 0.4kyr 13 yr 0.9kyr 3 yr 15 d 60 d 1 h 12 m 180levels (( A A Md, Md, A A Es) Es) K-isomers in in 252, ,254 No No and and Ds Ds near 165 near future intensity increase (UNILAC upgrade) with with TASCA towards n-rich n-rich and and high high Z Ackermann

38 Thank you very much! See you all at the next Fusion Conference

39

40 cluster cluster effects in in nuclear reactions - 12 C+ 16 O radiative capture reactions (Courtin) - 24 Mg+ 12 C systems, α-clustering phenomena (Beck) - α-cluster structure in light N Z nuclei (Goldberg) - cluster spectroscopic studies in 7 Be and 7 Li (Guimares) - cluster structures and U(3) dynamical symmetry (Cseh)

41 Unstable/Weakly bound bound nuclei nuclei - cross section measurements for 8 B+ 58 Ni (Kolata) - fusion of 8 Li+ 208 Pb (Aguilera) - 9,10,11 Be+ 64 Zn reaction studies (Figuera) - CF and ICF of 6 He and 6 Li induced reactions (Krupko) - study of 6 Li+ 59 Co (A.Szanto de Toledo) - exclusive measurements of break-up in 7 Li+ 144 Sm (Pacheco) - role of the continuum in reactions with weakly bound nuclei (Vitturi) - static and dynamical effects in break-up (Gomes) - reactions with the double borromean nucleus 8 He (Lemasson)

42 Nucleus-nucleus potential Misicu (density-dependent forces), Ichigawa (one-body barrier), Hagino (potential inversion), Dasgupta (irreversibility), Diaz-Torres ( environment ) Washiyama (dynamical mean field theory), Lacroix (Stochastic Meanfield dynamics), Broomfield (beyond TDHF)

43 Astrophysics - indirect methods for nova nucleosynthesis: gamma spectroscopy, transfer reactions (Jenkins) - 130,132 Sn(d,p), 134 Te(d,p) reactions, impact on element production in the r-process (Jones) - 12 B(d,p) reactions, determination of spectroscopic factors, deduced rates for neutron capture (Young Lee) - 27 Al( 3 He,t) 27 Si * (p) 26 Al, 28 Al( 3 He,α) 27 Si*(p) 26 Al, measured angular correlations to constrain spins, deduced 26m Al(p,γ) 27 Si rates (Deibel) - Triple-alpha process in hot astrophysical scenario, used 12 B (Patel) - Electronic and Ion screening in low energy nuclear reactions (Kasagi)

Microscopic Fusion Dynamics Based on TDHF

Microscopic Fusion Dynamics Based on TDHF Dynamical Approach Microscopic Fusion Dynamics Based on TDHF FISSION FUSION Calculate PES as a function of nuclear shape Microscopic HF, HFB, RMF + constraints e.g. Q20, Q30, Q40 as H + lql0 Macroscopic-Microscopic

More information

Towards a microscopic theory for low-energy heavy-ion reactions

Towards a microscopic theory for low-energy heavy-ion reactions Towards a microscopic theory for low-energy heavy-ion reactions Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees

More information

SUB-BARRIER FUSION of HEAVY IONS

SUB-BARRIER FUSION of HEAVY IONS SUB-BARRIER FUSION of HEAVY IONS Şerban Mişicu Horia Hulubei National Institute of Physics and Nuclear Engineering Bucharest-Magurele (In collaboration with Henning Esbensen, ANL) Seattle, Institute for

More information

Fusion of light halo nuclei

Fusion of light halo nuclei Fusion of light halo nuclei Alinka Lépine-Szily Instituto de Física-Universidade de São Paulo, São Paulo, Brazil 1111118th 118th Intn Few-Body Problems in PhysIcs 8th International IUPAP Conference on

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt. Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.) scattered particles detector solid angle projectile target transmitted

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. scattered particles detector solid angle projectile target transmitted particles http://www.th.phys.titech.ac.jp/~muto/lectures/qmii11/qmii11_chap21.pdf

More information

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. sub-barrier fusion reactions 2. Coupled-channels approach and barrier distributions 3. Application

