Evolution of Scalar Fields in the Early Universe

Size: px
Start display at page:

Download "Evolution of Scalar Fields in the Early Universe"

Transcription

1 Evolution of Scalar Fields in the Early Universe Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2015 September 17th, 2015 Advisor: Alexander Kusenko Collaborator: Lauren Pearce Evolution of Scalar Fields in the Early Universe (slide 1) PACIFIC 2015

2 The Motivation The recent discovery of the Higgs boson with mass M h = ± 0.4 GeV [Particle Data Group 2014] V (φ) 1 4 λ eff (φ) φ 4 for φ 100 GeV Very small or negative λ eff at high scale from RGE a meta-stable electroweak vacuum a shallow potential at high scale During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV). Post-inflationary Higgs field relaxation possibility for Leptogenesis [Dario Buttazzo et al. JHEP 1312 (2013) 089] Evolution of Scalar Fields in the Early Universe (slide 2) PACIFIC 2015

3 Outline 1 Quantum Fluctuations in the Inflationary Universe 2 Classical Motion of Scalar Fields 3 Possible New Physics 4 Issue with Isocurvature Perturbations Evolution of Scalar Fields in the Early Universe (slide 3) PACIFIC 2015

4 Quantum Fluctuations in the Inflationary Universe Evolution of Scalar Fields in the Early Universe (slide 4) PACIFIC 2015

5 Quantum fluctuations in the inflationary universe During inflation, scalar fields can obtain a large VEV through quantum fluctuations. In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size. Long-wave quantum fluctuations are characterized by 1 long correlation length l 2 large occupation number n k for low k => behave like (quasi) classical field. l ϕ 0 x [Figure from A. Linde - arxiv: ] Evolution of Scalar Fields in the Early Universe (slide 5) PACIFIC 2015

6 Quantum fluctuations in the inflationary universe The VEV of the field can be computed through the dispersion of the fluctuation φ 0 = = φ 2 In a pure de Sitter spacetime, a scalar field with mass m can obtain a large VEV φ 2 = 3H4 8π 2 m 2 for m 2 H 2. [T. Bunch and P. Davies, Proc. Roy. Soc. Lond. A360, 117 (1978)] In the inflationary universe, the exponential expansion period exists for a finite time t φ 2 H2 2 (2π) 3 H He Ht d 3 k k 3 = H3 4π 2 t H2 4π 2 N for m 2 = 0 or m 2 H 2 with t 3H/m 2. N Ht is the number of e-folds. [A. Linde, Phys. Lett. B116, 335 (1982)] Evolution of Scalar Fields in the Early Universe (slide 6) PACIFIC 2015

7 Hawking-Moss tunneling Hawking & Moss (1982) One can also understand the fluctuation as both the scalar field φ(x) and the metric g µν(x) experience quantum jumps. The Hawking-Moss instanton Γ (φ i φ f ) V = Ae S E (φ i ) S E(φ f), where SE(φ) = 3m4 pl 8V (φ) is the Euclidean action and A is some O(m 4 ) prefactor. The entire process can then be viewed as the fields are underdoing Brownian motion and can be described by diffusion equation. V(ϕ) Quantum Jump ϕ f ϕ i ϕ Evolution of Scalar Fields in the Early Universe (slide 7) PACIFIC 2015

8 Hawking-Moss tunneling Hawking & Moss (1982) One can also understand the fluctuation as both the scalar field φ(x) and the metric g µν(x) experience quantum jumps. The Hawking-Moss instanton Γ (φ i φ f ) V = Ae S E (φ i ) S E(φ f), where SE(φ) = 3m4 pl 8V (φ) is the Euclidean action and A is some O(m 4 ) prefactor. The entire process can then be viewed as the fields are underdoing Brownian motion and can be described by diffusion equation. V(ϕ) Brownian motion ϕ f ϕ i ϕ Evolution of Scalar Fields in the Early Universe (slide 7) PACIFIC 2015

9 Stochastic approach & Hawking-Moss tunneling P c (φ, t): the probability distribution of finding φ at time t Diffussion equation P c t = jc φ where [A. A. Starobinsky (1982); A. Vilenkin (1982)] In equilibrium P c/ t = 0, j c = 0. One obtain the distribution P c (φ) = e S E (φ min ) S E (φ) [ ] 3m 4 pl V (φ) exp 8 V (φ min ) 2 j c = φ ( ) H 3 P c + Pc dv 8π 2 3H dφ for V = V (φ) V (φ min ) V (φ min ). The fluctuation is not suppressed if V (φ) < 8V (φ min) 2 3m 4 pl The variance of the fluctuation is φ 2 φ 2 P c(φ)dφ = Pc(φ)dφ Evolution of Scalar Fields in the Early Universe (slide 8) PACIFIC 2015

