Gravitational Waves and the Scale of Inflation

Size: px
Start display at page:

Download "Gravitational Waves and the Scale of Inflation"

Transcription

1 Gravitational Waves and the Scale of Inflation Mehrdad Mirbabayi with L. Senatore, E. Silverstein, M. Zaldarriaga Institute for Advanced Study COSMO2014, Chicago Aug 29, 2014 Mehrdad Mirbabayi (IAS) GW and H inf 1 / 15

2 Does a measurement of r uniquely fix H inf? Mehrdad Mirbabayi (IAS) GW and H inf 2 / 15

3 Does a measurement of r uniquely fix H inf? Yes, if tensor modes are in vacuum during inflation: γk s γs k = vac (2π)3 δ 3 (k + k )δ 1 H ss inf 2 k 3 Mpl 2 What if γ is not in vacuum? Mehrdad Mirbabayi (IAS) GW and H inf 2 / 15

4 Gravitational Waves in Solar System Jupiter Mehrdad Mirbabayi (IAS) GW and H inf 3 / 15

5 Gravitational Waves in Solar System Jupiter Bremsstrahlung at center of Sun (Weinberg 65). Mehrdad Mirbabayi (IAS) GW and H inf 3 / 15

6 Examples of Tensor Emission During Inflation 1) Particle Production: M 2 X = M2 sin 2 φ f Scattering of X particles emits gravity waves γ X. Senatore et.al 11 2) Pseudo-scalar Inflaton: L φa = α f φf F Growing helical gauge field A excites the metric. Sorbo 11, Barnaby et.al. 12, Mukohyama et.al. 14 Mehrdad Mirbabayi (IAS) GW and H inf 4 / 15

7 Can γ X be Larger than γ vac? Mehrdad Mirbabayi (IAS) GW and H inf 5 / 15

8 γ X > γ vac? 1. Available energy density: 1 2 φ 2 = M 2 pl H2 ɛ 2. The energy in the auxiliary sector ρ X M 2 pl H2 ɛ 3. Estimate emission by 2 γ ρ X /M 2 pl at frequency ω H γ X ρ X M 2 pl H2 ɛ Mehrdad Mirbabayi (IAS) GW and H inf 6 / 15

9 γ X > γ vac? 1. Available energy density: 1 2 φ 2 = M 2 pl H2 ɛ 2. The energy in the auxiliary sector ρ X M 2 pl H2 ɛ 3. Estimate emission by 2 γ ρ X /M 2 pl at frequency ω H γ X ρ X M 2 pl H2 ɛ There is a lot of room to outperform vacuum γ vac H M pl γ X ɛ. Mehrdad Mirbabayi (IAS) GW and H inf 6 / 15

10 Punch Line Scalars are emitted during energy transfer: 1 2 φ 2 ρ X = δφ X Mehrdad Mirbabayi (IAS) GW and H inf 7 / 15

11 Punch Line Scalars are emitted during energy transfer: 1 2 φ 2 ρ X = δφ X Large tensor emission generically leads to Very Large scalar emission γ X > γ vac = δφ X δφ vac r max ɛ 2 Mehrdad Mirbabayi (IAS) GW and H inf 7 / 15

12 1. Exponential Expansion Suppose emission is at a physical frequency k/a ω phys. 1.a. Then each mode can be excited in a period t H 1 Mehrdad Mirbabayi (IAS) GW and H inf 8 / 15

13 1. Exponential Expansion Suppose emission is at a physical frequency k/a ω phys. 1.a. Then each mode can be excited in a period t H 1 1.b. The waves redshift before horizon crossing γ freeze out = H ω γ ω. It also takes more energy to excite γ ω at higher ω. With fixed energy per Hubble volume: N γ E γh 3 ω 4. Mehrdad Mirbabayi (IAS) GW and H inf 8 / 15

14 1. Exponential Expansion Suppose emission is at a physical frequency k/a ω phys. 1.a. Then each mode can be excited in a period t H 1 1.b. The waves redshift before horizon crossing γ freeze out = H ω γ ω. It also takes more energy to excite γ ω at higher ω. With fixed energy per Hubble volume: N γ E γh 3 ω 4. Most efficient emission is at ω H Mehrdad Mirbabayi (IAS) GW and H inf 8 / 15