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Kouichi Hagino, Tohoku University Neil Rowley, IPN Orsay 1. Introduction: 12 C + 12 C fusion 2. Molecular resonances

More information

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino Heavy-ion fusion reactions and superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. fusion reactions: why are they interesting? 2. Coupled-channels approach 3. Future perspectives:

More information

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb Journal of Physics: Conference Series Related content (Multi-)nucleon transfer in the reactions 16 O, 3 32 S + 208 Pb To cite this article: M Evers et al 2013 J. Phys.: Conf. Ser. 420 012129 - Quantum

More information

Subbarrier fusion reactions with dissipative couplings

Subbarrier fusion reactions with dissipative couplings Subbarrier fusion reactions with dissipative couplings Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees of Freedom

More information

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom? New approach to coupled-channels calculations for heavy-ion fusion reactions around the Coulomb barrier Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction - H.I. sub-barrier fusion reactions

More information

Fusion Reactions with Carbon Isotopes

Fusion Reactions with Carbon Isotopes Fusion Reactions with Carbon Isotopes Henning Esbensen Argonne National Laboratory, Argonne IL, USA Problems: Large structures in 12 C+ 12 C fusion data. Large systematic uncertainties of 15% or more.

More information

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF 1. Fusion probability and survivability as main values

More information

Sub-barrier fusion enhancement due to neutron transfer

Sub-barrier fusion enhancement due to neutron transfer Sub-barrier fusion enhancement due to neutron transfer V. I. Zagrebaev Flerov Laboratory of Nuclear Reaction, JINR, Dubna, Moscow Region, Russia Received 6 March 2003; published 25 June 2003 From the analysis

More information

arxiv: v1 [nucl-th] 21 Apr 2007

arxiv: v1 [nucl-th] 21 Apr 2007 Systematics of threshold incident energy for deep sub-barrier fusion hindrance arxiv:0704.2827v1 [nucl-th] 21 Apr 2007 Takatoshi Ichikawa, 1 Kouichi Hagino, 2 and Akira Iwamoto 3 1 RIKEN, Wako, Saitama

More information

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN INT 13-3, Workshop, Seattle,

More information

Role of the Nucleus-Nucleus Potential in Sub-barrier Fusion

Role of the Nucleus-Nucleus Potential in Sub-barrier Fusion Role of the Nucleus-Nucleus Potential in Sub-barrier Fusion Şerban Mişicu NIPNE-HH, Bucharest INT Program INT-13-3 Quantitative Large Amplitude Shape Dynamics: Fission and Heavy Ion Fusion Nuclear Physics

More information

Capture barrier distributions and superheavy elements

Capture barrier distributions and superheavy elements Capture barrier distributions and superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: Fusion reactions for SHE 2. Role of deformation in capture reactions 3. Barrier distribution

More information

Sub-barrier fusion of Si+Si systems : does the deformation of 28 Si play a role?

Sub-barrier fusion of Si+Si systems : does the deformation of 28 Si play a role? : does the deformation of 28 Si play a role?, G. Montagnoli, M. Faggian, A. Goasduff, M. Mazzocco, F. Scarlassara, C. Stefanini, E. Strano, M. Urbani Dipartimento di Fisica e Astronomia, Universitá di

More information

TDHF Basic Facts. Advantages. Shortcomings

TDHF Basic Facts. Advantages. Shortcomings TDHF Basic Facts Advantages! Fully microscopic, parameter-free description of nuclear collisions! Use same microscopic interaction used in static calculations! Successful in describing low-energy fusion,

More information

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons 200 160 Phenomenological heavy-ion potential 60 Ni + 89 Y point Coulomb potential V (MeV) 120 80 40 total heavy-ion potential

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration Isospin influence on Fragments production in 78 Kr + 40 Ca and 86 Kr + 48 Ca collisions at 10 MeV/nucleon G. Politi for NEWCHIM/ISODEC collaboration Dipartimento di Fisica e Astronomia Sezione INFN - Catania,

More information

Exploring contributions from incomplete fusion in 6,7 Li+ 209 Bi and 6,7 Li+ 198 Pt reactions