10 Quantum fluctuation of the Higgs field Example: the Higgs field φ on the inflationary background (inflaton I). V (φ, I) = V H (φ) + V I (I) λ effφ 4 + Λ 4 I +... The quantum transition of the Higgs field from 0 to φ is not suppressed if 1 4 λ effφ 4 < 8 ( ) Λ 2 4 I HI 4 φ < 0.62λ 1/4 eff H I 3 m pl Even though φ = 0 due to the even potential, the variance of the fluctuation of φ is not zero. φ 0 = φ 2 = 0.36λ 1/4 eff H I Generally, during inflation, we expect the scalar field to obtain a large VEV φ 0 such that V H (φ 0 ) H 4 I Evolution of Scalar Fields in the Early Universe (slide 9) PACIFIC 2015

11 Classical Motion of Scalar Fields Evolution of Scalar Fields in the Early Universe (slide 10) PACIFIC 2015

12 Slow rolling during inflation Scalar field in an expanding universe φ + 3H φ + Γ φ φ + V φ = 0 During inflation, the scalar field can be in slow-roll. φ V φ and φ2 V The slow-roll conditions are 9H 2 2 V (φ, I) = m 2 φ 2 eff (φ) and V (φ, I) 48π m pl V (φ, I) φ The first condition can be understood as the time scale for rolling down ( ) 1 τ m 1 eff = 2 V H 1. φ 2 As long as m eff (φ) H, there is insufficient time for the scalar field to roll down. Evolution of Scalar Fields in the Early Universe (slide 11) PACIFIC 2015.

13 Slow rolling of the Higgs field For 1 4 λφ4 or the Higgs potential, the slow-roll conditions are ( ) 1/6 φ 3λ 1/2 27 eff H I and φ λ 1/3 ( eff mpl H 2 ) 1/3 I. 4π The conditions for all the quantum fluctuations to be unable to roll are: ( ) 2 λ eff 4800 and λ eff mpl, Λ I which are easily satisfied when Λ I < m pl. In other words, during inflation, the Higgs field can jump quantum mechanically but cannot roll down classically. a large Higgs VEV is developed. V(ϕ) Quantum Jump ϕ min Roll Down Classically ϕ Evolution of Scalar Fields in the Early Universe (slide 12) PACIFIC 2015

14 Brief summary Quantum fluctuation Brings the field to a VEV φ 0 such that V φ (φ 0 ) H 4 Slow rolling The field won t roll down if m 2 eff H2 V(ϕ) Quantum Jump ϕ min Roll Down Classically ϕ Evolution of Scalar Fields in the Early Universe (slide 13) PACIFIC 2015

15 Relaxation of the Higgs field after inflation As inflation ends, the inflaton enters the coherent oscillations regime, H < m eff (φ 0). The Higgs field is no longer in slow-roll. The Higgs then rolls down and oscillates around φ = 0 with decreasing amplitude within τ roll H 1. Inflaton V(I) Coherent Oscillations Slow-Roll Φ t Φ0 Λ I 1.0 I GeV I 10 3 GeV I 0.8 Tmax GeV Λ eff Φ Φ GeV HI GeV ΡI 0.4 Tmax Radiation- Dominated 0.2 T TRH Coherent ΡR Oscillations (matter like) Λ Φ0t End of Inflation t ' t 1 I log t End of Inflation at t 0 Evolution of Scalar Fields in the Early Universe (slide 14) PACIFIC 2015

16 Relaxation of the Higgs field after inflation During the oscillation of the Higgs field, the Higgs condensate can decay into several product particles: Non-perturbative decay: W and Z bonsons Φ0 WT k 0,Τ log n k Λ I = GeV and Γ I = 10 9 GeV for IC-1 Perturbative decay (thermalization): top quark. Those decay channels do affect the oscillation of the Higgs field but they becomes important only after several oscillations. Evolution of Scalar Fields in the Early Universe (slide 15) PACIFIC 2015

17 Possible New Physics The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis). Sakharov conditions: 1 C and CP violations 2 Out of thermal equilibrium Time-dependent background Higgs field +... Roll down of the Higgs field 3 Lepton/Baryon Next talk by Lauren Pearce number violations One possibility is to have the lepton asymmetry L 0 φ 2 A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, L. Pearce, L. Yang, A. Kusenko, M. Peloso, Phys. Rev. D 92 (2015) 2, L. Yang, L. Pearce, A. Kusenko, Phys. Rev. D 92 (2015) Similar idea for axion A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115 (2015) Evolution of Scalar Fields in the Early Universe (slide 16) PACIFIC 2015