15 2. Weak Gravity Tensor emission is governed by linearized Einstein equation Gµν lin. 1 Mpl 2 T µν Mehrdad Mirbabayi (IAS) GW and H inf 9 / 15

16 2. Weak Gravity Tensor emission is governed by linearized Einstein equation Gµν lin. 1 Mpl 2 T µν 2.a. N X Incoherent Localized Events of mass M X per Hubble volume : γ 2 M X X 2 H 2 NX Mpl 2 Mpl 2 Comment1) This is an upper bound. Comment2) This can exceed γ 2 vac. Mehrdad Mirbabayi (IAS) GW and H inf 9 / 15

17 2. Weak Gravity Tensor emission is governed by linearized Einstein equation Gµν lin. 1 Mpl 2 T µν 2.a. N X Incoherent Localized Events of mass M X per Hubble volume : γ 2 M X X 2 H 2 NX Mpl 2 Mpl 2 Comment1) This is an upper bound. Comment2) This can exceed γ 2 vac. 2.b. Coherent emission by extended configurations (e.g. gauge field A): N X Number of Species M X Energy / Hubble volume Mehrdad Mirbabayi (IAS) GW and H inf 9 / 15

18 3. Scalar Emission from Energy Conservation Scalar fluctuations δφ X lead to: δρ φ = φδ φ X. Energy conservation: d 3 xδρ φ = M X = δφ X M X φ Mehrdad Mirbabayi (IAS) GW and H inf 10 / 15

19 3. Scalar Emission from Energy Conservation Scalar fluctuations δφ X lead to: δρ φ = φδ φ X. Energy conservation: d 3 xδρ φ = M X = δφ X M X φ Converting to ζ 2 X N X (Hδφ X / φ) 2 results in: ζ 2 X NX M 2 X ɛm 2 pl Comparison with γ X gives r max ɛ 2. H 2 ɛm 2 pl Mehrdad Mirbabayi (IAS) GW and H inf 10 / 15

20 3. Scalar Emission from Energy Conservation Scalar fluctuations δφ X lead to: δρ φ = φδ φ X. Energy conservation: d 3 xδρ φ = M X = δφ X M X φ Converting to ζ 2 X N X (Hδφ X / φ) 2 results in: ζ 2 X NX M 2 X ɛm 2 pl Comparison with γ X gives r max ɛ 2. H 2 ɛm 2 pl In the concrete example of localized incoherent events r max 0.3ɛ 2 Mehrdad Mirbabayi (IAS) GW and H inf 10 / 15

21 These scenarios can dominate vacuum tensor fluctuations and break the relation between r and H inf, but then they dominate vacuum scalar fluctuations and ɛ must be relatively large for observable values of r. However, scalar and tensor tilts are less sensitive to ɛ: n s 1 = 1 2 ɛ 5 ɛ 4 Hɛ n t = 1 2 ɛ 3 ɛ 4 Hɛ Mehrdad Mirbabayi (IAS) GW and H inf 11 / 15

22 Non-Gaussianity If there are N X incoherent emission events per H 4 : ζ 3 X = f NL ζ X 1 ζ 3 X f NL can be made small by increasing N X. N 1/2 X Mehrdad Mirbabayi (IAS) GW and H inf 12 / 15

23 Non-Gaussianity If there are N X incoherent emission events per H 4 : ζ 3 X = f NL ζ X 1 ζ 3 X N 1/2 X f NL can be made small by increasing N X. But there is an upper bound ρ X = N X H 3 M X M 2 pl H2 ɛ Combined with ζ X gives f NL 1 Away from the squeezed limit: B(k 1, k 2, k 3 ) 1 k 2 1 k2 2 k2 3 Mehrdad Mirbabayi (IAS) GW and H inf 12 / 15

24 Conclusions 1. It is possible to have γ X γ vac. 2. Then ζ X ζ vac such that r ɛ 2. Hence detectable r requires relatively large ɛ. 3. Tensor consistency condition r = 2n t is violated. 4. There is large non-gaussianity f NL Generically, the same bound applies to multi-field models, but models in which scalar emission is suppressed can be built. Mehrdad Mirbabayi (IAS) GW and H inf 13 / 15