Exploring contributions from incomplete fusion in 6,7 Li+ 209 Bi and 6,7 Li+ 198 Pt reactions Exploring contributions from incomplete fusion in 6,7 Li+ 209 Bi and 6,7 Li+ 98 Pt reactions V. V. Parkar, V. Jha, and S. Kailas,2 Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085,

More information

The many facets of breakup reactions with exotic beams

The many facets of breakup reactions with exotic beams Angela Bonaccorso The many facets of breakup reactions with exotic beams G Blanchon, DM Brink, F Carstoiu, A Garcia-Camacho, R Kumar, JMargueron, N Vinh Mau JAPAN-ITALY EFES Workshop on Correlations in

More information

arxiv:nucl-th/ v1 23 Mar 2004

arxiv:nucl-th/ v1 23 Mar 2004 arxiv:nucl-th/0403070v1 23 Mar 2004 A SEMICLASSICAL APPROACH TO FUSION REACTIONS M. S. HUSSEIN Instituto de Física, Universidade de São Paulo CP 66318, 05389-970, São Paulo SP, Brazil E-mail: hussein@fma.if.usp.br

More information

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Humboldt Kolleg entitled "Interacting Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei" Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Lu Guo University

More information

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March Nuclear Reaction Mechanism Induced by Heavy Ions MG M.G. Itkis Joint Institute for Nuclear Research, Dubna 5 th ASCR International Workshop Perspectives in Nuclear fission Tokai, Japan, 14 16 16March 212

More information

arxiv:nucl-th/ v1 4 Nov 2003

arxiv:nucl-th/ v1 4 Nov 2003 Fusion dynamics around the Coulomb barrier K. Hagino, N. Rowley, T. Ohtsuki, M. Dasgupta, J.O. Newton and D.J. Hinde arxiv:nucl-th/0311008v1 4 Nov 2003 Yukawa Institute for Theoretical Physics, Kyoto University,

More information

Direct reactions at low energies: Part II Interactions and couplings

Direct reactions at low energies: Part II Interactions and couplings Direct reactions at low energies: Part II Interactions and couplings cole Juliot Curie 2012, Fréjus, France 30th September 5th October 2012 Jeff Tostevin, NSCL, MSU, ast Lansing, MI and Department of Physics,

More information

Molecular Structures in Slow Nuclear Collisions

Molecular Structures in Slow Nuclear Collisions Molecular Structures in Slow Nuclear Collisions ALEXIS DIAZ-TORRES European Centre for Theoretical Studies in Nuclear Physics and Related Areas Trento, Italy Nuclear Structure Reaction Dynamics FAIR Nuclear

More information

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei INT Program INT- 11-2d Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

More information

Production of new neutron rich heavy and superheavy nuclei

Production of new neutron rich heavy and superheavy nuclei Production of new neutron rich heavy and superheavy nuclei Fusion reactions Elements 119 and 120 are on the way. What s the next? Radioactive ion beams? Multinucleon transfer reactions Shell effects in

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

Breakup of weakly bound nuclei and its influence on fusion. Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil

Breakup of weakly bound nuclei and its influence on fusion. Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil Breakup of weakly bound nuclei and its influence on fusion Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil Forum Brasil-JINR Dubna, June, 2015 For a comprehensive review of this subject

More information

Mechanism of fusion reactions for superheavy elements Kouichi Hagino

Mechanism of fusion reactions for superheavy elements Kouichi Hagino Mechanism of fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. Heavy-ion fusion reactions for superheavy elements 2. Towards Z=119 and 120: role of a target deformation

More information

Di-neutron correlation in Borromean nuclei

Di-neutron correlation in Borromean nuclei Di-neutron correlation in Borromean nuclei K. Hagino (Tohoku University) H. Sagawa (University of Aizu) 11 Li, 6 He What is the spatial structure of valence neutrons? Compact? Or Extended? 1. Introduction:

More information

Alpha Clustering in Nuclear Reactions Induced by Light Ions

Alpha Clustering in Nuclear Reactions Induced by Light Ions Alpha Clustering in Nuclear Reactions Induced by Light Ions C. Beck (IPHC Strasbourg) Introduction : alpha clustering in 12 C, 16 O, 20 Ne clusters in light neutron-rich nuclei Highly deformed shapes in

More information

Annax-I. Investigation of multi-nucleon transfer reactions in

Annax-I. Investigation of multi-nucleon transfer reactions in Annax-I Investigation of multi-nucleon transfer reactions in 40 Ca on 68,70 Zn at and near the Coulomb barrier. Abstract We will study the multi-nucleon transfer between two medium-heavy nuclei to find

More information

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS Vol. 44 (2013) ACTA PHYSICA POLONICA B No 3 SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS Giovanni Pollarolo Dipartimento di Fisica, Università di Torino and INFN, Sez. di Torino

More information

Reaction dynamics for fusion of weakly-bound nuclei

Reaction dynamics for fusion of weakly-bound nuclei Progress of Theoretical Physics Supplement 1 Reaction dynamics for fusion of weakly-bound nuclei Kouichi Hagino 1 and Andrea Vitturi 2 1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto

More information

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION Modern Physics Letters A Vol. 26, No. 28 (20) 229 234 c World Scientific Publishing Company DOI: 0.42/S0277303654 DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION MANJEET SINGH, SUKHVINDER S.

More information

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions arxiv:0904.2994v1 [nucl-th] 20 Apr 2009 Zhao-Qing Feng a, Jun-Qing Li a, Gen-Ming Jin a a Institute of Modern

More information

Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure

Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure Journal of Physics: Conference Series Quasi-elastic reactions : an interplay of reaction dynamics and nuclear structure To cite this article: S Szilner et al 2011 J. Phys.: Conf. Ser. 282 012021 View the

More information

Heavy-Ion Fusion Reactions around the Coulomb Barrier

Heavy-Ion Fusion Reactions around the Coulomb Barrier Heavy-Ion Fusion Reactions around the Coulomb Barrier Kouichi Hagino Tohoku University, Sendai, Japan hagino@nucl.phys.tohoku.ac.jp www.nucl.phys.tohoku.ac.jp/~hagino cf. Experimental aspects of H.I. Fusion

More information

Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ at 15 MeV/nucleon

Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ at 15 MeV/nucleon Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ 40-60 at 15 MeV/nucleon A. Papageorgiou 1, G.A. Soulotis 1, M. Veselsky 2, A. Bonasera 3,4 1 Laboratory of Physical

More information

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Kouhei Washiyama (RIKEN, Nishina Center, Japan) Collaboration with Denis Lacroix (GANIL), Sakir Ayik (Tennesse Tech.) Key word:

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Theoretical study of structure & synthesis mechanism of superheavy nuclei

Theoretical study of structure & synthesis mechanism of superheavy nuclei Humboldt Kolleg Interfacing Structure & Reaction Dynamics in the Synthesis of the Heaviest Nuclei, ECT*, Trento, Sep. 1-4, 2015 Theoretical study of structure & synthesis mechanism of superheavy nuclei

More information

Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies

Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies PHYSICAL REVIEW C 73, 034607 (2006) Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies K. Washiyama, K. Hagino, and M. Dasgupta 2 Department

More information

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties Andrea Vitturi and Jose Antonio Lay (Padova, Catania, Sevilla) ECT*, September

More information

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction G.G. Rapisarda, 1,2,6 C. Spitaleri, 1,2 C. Bordeanu, 3 Z. Hons, 4

More information

Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier. Aradhana Shrivastava Bhabha Atomic Research Centre, India

Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier. Aradhana Shrivastava Bhabha Atomic Research Centre, India Transfer reactions to probe structure of weakly bound 6 He, 7 Li around the Coulomb barrier Aradhana Shrivastava Bhabha Atomic Research Centre, India Transfer Reactions with weakly bound nucleon / cluster

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Presence of Barrier Distributions in Heavy Ion Fusion

Presence of Barrier Distributions in Heavy Ion Fusion IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 78-4861.Volume 8, Issue 6 Ver. V (Nov. - Dec. 16), PP 6-3 www.iosrjournals.org Presence of Barrier Distributions in Heavy Ion Fusion G. S. Hassan Physics