18 Issue with Isocurvature Perturbations Evolution of Scalar Fields in the Early Universe (slide 17) PACIFIC 2015

19 Isocurvature perturbations One issue for applying to Leptogenesis φ 0 = φ 2 is the average over several Hubble volumes. Each Hubble volume has different initial φ 0 value. When inflation end, each patch of the observable universe began with different value of φ 0. If L 0 φ 2 Different asymmetry in each Hubble volume Large isocurvature perturbations, which are constrainted by current CMB observation. [Figure from Lauren Pearce] Evolution of Scalar Fields in the Early Universe (slide 18) PACIFIC 2015

20 Isocurvature perturbations One issue for applying to Leptogenesis φ 0 = φ 2 is the average over several Hubble volumes. Each Hubble volume has different initial φ 0 value. When inflation end, each patch of the observable universe began with different value of φ 0. If L 0 φ 2 Different asymmetry in each Hubble volume Large isocurvature perturbations, which are constrainted by current CMB observation. [Figure from Lauren Pearce] Evolution of Scalar Fields in the Early Universe (slide 18) PACIFIC 2015

21 Isocurvature perturbations One issue for applying to Leptogenesis φ 0 = φ 2 is the average over several Hubble volumes. Each Hubble volume has different initial φ 0 value. When inflation end, each patch of the observable universe began with different value of φ 0. If L 0 φ 2 Different asymmetry in each Hubble volume Large isocurvature perturbations, which are constrainted by current CMB observation. φ 0 φ 0 φ 0 [Figure from Lauren Pearce] Evolution of Scalar Fields in the Early Universe (slide 18) PACIFIC 2015

22 Isocurvature perturbations One issue for applying to Leptogenesis φ 0 = φ 2 is the average over several Hubble volumes. Each Hubble volume has different initial φ 0 value. When inflation end, each patch of the observable universe began with different value of φ 0. If L 0 φ 2 Different asymmetry in each Hubble volume Large isocurvature perturbations, which are constrainted by current CMB observation. [Figure from Lauren Pearce] Evolution of Scalar Fields in the Early Universe (slide 18) PACIFIC 2015

23 Solutions to the isocurvature perturbation issue Solutions: 1 IC-1: Second Minimum at Large VEVs (φ v EW ) E.g. V(ϕ) L lift = φ10 Λ 6 lift Second Min. ϕ 2 IC-2: Inflaton-Higgs coupling E.g. V(ϕ) L ΦI = 1 2 M I 2n 2n 2 φ2 Very Steep Potential due to Inflaton ϕ Evolution of Scalar Fields in the Early Universe (slide 19) PACIFIC 2015

24 IC-1: Second minimum at large VEV Motivations: 1 At large VEVs, Higgs potential is sensitive to higher-dimensional operators. L lift = φ10 Λ 6 lift 2 There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable. 3 A higher-dimensional operator can lift the possible planckian minimum and stablize our EW vacuum. The second minimum becomes metastable and higher than the EW vacuum. Evolution of Scalar Fields in the Early Universe (slide 20) PACIFIC 2015

25 IC-1: Second minimum at large VEV The scenario: 1 Large VEV at early stage of inflation 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation. 3 Reheating destablize the quasi-stable vacuum. 4 Higgs field rolls down from the second minimum. V(ϕ) H 4 Early stage of inflation Second Min. ϕ Evolution of Scalar Fields in the Early Universe (slide 21) PACIFIC 2015

26 IC-1: Second minimum at large VEV The scenario: V(ϕ) 1 Large VEV at early stage of inflation 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation. 3 Reheating destablize the quasi-stable vacuum. 4 Higgs field rolls down from the second minimum. H 4 Trapped Second Min. ϕ Evolution of Scalar Fields in the Early Universe (slide 21) PACIFIC 2015

27 IC-1: Second minimum at large VEV The scenario: 1 Large VEV at early stage of inflation 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation. 3 Reheating destablize the quasi-stable vacuum. 4 Higgs field rolls down from the second minimum. V(ϕ) Reheating Thermal correction ϕ Evolution of Scalar Fields in the Early Universe (slide 21) PACIFIC 2015

28 IC-1: Second minimum at large VEV The scenario: 1 Large VEV at early stage of inflation 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation. 3 Reheating destablize the quasi-stable vacuum. 4 Higgs field rolls down from the second minimum. V(ϕ) Higgs VEV Rolls Down Reheating ϕ Evolution of Scalar Fields in the Early Universe (slide 21) PACIFIC 2015