25 Thank you! Mehrdad Mirbabayi (IAS) GW and H inf 14 / 15

26 Exception A two-field scenario Consider a two filed inflationary model with both fields φ and ψ slow-rolling. Suppose the energy source for the auxiliary sector X is ψ: M 2 X = M2 sin 2 ψ f. Energy transfer from 1 2 ψ 2 to X sector leads to δψ emission. If ζ ψ H ψ φ 2 + ψ 2 then the contribution to scalar spectrum can be made small. This seems non-generic, but can be realized for instance if the re-heating surface is determined by φ: V (φ, ψ) = θ(φ φ 0 )U(φ, ψ). Mehrdad Mirbabayi (IAS) GW and H inf 15 / 15

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

The New Relationship between Inflation & Gravitational Waves

The New Relationship between Inflation & Gravitational Waves The New Relationship between Inflation & Gravitational Waves Tomohiro Fujita (Stanford) Based on arxiv:1608.04216 w/ Dimastrogiovanni(CWRU) & Fasiello(Stanford) In prep w/ Komatsu&Agrawal(MPA); Shiraishi(KIPMU)&Thone(Cambridge);

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Effective field theory for axion monodromy inflation

Effective field theory for axion monodromy inflation Effective field theory for axion monodromy inflation Albion Lawrence Brandeis University Based on work in progress with Nemanja Kaloper and L.orenzo Sorbo Outline I. Introduction and motivation II. Scalar

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Could the Higgs Boson be the Inflaton?

Could the Higgs Boson be the Inflaton? Could the Higgs Boson be the Inflaton? Michael Atkins Phys.Lett. B697 (2011) 37-40 (arxiv:1011.4179) NExT Meeting March 2012, Sussex Outline Why inflation? The Higgs as the inflaton Unitarity and Higgs

More information

Exact Inflationary Solution. Sergio del Campo

Exact Inflationary Solution. Sergio del Campo Exact Inflationary Solution Sergio del Campo Instituto de Física Pontificia Universidad Católica de Valparaíso Chile I CosmoSul Rio de Janeiro, 1 al 5 de Agosto, 2011 Inflation as a paradigm. Models Slow-roll

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

German physicist stops Universe

German physicist stops Universe Big bang or freeze? NATURE NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies appear to be rushing away. Jon Cartwright 16 July 2013 German

More information

Effects of Entanglement during Inflation on Cosmological Observables

Effects of Entanglement during Inflation on Cosmological Observables Effects of Entanglement during Inflation on Cosmological Observables Nadia Bolis 1 Andreas Albrecht 1 Rich Holman 2 1 University of California Davis 2 Carnegie Mellon University September 5, 2015 Inflation

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv: Dark inflation Micha l Artymowski Jagiellonian University December 12, 2017 COSPA 2017 arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave background

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv: Dark inflation Micha l Artymowski Jagiellonian University January 29, 2018 Osaka University arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Naturally inflating on steep potentials through electromagnetic dissipation

Naturally inflating on steep potentials through electromagnetic dissipation Naturally inflating on steep potentials through electromagnetic dissipation Lorenzo Sorbo UMass Amherst IPhT IPMU, 05/02/14 M. Anber, LS, PRD 2010, PRD 2012 V(φ) INFLATION very early Universe filled by

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information

Observational signatures in LQC?

Observational signatures in LQC? Observational signatures in LQC? Ivan Agullo Penn State International Loop Quantum Gravity Seminar, March 29 2011 Talk based on: I.A., A. Ashtekar, W. Nelson: IN PROGRESS! CONTENT OF THE TALK 1. Inflation

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Conservation and evolution of the curvature perturbation

Conservation and evolution of the curvature perturbation Conservation and evolution of the curvature perturbation University of Wisconsin-Madison 1150 University Avenue, Madison WI 53706-1390 USA Cosmo 08 University of Wisconsin-Madison, USA 28th August, 2008

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 2 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 GWs from inflation Inflation Accelerated expansion in the early Universe Solves

More information

Instabilities during Einstein-Aether Inflation

Instabilities during Einstein-Aether Inflation Instabilities during Einstein-Aether Inflation Adam R Solomon DAMTP, University of Cambridge, UK Based on work to appear soon: AS & John D Barrow arxiv:1309.xxxx September 3 rd, 2013 Why consider Lorentz

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Week 6: Inflation and the Cosmic Microwave Background

Week 6: Inflation and the Cosmic Microwave Background Week 6: Inflation and the Cosmic Microwave Background January 9, 2012 1 Motivation The standard hot big-bang model with an (flat) FRW spacetime accounts correctly for the observed expansion, the CMB, BBN,

