Continuous Domain Analysis of Graph Laplacian Regularization for Image Denoisng. Presenter: Gene Cheung National Institute of Informatics

Size: px
Start display at page:

Download "Continuous Domain Analysis of Graph Laplacian Regularization for Image Denoisng. Presenter: Gene Cheung National Institute of Informatics"

Transcription

1 Cotiuous Domai Aalysis of Graph Laplacia Regularizatio for Image Deoisg Preseter: Gee Cheug atioal Istitute of Iformatics [1] Jiahao Pag, Gee Cheug, Wei Hu, Oscar C. Au, "Redefiig Self-Similarity i atural Images for Deoisig Usig Graph Sigal Gradiet," i APSIPA ASC, Siem Reap, Cambodia, December, GSP Workshop, 31 Oct 2014

2 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 2

3 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 3

4 Motivatio (I) Image deoisig a basic restoratio problem: observatio y x e oise desired sigal It is uder-determied, eeds image priors for regularizatio fidelity term 2 mi y x prior( x) x 2 prior term Graph Laplacia regularizer: should be small for target patch x S ( x) T x Lx G L D A graph Laplacia matrix May works use Gaussia kerel to compute graph weights [2]: w ij dist( i, j) is some distace metric betwee pixels i ad j dist i, j exp 2 2 [2] D. Shuma, S. arag, P. Frossard, A. Ortega, ad P. Vadergheyst, The emergig field of sigal processig o graphs: extedig highdimesioal data aalysis to etworks ad other irregular domais, IEEE Sigal Processig Magazie, vol. 30, o. 3, pp ,

5 Motivatio (II) However S T x Lx a. Why is a good prior? G ( x) b. Why usig Gaussia kerel for edge weights? T x Lx c. How to desig a discrimiat for restoratio? We aswer these by viewig discrete graph as samples of high-dimesioal maifold. approximate discrete graph cotiuous maifold 5

6 Our Cotributios 1. Usig Gaussia kerel to compute graph weights, SG( x) coverges to a cotiuous fuctioal S, which ca be iterpreted as regularizer i cotiuous domai. T x Lx Graph Laplacia regularizer S G coverge A cotiuous fuctioal for regularizatio S S 2. Aalysis of fuctioal provides uderstadig of what sigals are beig discrimiated ad to what extet, o a poit-by-poit basis i the cotiuous domai. S 3. We desig a discrimiat for regularizatio i cotiuous domai, the obtai the graph Laplacia regularizer S G Desig discrimiat S obtai The correspodig S G 6

7 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 7

8 Road Map Cotiuous Domai Choose the cotiuous feature fuctios{ f } 1 SAMPLE Discrete Domai Sample { f } 1 to obtai the discrete { f D } 1 Get metric space G R o poit-by-poit basis 2 2 Compute the weights ad Laplacia L R M M Obtai cotiuous fuctioal S ( h) COVERGE Graph Laplacia D Regularizer S ( h ) G Differet { f } leads to differet regularizatio behavior! 1 8

9 Graph Costructio (I) First, defie: 2 2D domai R the shape of a image T s [ x y ] s,1 i M i i i i a set of M radom samples uiformly distributed o, costrued as pixel locatios Roadmap Features Samples { f } { D } Matrix G R Fuctioal S ( h) coverge f 1 Graph weights, M M ad L R Regularizer D S ( h ) G (Freely) choose cotiuous fuctios f (, ) :, 1 x y R f (x, y) y called feature fuctios, ca be itesity for gray-scale image ( 1) R, G, B chaels for color image ( 3) O x Ω 9

10 Graph Costructio (II) Samplig f at positios i gives discretized feature fuctios f D [ f ( x, y ) f ( x, y ) f ( x, y )] M M y f (x, y) f (x i, y i ) T Roadmap Features Samples { f } { D } 1 Matrix G R 2 2 f 1 Graph weights, M M ad L R O s i Ω Fuctioal S ( h) coverge Regularizer D S ( h ) G For each pixel locatio s i, defie a legth 2 vector v [ x y f ( i) f ( i) f ( i)] is a tuable costat D D D i i i 1 2 Build a graph G with M vertices, each pixel locatio have a vertex V i x T s i 10

11 Graph Costructio (III) Weight betwee vertices degree before ormalizatio i ( d ) j 1 ij w m ormalizatio factor clipped Gaussia kerel Vi ad ( ) ( d ) ij i j ij 2 d exp d r, 2 ( d) 2 0 otherwise where r C r ad is a costat C r V j distace Roadmap Features Samples { f } { D } Matrix G R Fuctioal S ( h) d v v 2 ij i j coverge 2 2 D D 2 i j ( ( ) ( )) 2 1 i j s s f f Graph weights, M M ad L R 2 2 f 1 Regularizer D S ( h ) G G is a r-eighborhood graph, i.e., o edge coectig two vertices with distace greater tha r 11