29 IC-1: Second minimum at large VEV < IC1 > Λ I = GeV Γ I = 10 9 GeV ϕ 0 = GeV ϕ/ϕ T(t) ϕ 0 t Evolution of Scalar Fields in the Early Universe (slide 22) PACIFIC 2015

30 IC-2: Inflaton-Higgs coupling Introduce coupling between the Higgs and inflaton field. E.g. I 2n L ΦI = 1 2 M 2n 2 φ2. Motivations: This could be obtained by integrating out heavy states in loops. Induces an large effective mass m eff,φ ( I ) = I n /M n 1 for the Higgs field when I is large. If m eff,φ ( I ) H in the early stage of inflation, the slow roll condition is not satisfied. Evolution of Scalar Fields in the Early Universe (slide 23) PACIFIC 2015

31 IC-2: Inflaton-Higgs coupling 1 In the early stage of inflation, I is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at φ = 0. 2 At the last N last e-folds of inflation, I, m eff,φ ( I ) < H I, Higgs VEV starts to develop. 3 At the end of inflation, the Higgs field has obtained a VEV φ 0 = φ 2 = H I Nlast. 2π V(ϕ) φ 2 ~0 Quantum jumps Rolls down classically Early stage of inflation H 4 ϕ 4 The Higgs VEV then rolls down from φ 0. Evolution of Scalar Fields in the Early Universe (slide 24) PACIFIC 2015

32 IC-2: Inflaton-Higgs coupling 1 In the early stage of inflation, I is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at φ = 0. 2 At the last N last e-folds of inflation, I, m eff,φ ( I ) < H I, Higgs VEV starts to develop. 3 At the end of inflation, the Higgs field has obtained a VEV φ 0 = φ 2 = H I Nlast. 2π V(ϕ) Last N e-folds of inflation H 4 ϕ φ 2 starts to grow 4 The Higgs VEV then rolls down from φ 0. Evolution of Scalar Fields in the Early Universe (slide 24) PACIFIC 2015

33 IC-2: Inflaton-Higgs coupling 1 In the early stage of inflation, I is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at φ = 0. 2 At the last N last e-folds of inflation, I, m eff,φ ( I ) < H I, Higgs VEV starts to develop. 3 At the end of inflation, the Higgs field has obtained a VEV φ 0 = φ 2 = H I Nlast. 2π 4 The Higgs VEV then rolls down from φ 0. V(ϕ) φ 2 = H I 2 N/4π 2 End of inflation ϕ Evolution of Scalar Fields in the Early Universe (slide 24) PACIFIC 2015

34 IC-2: Inflaton-Higgs coupling 1 In the early stage of inflation, I is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at φ = 0. 2 At the last N last e-folds of inflation, I, m eff,φ ( I ) < H I, Higgs VEV starts to develop. 3 At the end of inflation, the Higgs field has obtained a VEV φ 0 = φ 2 = H I Nlast. 2π 4 The Higgs VEV then rolls down from φ 0. V(ϕ) After inflation Rolls down classically ϕ Evolution of Scalar Fields in the Early Universe (slide 24) PACIFIC 2015

35 IC-2: Inflaton-Higgs coupling For N last = 5 8, the isocurvature perturbation only develops on the small angular scales which are not yet constrained. ϕ/ϕ < IC2 > Λ I = GeV Γ I = 10 8 GeV N last = 8 ϕ 0 = GeV ϕ 0 t Evolution of Scalar Fields in the Early Universe (slide 25) PACIFIC 2015

36 Summary During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background. As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum. Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible. Possible issue with isocurvature perturbation can be solved by introducing higher dimensional operators. Thank you for your listening! Evolution of Scalar Fields in the Early Universe (slide 26) PACIFIC 2015

37 Inflation The Universe appears to be almost homogeneous and isotropic today Inflation In the early universe, the energy density was dominated by vacuum energy. Inflation from a real scalar field: Inflaton I (x) L I = 1 2 gµν µi νi V I (I) The equation of motion is Ï+3HI+Γ II+ dv I (I) = 0, with H 2 di ( ) 2 ȧ = 8π (ρ a 3m 2 I + ρ other ) pl where we assume a uniform field configuration and a FRW spacetime ds 2 = dt 2 a (t) 2 ( dr 2 + r 2 dω 2). Evolution of Scalar Fields in the Early Universe (slide 27) PACIFIC 2015