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015 Fusion probability in heavy ion induced reac4ons G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 215 Texas, USA, March 215 Fusion probability σ ER = σ cap P CN W sur SHE215 2 Fusion

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA

Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA E. Fioretto 1,L.Corradi 1, D. Montanari 2,S.Szilner 3, G. Pollarolo 4,F.Galtarossa 1,5,D.Ackermann 6, G. Montagnoli 7,F.Scarlassara

More information

Nuclear physics activities in Vietnam (highlight from NHEP2016 conference)

Nuclear physics activities in Vietnam (highlight from NHEP2016 conference) Nuclear physics activities in Vietnam (highlight from NHEP2016 conference) Experimental nuclear physics (INST Hanoi, INR Da Lat, IOP Hanoi): mainly through the international collaboration projects (nuclear

More information

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.) Nuclear Physics using RadioIsotope Beams T. Kobayashi (Tohoku Univ.) Nucleus: two kinds of Fermions: proton & neutron size ~1fm strong interaction: ~known tightly bound system < several fm < 300 nucleons

More information

Effect of Barrier Height on Nuclear Fusion

Effect of Barrier Height on Nuclear Fusion IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 78-4861.Volume 9, Issue 1 Ver. I (Jan. Feb. 17), PP 8-16 www.iosrjournals.org Effect of Barrier Height on Nuclear Fusion G. S. Hassan 1, A. Abd-EL-Daiem,

More information

EVOLUTION OF SHELL STRUCTURE

EVOLUTION OF SHELL STRUCTURE EVOLUTION OF SHELL STRUCTURE W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE Focus points: 1. Single-particle structure of nuclei 2. Elastic scattering 3. The Interface between Nuclear structure

More information

Carbon Burning in the Universe and the Laboratory

Carbon Burning in the Universe and the Laboratory Carbon Burning in the Universe and the Laboratory X. Tang University of Notre Dame Carbon burning processes in the Universe Carbon burning in the laboratory Limits on the molecular resonance strengths

More information

He+ 6,7 Li and 6 He+ 12 C reactions. Matko Milin Ruđer Bošković Institute Zagreb, Croatia

He+ 6,7 Li and 6 He+ 12 C reactions. Matko Milin Ruđer Bošković Institute Zagreb, Croatia 6 He+ 6,7 Li and 6 He+ 12 C reactions Matko Milin Ruđer Bošković Institute Zagreb, Croatia introduction experimental details elastic scattering transfer reactions sequential decay reactions quasi-free

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier

Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier E. Vardaci 1, E. M. Kozulin 2, D. Quero 1, A. Di Nitto 3, A. Karpov 2, L. Calabretta 4, M. Ashaduzzaman

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Subbarrier cold fusion reactions leading to superheavy elements( )

Subbarrier cold fusion reactions leading to superheavy elements( ) IL NUOVO CIMENTO VOL. 110 A, N. 9-10 Settembre-Ottobre 1997 Subbarrier cold fusion reactions leading to superheavy elements( ) A. G. POPEKO Flerov Laboratory of Nuclear Reactions, JINR - 141980 Dubna,

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Bogdan Fornal. Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland. PARIS Workshop, October 14-16, 2009, Kraków, Poland

Bogdan Fornal. Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland. PARIS Workshop, October 14-16, 2009, Kraków, Poland Bogdan Fornal Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland PARIS Workshop, October 14-16, 2009, Kraków, Poland V ( r ) = V WS ( r ) + V ls R 2 0 1 r dv ( r) dr L ˆ S ˆ appearence

More information

This is a repository copy of How well do we understand the reaction rate of C burning?.