12 Graph Costructio (IV) Our graph G is very geeral e.g., choose a small with proper, obtai the 2D grid graph r Roadmap Features Samples { f } { D } 1 Matrix G R 2 2 f 1 Graph weights, M M ad L R wij A its ( i, j) etry is uormalized Graph m D its ( i, j) etry is w Laplacia 1 ij L D A j Fuctioal S ( h) coverge Regularizer D S ( h ) G h( x, y) : R is a cotiuous cadidate fuctio h S D [ h( x, y ) h( x, y ) h( x, y )] ( h ) ( h ) Lh D D T D M M samples of graph Laplacia regularizer, a fuctioal o G T h( x, y) M R 12

13 Covergece of the (I) S G The cotiuous couterpart of is a fuctioal o domai S Roadmap Features Samples { f } { D } 1 f G G T 1 S( h) ( h) ( h) det dxdy T h [ h h] is the gradiet of h x G is a 2-by-2 matrix: y x f 1 x f y f 2 G I f 2 f 1 1 x f y f 1 y f I 2x2 idetity matrix Matrix G R Fuctioal S ( h) is computed from { f } o a poit-by-poit basis G coverge Graph weights, M M ad L R Regularizer D S ( h ) Structure tesor [3] of the gradiets { f (, )} xy 1 T G [3] H. Kutsso, C.-F. Westi, ad M. Adersso, Represetig local structure usig tesors ii, i Image Aalysis. Spriger, 2011, vol. 6688, pp

14 Covergece of the (II) Theorem : covergece of to M lim 4 1 M M 1 umber of samples eighborhood M S G icreases shriks ~ meas there exist a costat such that equality holds. S G S Roadmap Features Samples { f } { D } Matrix G R Fuctioal S ( h) coverge With results of [4], we proved it by viewig a graph as proxy of a 2 -dimesioal Riemaia maifold Vertex Coordiate o Ω Coordiate o (+2)-D maifold Vi si xi, yi D h ~ S h r C r D D D i i i 1 2 f 1 Graph weights, M M ad L R Regularizer D S ( h ) v [ x y f ( i) f ( i) f ( i)] G T [4] M. Hei, Uiform covergece of adaptive graph-based regularizatio, i Learig Theory. Spriger, 2006, pp

15 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 15

16 Justificatio of (I) 2 1 G G T 1 S( h) ( h) ( h) det dxdy 2 f 1 f G I S G ( h ) ( h ) Lh D D T D S S G coverges to, With S, ay ew isights we ca gai o?? S G T Roadmap Features Samples { f } { D } Matrix G R Fuctioal S ( h) coverge f 1 Graph weights, M M ad L R Regularizer D S ( h ) G The eige-space of reflects statistics of T 1 ( h) G ( h) measures legth of h i a metric space established by G! S itegrates the gradiet orm G { f } 1 16

17 Justificatio of (II) Metric space defied by G y Ellipses are orm-balls, reflects how cocetratio of { f } 1 O l x Gree dots are { f (, )} xy 1 l: Eigevector correspods to the largest eigevalue of G, goes through the cluster of { f } G G T 1 S( h) ( h) ( h) det dxdy 2 f 1 f G I T 17

18 Justificatio of (III) The 2D metric space provides a clear picture of what sigals are beig discrimiated ad to what extet, o a poit-by-poit basis i the cotiuous domai! y y l O x l O x (a) (b) (a) is more skewed, or discrimiat, tha (b) I (a), a small distace away from the directio orthogoal to l brigs large metric distace 18

19 Justificatio of (IV) Lesso: Select feature fuctios properly! Suppose A is the truth gradiet, choose { f } 1 such that (i) l goes through A; (ii) Ellipses stretched flat alog l. y A y A l x x l O O (a) A good scheme, { f } 1 are similar to the groud-truth A (b) A bad scheme For the case of discrete images, oe ca seek for similar patches i terms of gradiet! 19

20 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 20

21 Problem Formulatio ad Algorithm Developmet Adopt a patch-based recovery framework to deoise the image For a oisy patch p 0 o the image 1. Assume a self-similar-i-gradiet image model, search for K 1 patches similar to i terms of gradiet i pre-filtered image. p 0 2. Compute graph Laplacia from the similar patches. 3. Solve the ucostraied quadratic optimizatio iteratively: to obtai the deoised patch 0 2 Aggregate deoised patches to form a updated image. Deoise the give image iteratively to gradually ehace its quality. Our deoisig method is amed Graph-based Deoisig usig Gradiet-based Self-similarity (GDGS) q 2 T q arg mi p q q Lq q 21