38 The Brief History of the Early Universe 1 Slow-roll (inflation) regime: Ï dv di Γ I is not active. and I 2 V. 3HI = dv di, and H2 8π = 3m 2 V I (I) pl V(I) Slow-Roll Inflaton acts like vacuum energy. a(t) e Ht Coherent Oscillations 2 Coherent oscillations regime: a (t) (t t i ) 2/3 Inflaton acts like non-relativistic particle. The Universe is matter-dominated. Inflaton then decays into relativistic particles ρ R. Tmax ΡI Λ I I Radiation- Dominated ρ I + 3Hρ I + Γ I ρ I = 0 ρ I (t) = Λ4 I a (t) 3 e Γ I t TRH Coherent Oscillations (matter like) ΡR log t End of Inflation t ' t 1 I 3 Radiation-dominated regime: a (t) (t t i ) 1/2 At t = 1/Γ I, most of the inflatons decay into ρ R, Evolution of Scalarand Fields the in the reheating Early Universe is complete. (slide 28) PACIFIC 2015

39 The Hawking-Moss Tunneling If V (φ f ) V (φ i ) V (φ i ), we have S E (φ i) S E (φ f ) = 3m4 pl 8 The transition rate is then ( Γ V exp 3m4 pl 8 [ 1 V (φ 1 ] i) V (φ f ) 3m4 pl 8 ) V (φ f ) V (φ i) V (φ i) 2 Thus, the transition is not suppressed as long as V (φ f ) V (φ i) < 8 V (φ i) 2 3m 4 pl V (φ f ) V (φ i) V (φ i) 2 Evolution of Scalar Fields in the Early Universe (slide 29) PACIFIC 2015

40 Reheating As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion φ + 3H φ V H (φ) + Γ φ φ =. φ The Hubble parameter and the temperature of the plasma are determined by ρ r + 4Hρ r = Γ Iρ I, H 2 = 8πG 3 ρ r = π2 30 g T 4. (ρi + ρr), While the decay of Higgs may produce some non-zero lepton number by itself, most of the plasma are generated by the decay of inflaton. Evolution of Scalar Fields in the Early Universe (slide 30) PACIFIC 2015

41 Perturbative decay (thermalization) to top quark Thermalization rate is comparable to the Hubble parameter only after the maximum reheating has been reached H(t) H(t) GeV t GeV 1 H(t) vs Γ H(t) through top quark for IC-1, with the parameters Λ I = GeV and Γ I = 10 9 GeV. The vertical lines: the first time the Higgs VEV crosses zero, and the time of maximum reheating, from left to right. Evolution of Scalar Fields in the Early Universe (slide 31) PACIFIC 2015

Leptogenesis via Higgs Condensate Relaxation

Leptogenesis via Higgs Condensate Relaxation The Motivation Quantum Fluctuations Higgs Relaxation Leptogenesis Summary Leptogenesis via Higgs Condensate Relaxation Louis Yang Department of Physics and Astronomy University of California, Los Angeles

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 27, 2016 NATIONAL TSING HUA UNIVERSITY OUTLINE Big

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

Post-Inflationary Higgs Relaxation and Leptogenesis. Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018

Post-Inflationary Higgs Relaxation and Leptogenesis. Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018 Post-Inflationary Higgs Relaxation and Leptogenesis Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018 Outline Motivation: the Higgs potential Quantum fluctuation during inflation Post-inflationary Higgs

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

Postinflationary Higgs Relaxation and the Origin of Matter

Postinflationary Higgs Relaxation and the Origin of Matter Postinflationary Higgs Relaxation and the Origin of Matter Louis Yang University of California, Los Angeles Ph.D. Final Oral Presentation May 16, 2017 Outline Motivation: the Higgs potential Quantum Fluctuation

More information

Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation

Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation Lauren Pearce University of Illinois, Urbana-Champaign Based on: Alexander Kusenko, LP, Louis Yang, Phys.Rev.Lett.

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

The 1-loop effective potential for the Standard Model in curved spacetime

The 1-loop effective potential for the Standard Model in curved spacetime The 1-loop effective potential for the Standard Model in curved spacetime arxiv:1804.02020 (JHEP) The 1-loop effective potential for the SM in curved spacetime arxiv:1809.06923 (Review) Cosmological Aspects

More information

Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry

Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry Alexander Kusenko, 1, 2 Lauren Pearce, and Louis Yang 1 1 Department of Physics and Astronomy, University of California,

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

HIGGS-CURVATURE COUPLING AND POST-INFLATIONARY VACUUM STABILITY

HIGGS-CURVATURE COUPLING AND POST-INFLATIONARY VACUUM STABILITY HIGGS-CURVATURE COUPLING AND POST-INFLATIONARY VACUUM STABILITY Francisco Torrentí, IFT UAM/CSIC with Daniel G. Figueroa and Arttu Rajantie (arxiv:1612.xxxxx) V Postgraduate Meeting on Theoretical Physics,