This is a repository copy of How well do we understand the reaction rate of C burning?. This is a repository copy of How well do we understand the reaction rate of C burning?. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/126678/ Version: Published Version

More information

Fusion and other applications of density-constrained TDDFT

Fusion and other applications of density-constrained TDDFT Fusion and other applications of density-constrained TDDFT Volker E. Oberacker and A. Sait Umar Vanderbilt University Nashville, Tennessee, USA Collaborators: J.A. Maruhn, P.-G. Reinhard, C. Horowitz,

More information

Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections

Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections Journal of Physics: Conference Series Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections To cite this article: V E Oberacker et al 213 J. Phys.: Conf. Ser. 42 12132 View the article

More information

Nuclear Structure from Decay Spectroscopy

Nuclear Structure from Decay Spectroscopy Nuclear Structure from Decay Spectroscopy Most nuclei decay. Provides complementary information to reaction studies. Studies can be done at the lowest count rates access furthest from stability. Alpha,

More information

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2) Neutron stars, remnant cores following supernova explosions, are highly interesting astrophysical environments In particular, accreting neutron stars presents a unique environment for nuclear reactions

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

Many-body Quantum Reaction Dynamics near the Fusion Barrier

Many-body Quantum Reaction Dynamics near the Fusion Barrier EPJ Web of Conferences 66, 01003 (2014) DOI: 10.1051/ epjconf/ 20146601003 C Owned by the authors, published by EDP Sciences, 2014 Many-body Quantum Reaction Dynamics near the Fusion Barrier M. Dasgupta

More information

Dissipative nuclear dynamics

Dissipative nuclear dynamics Dissipative nuclear dynamics Curso de Reacciones Nucleares Programa Inter universitario de Fisica Nuclear Universidad de Santiago de Compostela March 2009 Karl Heinz Schmidt Collective dynamical properties

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Low-energy heavy-ion physics: glimpses of the future

Low-energy heavy-ion physics: glimpses of the future Low-energy heavy-ion physics: glimpses of the future There are two frontiers for low-energy heavy-ion physics: explore terra incognita of thousands of new neutron-rich isotopes, investigate physics of

More information

PHL424: Nuclear fusion

PHL424: Nuclear fusion PHL424: Nuclear fusion Hot Fusion 5 10 15 5 10 8 projectiles on target compound nuclei 1 atom Hot fusion (1961 1974) successful up to element 106 (Seaborgium) Coulomb barrier V C between projectile and

More information

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 710 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics Letters B 710 (2012) 607 611 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Influence of entrance-channel magicity and isospin on quasi-fission

More information

Physics with Exotic Nuclei

Physics with Exotic Nuclei Physics with Exotic Nuclei Hans-Jürgen Wollersheim NUclear STructure, Astrophysics and Reaction Outline Projectile Fragmentation A Route to Exotic Nuclei Fragmentation Cross Sections Nuclear Reaction Rates

More information

Equilibration dynamics in heavy-ion reactions. Yoritaka Iwata (GSI, Darmstadt)

Equilibration dynamics in heavy-ion reactions. Yoritaka Iwata (GSI, Darmstadt) Equilibration dynamics in heavy-ion reactions Yoritaka Iwata (GSI, Darmstadt) Contents Dynamics via nucleus-nucleus potential [1] Dynamics at the early stage dynamics governed by charge equilibration [2]

More information

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Impact of fission on r-process nucleosynthesis within the energy density functional theory Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani, G. Martínez Pinedo, L. M. Robledo, M.-R. Wu Technische Universität Darmstadt, Darmstadt, Germany

More information

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions New theoretical insights on the physics of compound nuclei from laser-nucleus reactions Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany Laser-Driven Radiation Sources for Nuclear

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Study of multinucleon transfer (MNT) reactions of 136 Xe Pt for production of exotic nuclei

Study of multinucleon transfer (MNT) reactions of 136 Xe Pt for production of exotic nuclei 16 th ASRC International Workshop Mar. 19, 2014 Study of multinucleon transfer (MNT) reactions of 136 Xe + 198 Pt for production of exotic nuclei Contents Y.X. Watanabe (KEK) 1. Introduction (MNT reactions

More information

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

H/He burning reactions on unstable nuclei for Nuclear Astrophysics H/He burning reactions on unstable nuclei for Nuclear Astrophysics PJ Woods University of Edinburgh H T O F E E U D N I I N V E B R U S I R T Y H G Explosive H/He burning in Binary Stars Isaac Newton,

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information