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

Axion Inflation: Naturally thermal

Axion Inflation: Naturally thermal Institut de Ciéncies del Cosmos, Universitat de Barcelona In collaboration with Alessio Notari (JCAP 1709 (2017) no.09, 007, 1711.07483) Axions in inflation Appealing way of realizing inflation; mass is

More information

Anisotropic signatures in cosmic structures from primordial tensor perturbations

Anisotropic signatures in cosmic structures from primordial tensor perturbations Anisotropic signatures in cosmic structures from primordial tensor perturbations Emanuela Dimastrogiovanni FTPI, Univ. of Minnesota Cosmo 2014, Chicago based on:!! ED, M. Fasiello, D. Jeong, M. Kamionkowski!

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Inflationary cosmology from higher-derivative gravity

Inflationary cosmology from higher-derivative gravity Inflationary cosmology from higher-derivative gravity Sergey D. Odintsov ICREA and IEEC/ICE, Barcelona April 2015 REFERENCES R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Lectures on Inflation

Lectures on Inflation Lectures on Inflation Leonardo Senatore Stanford Institute for Theoretical Physics Department of Physics, Stanford University, Stanford, CA 94306 Kavli Institute for Particle Astrophysics and Cosmology,

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information

Scalar fields and vacuum fluctuations II

Scalar fields and vacuum fluctuations II Scalar fields and vacuum fluctuations II Julian Merten ITA July 12, 2007 Julian Merten (ITA) Scalar fields and vacuum fluctuations II July 12, 2007 1 / 22 Outline 1 What we did so far 2 Primordial curvature

More information

Loop Quantum Cosmology holonomy corrections to inflationary models

Loop Quantum Cosmology holonomy corrections to inflationary models Michał Artymowski Loop Quantum Cosmology holonomy corrections to inflationary models University of Warsaw With collaboration with L. Szulc and Z. Lalak Pennstate 5 0 008 Michał Artymowski, University of

More information

Towards Multi-field Inflation with a Random Potential

Towards Multi-field Inflation with a Random Potential Towards Multi-field Inflation with a Random Potential Jiajun Xu LEPP, Cornell Univeristy Based on H. Tye, JX, Y. Zhang, arxiv:0812.1944 and work in progress 1 Outline Motivation from string theory A scenario

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

Inflationary density perturbations

Inflationary density perturbations Cosener s House 7 th June 003 Inflationary density perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! some motivation! Primordial Density Perturbation (and

More information

Non-Gaussianity from Curvatons Revisited

Non-Gaussianity from Curvatons Revisited RESCEU/DENET Summer School @ Kumamoto July 28, 2011 Non-Gaussianity from Curvatons Revisited Takeshi Kobayashi (RESCEU, Tokyo U.) based on: arxiv:1107.6011 with Masahiro Kawasaki, Fuminobu Takahashi The

More information

Loop Quantum Cosmology holonomy corrections to inflationary models

Loop Quantum Cosmology holonomy corrections to inflationary models Michał Artymowski Loop Quantum Cosmology holonomy corrections to inflationary models University of Warsaw With colaboration with L. Szulc and Z. Lalak Oxford 4 09 008 Michał Artymowski, University of Warsaw

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Preheating in the Higgs as Inflaton Model

Preheating in the Higgs as Inflaton Model Preheating in the Higgs as Inflaton Model Why is preheating interesting? Higgs as inflaton model Relevant physics: nonadiabatic particle production particle decay, thermalization of decay daughters medium

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity

Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity arxiv:1607.05268v1 [gr-qc] 17 Jul 2016 Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity Dmitry Gorbunov, Alexander

More information

Inflationary particle production and non-gaussianity

Inflationary particle production and non-gaussianity December 30th (2018) Inflationary particle production and non-gaussianity Yi-Peng Wu RESearch Center for the Early Universe (RESCEU) The University of Tokyo based on: arxiv[the last day of 2018?] see also

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu Astro 321 Set 4: Inflationary Perturbations Wayne Hu Outline Review of canonical single-field slow roll inflation Scalar field Comoving curvature Gravitational waves EFT of inflation Application to P (X,

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Cosmological perturbations in nonlinear massive gravity