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

PREHEATING THE UNIVERSE IN HYBRID INFLATION

PREHEATING THE UNIVERSE IN HYBRID INFLATION PREHEATING THE UNIVERSE IN HYBRID INFLATION JUAN GARCÍA-BELLIDO Theory Division, C.E.R.N., CH-1211 Genève 23, Switzerland One of the fundamental problems of modern cosmology is to explain the origin of

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv: Dark inflation Micha l Artymowski Jagiellonian University January 29, 2018 Osaka University arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv: Dark inflation Micha l Artymowski Jagiellonian University December 12, 2017 COSPA 2017 arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave background

More information

Spacetime curvature and Higgs stability during and after inflation

Spacetime curvature and Higgs stability during and after inflation Spacetime curvature and Higgs stability during and after inflation arxiv:1407.3141 (PRL 113, 211102) arxiv:1506.04065 Tommi Markkanen 12 Matti Herranen 3 Sami Nurmi 4 Arttu Rajantie 2 1 King s College

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ]

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ] Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv:1105.0498] Origin of? super-horizon Origin of (almost) scale-invariant? perturbations Outline What

More information

Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009

Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009 Particules Élémentaires, Gravitation et Cosmologie Année 2008-09 Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009 Le paradigme inflationnaire Homogeneity and flatness problems in HBB

More information

Cosmological Relaxation of the Electroweak Scale

Cosmological Relaxation of the Electroweak Scale the Relaxion Cosmological Relaxation of the Electroweak Scale with P. Graham and D. E. Kaplan arxiv: 1504.07551 The Hierarchy Problem The Higgs mass in the standard model is sensitive to the ultraviolet.

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information

Holographic Model of Cosmic (P)reheating

Holographic Model of Cosmic (P)reheating Holographic Model of Cosmic (P)reheating Yi-Fu Cai 蔡一夫 University of Science & Technology of China New perspectives on Cosmology, APCTP, Feb 13 th 2017 In collaboration with S. Lin, J. Liu & J. Sun, Based

More information

Could the Higgs Boson be the Inflaton?

Could the Higgs Boson be the Inflaton? Could the Higgs Boson be the Inflaton? Michael Atkins Phys.Lett. B697 (2011) 37-40 (arxiv:1011.4179) NExT Meeting March 2012, Sussex Outline Why inflation? The Higgs as the inflaton Unitarity and Higgs

More information

De Sitter Space Without Quantum Fluctuations

De Sitter Space Without Quantum Fluctuations De Sitter Space Without Quantum Fluctuations arxiv:1405.0298 (with Kim Boddy and Sean Carroll) Jason Pollack Quantum Foundations of a Classical Universe IBM Watson Research Center August 12, 2014 8/12/2014

More information

Exact Inflationary Solution. Sergio del Campo

Exact Inflationary Solution. Sergio del Campo Exact Inflationary Solution Sergio del Campo Instituto de Física Pontificia Universidad Católica de Valparaíso Chile I CosmoSul Rio de Janeiro, 1 al 5 de Agosto, 2011 Inflation as a paradigm. Models Slow-roll

More information

arxiv: v1 [hep-ph] 25 Jan 2008

arxiv: v1 [hep-ph] 25 Jan 2008 Effects of reheating on leptogenesis arxiv:0801.3972v1 [hep-ph] 25 Jan 2008 F. Hahn-Woernle and M. Plümacher Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany Abstract We study

More information

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi Inflation, Gravity Waves, and Dark Matter Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Feb 2015 University of Virginia Charlottesville, VA Units ћ =

More information

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Physics 133: Extragalactic Astronomy and Cosmology. Week 8 Physics 133: Extragalactic Astronomy and Cosmology Week 8 Outline for Week 8 Primordial Nucleosynthesis Successes of the standard Big Bang model Olbers paradox/age of the Universe Hubble s law CMB Chemical/Physical

More information

Shortcomings of the inflationary paradigm

Shortcomings of the inflationary paradigm Shortcomings of the inflationary paradigm Looking at the Planck results, Steinhardt et all say:! 1) chaotic inflation with V = O(1) does not work! 2) the only remaining models are the ones with V

More information

Triple unification of inflation, dark matter and dark energy

Triple unification of inflation, dark matter and dark energy Triple unification of inflation, dark matter and dark energy May 9, 2008 Leonard Susskind, The Anthropic Landscape of String Theory (2003) A. Liddle, A. Ureña-López, Inflation, dark matter and dark energy

More information

Testing the string theory landscape in cosmology

Testing the string theory landscape in cosmology 別府 01..1 1 Testing the string theory landscape in cosmology 佐々木節 1. Cosmology Today Big Bang theory has been firmly established wavelength[mm] COBE/FIRAS CMB spectrum at T=.75K 00 sigma error-bars frequency[ghz]

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Dynamical CP violation in the Early Universe

Dynamical CP violation in the Early Universe Dynamical CP violation in the Early Universe Balaji Katlai (McGill University) In collaboration with T. Biswas, R.H. Brandenberger, David London Phys.Lett. B595, 22 (2004) DESY workshop, 2004. p.1/10 .