Cosmological perturbations in nonlinear massive gravity Cosmological perturbations in nonlinear massive gravity A. Emir Gümrükçüoğlu IPMU, University of Tokyo AEG, C. Lin, S. Mukohyama, JCAP 11 (2011) 030 [arxiv:1109.3845] AEG, C. Lin, S. Mukohyama, To appear

More information

Inflation and the cosmological constant problem

Inflation and the cosmological constant problem Inflation and the cosmological constant problem Larissa Lorenz Sebastian Sapeta Krzyzowa 18. 8. September 00 Contents Standard model of cosmology and its problems The inflationary paradigm Review of the

More information

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ Non-Gaussianities from Inflation Leonardo Senatore, Kendrick Smith & MZ Lecture Plan: Lecture 1: Non-Gaussianities: Introduction and different take on inflation and inflation modeling. Lecture II: Non-Gaussianities:

More information

Quantum Gravity Constraints on Large Field Inflation

Quantum Gravity Constraints on Large Field Inflation Corfu2017, September 24, 2017 p.1/23 Quantum Gravity Constraints on Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München Bhg, Valenzuela, Wolf, arxiv:1703.05776 Frequently asked

More information

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale)

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale) GRAVITATIONAL WAVES AND THE END OF INFLATION Richard Easther (Yale) OUTLINE Inflation: a reminder Ending inflation: Parametric resonance / preheating [SKIP: technical calculation] Gravitational wave generation

More information

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Lorenzo Sorbo UMass Amherst Padova, 17/02/2011 LS, 1101.1525 Plan of the talk Inflation, radiative stability and pseudo-nambu-goldstone

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

Evolution of Scalar Fields in the Early Universe

Evolution of Scalar Fields in the Early Universe Evolution of Scalar Fields in the Early Universe Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2015 September 17th, 2015 Advisor: Alexander Kusenko Collaborator:

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova The Effects of Inhomogeneities on the Universe Today Antonio Riotto INFN, Padova Frascati, November the 19th 2004 Plan of the talk Short introduction to Inflation Short introduction to cosmological perturbations

More information

Primordial GW from pseudoscalar inflation.

Primordial GW from pseudoscalar inflation. Primordial GW from pseudoscalar inflation. Mauro Pieroni Laboratoire APC, Paris. mauro.pieroni@apc.univ-paris7.fr July 6, 2016 Overview 1 A review on inflation. 2 GW from a Pseudoscalar inflaton. 3 Conclusions

More information

Primordial GWs from universality classes of pseudo-scalar inflation

Primordial GWs from universality classes of pseudo-scalar inflation Journal of Physics: Conference Series PAPER OPEN ACCESS Primordial GWs from universality classes of pseudo-scalar inflation To cite this article: M. Pieroni 2017 J. Phys.: Conf. Ser. 840 012033 View the

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

Dissipative and Stochastic Effects During Inflation 1

Dissipative and Stochastic Effects During Inflation 1 Dissipative and Stochastic Effects During Inflation 1 Rudnei O. Ramos Rio de Janeiro State University Department of Theoretical Physics McGill University Montreal, Canada September 8th, 2017 1 Collaborators:

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

New Insights in Hybrid Inflation

New Insights in Hybrid Inflation Dr. Sébastien Clesse TU Munich, T70 group: Theoretical Physics of the Early Universe Excellence Cluster Universe Based on S.C., B. Garbrecht, Y. Zhu, Non-gaussianities and curvature perturbations in hybrid

More information

Nonminimal coupling and inflationary attractors. Abstract

Nonminimal coupling and inflationary attractors. Abstract 608.059 Nonminimal coupling and inflationary attractors Zhu Yi, and Yungui Gong, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China Abstract We show explicitly

More information

Cosmic Microwave Background Polarization. Gil Holder

Cosmic Microwave Background Polarization. Gil Holder Cosmic Microwave Background Polarization Gil Holder Outline 1: Overview of Primary CMB Anisotropies and Polarization 2: Primary, Secondary Anisotropies and Foregrounds 3: CMB Polarization Measurements

More information

Cosmology of moving branes and spinflation

Cosmology of moving branes and spinflation Cosmology of moving branes and spinflation 8 Dark Energy in the Universe Damien Easson University of Tokyo Outline Brane Inflation, Moduli Stabilization and Flux Compactifications Cyclic, Mirage cosmologies

More information

Inflation and String Theory

Inflation and String Theory Inflation and String Theory Juan Maldacena Strings 2015, Bangalore Based on: Arkani Hamed and JM, JM and Pimentel Inflation is the leading candidate for a theory that produces the primordial fluctuations.