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Dissipative and Stochastic Effects During Inflation 1

Dissipative and Stochastic Effects During Inflation 1 Dissipative and Stochastic Effects During Inflation 1 Rudnei O. Ramos Rio de Janeiro State University Department of Theoretical Physics McGill University Montreal, Canada September 8th, 2017 1 Collaborators:

More information

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze AK & A. Spencer-Smith, Phys Lett B 722 (2013) 130 [arxiv:1301.2846] AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arxiv:1305.7283]

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

Dilaton and IR-Driven Inflation

Dilaton and IR-Driven Inflation Dilaton and IR-Driven Inflation Chong-Sun Chu National Center for Theoretical Science NCTS and National Tsing-Hua University, Taiwan Third KIAS-NCTS Joint Workshop High 1 Feb 1, 2016 1506.02848 in collaboration

More information

Warm intermediate inflationary universe models with a generalized dissipative coefficient / 34

Warm intermediate inflationary universe models with a generalized dissipative coefficient / 34 Warm intermediate inflationary universe models with a generalized dissipative coefficient Departamento de Física Universidad de Chile In collaboration with: Ramón Herrera and Marco Olivares CosmoSur III

More information

Effects of the field-space metric on Spiral Inflation

Effects of the field-space metric on Spiral Inflation Effects of the field-space metric on Spiral Inflation Josh Erlich College of William & Mary digitaldante.columbia.edu Miami 2015 December 20, 2015 The Cosmic Microwave Background Planck collaboration Composition

More information

Relaxion with Particle Production

Relaxion with Particle Production Relaxion with Particle Production Gustavo Marques-Tavares Stanford University with A. Hook: 1607.01786 Why is the Higgs mass small? m 2 h? Symmetry +? µ 2 Symmetry Where are you? +? µ 2 Why is the Higgs

More information

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 XIII. The Very Early Universe and Inflation ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 Problems with the Big Bang The Flatness Problem The Horizon Problem The Monopole (Relic Particle)

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 2 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 GWs from inflation Inflation Accelerated expansion in the early Universe Solves

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson X April 19, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

Eternal Inflation, Bubble Collisions, and the Disintegration of the Persistence of Memory

Eternal Inflation, Bubble Collisions, and the Disintegration of the Persistence of Memory Eternal Inflation, Bubble Collisions, and the Disintegration of the Persistence of Memory Ben Freivogel, UC Berkeley in collaboration with Matt Kleban, Alberto Nicolis, and Kris Sigurdson Why the long

More information

Baryon asymmetry from hypermagnetic helicity in inflationary cosmology

Baryon asymmetry from hypermagnetic helicity in inflationary cosmology Baryon asymmetry from hypermagnetic helicity in inflationary cosmology Reference: Physical Review D 74, 123504 (2006) [e-print arxiv:hep-ph/0611152] Particle and field seminar at National Tsing Hua University

More information

arxiv: v3 [hep-ph] 11 Aug 2015

arxiv: v3 [hep-ph] 11 Aug 2015 HGU-CAP-037 EPHOU-15-0009 arxiv:1505.0194v3 [hep-ph] 11 Aug 015 Dilution of axion dark radiation by thermal inflation Hironori Hattori, Tatsuo Kobayashi, Naoya Omoto Department of Physics, Hokkaido University,

More information

Signatures of Trans-Planckian Dissipation in Inflationary Spectra

Signatures of Trans-Planckian Dissipation in Inflationary Spectra Signatures of Trans-Planckian Dissipation in Inflationary Spectra 3. Kosmologietag Bielefeld Julian Adamek ITPA University Würzburg 8. May 2008 Julian Adamek 1 / 18 Trans-Planckian Dissipation in Inflationary

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

A873: Cosmology Course Notes. VII. Inflation

A873: Cosmology Course Notes. VII. Inflation Readings VII. Inflation Alan Guth s Inflationary Universe paper (Phys Rev D, Vol. 23, p. 347, 1981) is a classic, well worth reading. The basics are well covered by Ryden, Chapter 11. For more physics

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Eternal inflation and the multiverse

Eternal inflation and the multiverse Eternal inflation and the multiverse Anthony Aguirre, UC Santa Cruz UCSC Summer School on Philosophy and Cosmology, July 2013 thanks to: Outline 1.Everlasting inflation and the structure of an eternally

More information

Cosmic Inflation Tutorial

Cosmic Inflation Tutorial Cosmic Inflation Tutorial Andreas Albrecht Center for Quantum Mathematics and Physics (QMAP) and Department of Physics UC Davis Simons Workshop on Quantum Information in Cosmology Niels Bohr Institute

More information

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY) SM*A*S*H Standard Model * Axion * See-saw * Hidden PQ scalar inflation Andreas Ringwald (DESY) From the Vacuum to the Universe Kitzbühel, Austria 26 June 1 July 2016 [Guillermo Ballesteros, Javier Redondo,

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Moduli Problem, Thermal Inflation and Baryogenesis

Moduli Problem, Thermal Inflation and Baryogenesis Finnish-Japanese Workshop on Particle Physics 2007 Moduli Problem, Thermal Inflation and Baryogenesis Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo Cosmological Moduli Problem

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Inflationary cosmology from higher-derivative gravity

Inflationary cosmology from higher-derivative gravity Inflationary cosmology from higher-derivative gravity Sergey D. Odintsov ICREA and IEEC/ICE, Barcelona April 2015 REFERENCES R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario J. Astrophys. Astr. (1985) 6, 239 246 Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario Τ. Padmanabhan Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 Received

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Open Inflation in the String Landscape

Open Inflation in the String Landscape Chuo University 6 December, 011 Open Inflation in the String Landscape Misao Sasaki (YITP, Kyoto University) D. Yamauchi, A. Linde, A. Naruko, T. Tanaka & MS, PRD 84, 043513 (011) [arxiv:1105.674 [hep-th]]

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 14 Dec. 2, 2015 Today The Inflationary Universe Origin of Density Perturbations Gravitational Waves Origin and Evolution of

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Gravitational waves from bubble collisions

Gravitational waves from bubble collisions Gravitational waves from bubble collisions Thomas Konstandin in collaboration with S. Huber 0709.2091, 0806.1828 Outline 1 Introduction 2 Specific models 3 GWs from bubbles collisions 4 Conclusions Why

More information

What could we learn about high energy particle physics from cosmological observations at largest spatial scales?

What could we learn about high energy particle physics from cosmological observations at largest spatial scales? What could we learn about high energy particle physics from cosmological observations at largest spatial scales? Dmitry Gorbunov 1,a 1 Institute for Nuclear Research of Russian Academy of Sciences, 117312

More information

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 A.L.M and F. Prada to appear Albareti, Cembranos, A.L.M. arxiv:1404.5946 and 1405.3900

More information

Inflationary Trajectories

Inflationary Trajectories Inflationary Trajectories Pascal M. Vaudrevange 19.09.2007 Scanning Inflaton Goals: Reconstruction of Primordial Power Spectra Reconstruction of Inflaton Potential Inflation driven by a scalar field -

More information

HIGGS INFLATION & VACUUM STABILITY

HIGGS INFLATION & VACUUM STABILITY HIGGS INFLATION & VACUUM STABILITY Javier Rubio based on Phys. Rev. D 92, 083512 F. Bezrukov, J.R., M.Shaposhnikov Outline Could the Higgs field itself be responsible for inflation? 1. Reminder of inflation/

More information

Gravitational Waves from the Electroweak Phase Transition

Gravitational Waves from the Electroweak Phase Transition Gravitational Waves from the Electroweak Phase Transition A Semi-Analytic Calculation arxiv:0911.0687 John Kehayias University of California, Santa Cruz And Santa Cruz Institute of Particle Physics November

More information

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012 Lecture 1 Inflation Horizon problem Flatness problem Monopole problem What causes inflation Physical Cosmology 11/1 Inflation What is inflation good for? Inflation solves 1. horizon problem. flatness problem

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

Electroweak baryogenesis in the two Higgs doublet model

Electroweak baryogenesis in the two Higgs doublet model Michael Seniuch Bielefeld University 1 Electroweak baryogenesis in the two Higgs doublet model M. Seniuch, Bielefeld University COSMO 05 Bonn August 2005 Work is done in collaboration with Lars Fromme

More information

Low scale inflation with a curvaton

Low scale inflation with a curvaton Low scale inflation with a curvaton Jessica Cook 11/14/17 1608.08625, PRD: J Bramante, J Cook, A Delgado, A Martin The tensor to scalar ratio r < 0.07 φ 2 inflation is basically ruled out many of the simplest

More information

Inflation with a stringy minimal length (reworked)

Inflation with a stringy minimal length (reworked) Humboldt Universität zu Berlin Nordic String Meeting, Bremen, March 27 th 2009 Acknowledgements Part of an ongoing collaboration with Gonzalo A. Palma. This work reported on in arxiv : 0810.5532, to appear

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information