More information

Avoiding strong coupling problem in the Higgs inflation with R 2 -term. Dmitry Gorbunov

Avoiding strong coupling problem in the Higgs inflation with R 2 -term. Dmitry Gorbunov Avoiding strong coupling problem in the Higgs inflation with R 2 -term Dmitry Gorbunov Institute for Nuclear Research of RAS, Moscow Workshop on the Standard Model and Beyond Corfu Summer Institute Corfu,

More information

fluctuation power spectra From the Newtonian point of

fluctuation power spectra From the Newtonian point of real difficulties lie in the super-horizon modes with λ > ct. Within inflationary models, however, these difficulties can be overcome, since the true horizon is ct. The most direct general way of solving

More information

Formation of Primordial Black Holes in Double Inflation

Formation of Primordial Black Holes in Double Inflation Formation of Primordial Black Holes in Double Inflation Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo) Based on MK Mukaida Yanagida, arxiv:1605.04974 MK Kusenko Tada Yanagida arxiv:1606.07631

More information

(Small) Resonant non-gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation

(Small) Resonant non-gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation SLAC-PUB-14986 (Small) Resonant non-gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation Siavosh R. Behbahani a,b,c, Anatoly Dymarsky d, Mehrdad Mirbabayi e

More information

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil Brazilian Journal of Physics ISSN: 13-9733 luizno.bjp@gmail.com Sociedade Brasileira de Física Brasil Martin, Jérôme Inflation and precision cosmology Brazilian Journal of Physics, vol. 34, núm. 4A, december,

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Cosmological perturbations in teleparallel LQC

Cosmological perturbations in teleparallel LQC Cosmological perturbations in teleparallel LQC Jaume Haro; Dept. Mat. Apl. I, UPC (ERE, Benasque, 09/2013) Isotropic LQC 1 Gravitational part of the classical Hamiltonian in Einstein Cosmology (flat FLRW

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

Asymptotically safe inflation from quadratic gravity

Asymptotically safe inflation from quadratic gravity Asymptotically safe inflation from quadratic gravity Alessia Platania In collaboration with Alfio Bonanno University of Catania Department of Physics and Astronomy - Astrophysics Section INAF - Catania

More information

What have we learnt about the early universe?

What have we learnt about the early universe? What have we learnt about the early universe? V(φ) φ Hiranya Peiris STFC Advanced Fellow University of Cambridge Roadmap Lecture 1: The physics of the cosmic microwave background. Lecture 2: What have

More information

Inflationary model building, reconstructing parameters and observational limits

Inflationary model building, reconstructing parameters and observational limits Inflationary model building, reconstructing parameters and observational limits Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata Date: 30/09/2014 Contact: sayanphysicsisi@gmail.com

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

Primordial Non-Gaussianity

Primordial Non-Gaussianity Primordial Non-Gaussianity Sam Passaglia 1 1 University of Chicago KICP In This Discussion Non-Gaussianity in Single-Field Slow-Roll Non-Gaussianity in the EFT of Inflation Observational Constraints Non-Gaussianity

More information

Inflation from supersymmetry breaking

Inflation from supersymmetry breaking Inflation from supersymmetry breaking I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, Sorbonne Université, CNRS Paris I. Antoniadis (Athens Mar 018) 1 / 0 In memory of Ioannis Bakas

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Ghost Bounce 鬼跳. Chunshan Lin. A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007.

Ghost Bounce 鬼跳. Chunshan Lin. A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007. Ghost Bounce 鬼跳 A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007.2654 Chunshan Lin IPMU@UT Outline I. Alternative inflation models Necessity Matter bounce

More information

Gravitational waves from inflation

Gravitational waves from inflation RIVISTA DEL NUOVO CIMENTO Vol. 39, N. 9 2016 DOI 10.1393/ncr/i2016-10127-1 Gravitational waves from inflation M. C. Guzzetti( 1 )( 2 )( ),N.Bartolo( 1 )( 2 )( 3 ),M.Liguori( 1 )( 2 )( 3 ) and S. Matarrese(

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information