22 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 22

23 Experimetal Results (I) Test images: Lea, Barbara, Boats ad Peppers i.i.d. Additive White Gaussia oise (AWG) o-local GBT (LGBT) a existig graph-based deoisig method [5] Compared to BF, LM ad LGBT 1.4 db better tha LM! Performace comparisos i PSR (db) Image Lea Barbara Boats Peppers Method Stadard Deviatio GDGS LM BF LGBT GDGS LM BF LGBT GDGS LM BF LGBT GDGS LM BF LGBT [5] W. Hu, X. Li, G. Cheug, ad O. Au, Depth map deoisig usig graph-based trasform ad group sparsity, i IEEE It l Workshop o Multimedia Sigal Processig,

24 Experimetal Results (II) GDGS vs LGBT GDGS vs LM GDGS LGBT GDGS (31.39 db) LM (30.38 db) GDGS LGBT GDGS (29.34 db) LM (28.62 db) oise stadard deviatio 25 24

25 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 25

26 Towards Optimal Graph Laplacia Regularizatio Our latest work [6] derives the optimal metric space G, leadig to optimal graph Laplacia regularizatio for deoisig. y y y l O x l O x l O x Metric space should be discrimiat to the extet that estimates of groud-truth gradiet are reliable. posterior prob. of groud truth 2 K 1 G arg mi G G0( g) Pr g g d F k g k 0 G whole gradiet domai ideal metric space give groud truth g [6] Jiahao Pag, Gee Cheug, Atoio Ortega, Oscar C. Au, "Optimal Graph Laplacia Regularizatio for atural Image Deoisig," submitted to IEEE ICASSP, Brisbae, Australia, April,

27 Outlie Itroductio Covergece of the Justificatio of the Formulatio ad Algorithm Experimetal Results Towards the Optimal Coclusio Before Lea, 30 After 27

28 Coclusio Image deoisig is a ill-posed problem ad requires good priors for regularizatio. graph Laplacia regularizer with Gaussia kerel weights coverges to a cotiuous fuctioal. Aalysis of the cotiuous fuctioal provides theoretical justificatio of why ad uder what coditios the graph Laplacia regularizer ca be discrimiat. Our deoisig algorithm with graph Laplacia regularizer ad gradiet-based similarity out-performs LM by up to 1.4 db. Our latest work obtais the optimal graph Laplacia, which is discrimiat whe the estimates are accurate, ad robust whe the estimates are ot. Before After 28

29 Thak You! Cotact: Gee Cheug Jiahao Pag GSP Workshop, 31 Oct 2014

An Improved Proportionate Normalized Least Mean Square Algorithm with Orthogonal Correction Factors for Echo Cancellation

An Improved Proportionate Normalized Least Mean Square Algorithm with Orthogonal Correction Factors for Echo Cancellation 202 Iteratioal Coferece o Electroics Egieerig ad Iformatics (ICEEI 202) IPCSI vol. 49 (202) (202) IACSI Press, Sigapore DOI: 0.7763/IPCSI.202.V49.33 A Improved Proportioate Normalized Least Mea Square

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian?

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian? NBHM QUESTION 7 NBHM QUESTION 7 NBHM QUESTION 7 Sectio : Algebra Q Let G be a group of order Which of the followig coditios imply that G is abelia? 5 36 Q Which of the followig subgroups are ecesarily

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

Asymptotic Coupling and Its Applications in Information Theory

Asymptotic Coupling and Its Applications in Information Theory Asymptotic Couplig ad Its Applicatios i Iformatio Theory Vicet Y. F. Ta Joit Work with Lei Yu Departmet of Electrical ad Computer Egieerig, Departmet of Mathematics, Natioal Uiversity of Sigapore IMS-APRM

More information

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c 4th Iteratioal Coferece o Advaced Materials ad Iformatio Techology Processig (AMITP 06) Directio of Arrival Estimatio Method i Uderdetermied Coditio Zhag Youzhi a, Li eibo b, ag Hali c Naval Aeroautical

More information

Orthogonal Gaussian Filters for Signal Processing

Orthogonal Gaussian Filters for Signal Processing Orthogoal Gaussia Filters for Sigal Processig Mark Mackezie ad Kiet Tieu Mechaical Egieerig Uiversity of Wollogog.S.W. Australia Abstract A Gaussia filter usig the Hermite orthoormal series of fuctios

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

MATHEMATICAL SCIENCES PAPER-II

MATHEMATICAL SCIENCES PAPER-II MATHEMATICAL SCIENCES PAPER-II. Let {x } ad {y } be two sequeces of real umbers. Prove or disprove each of the statemets :. If {x y } coverges, ad if {y } is coverget, the {x } is coverget.. {x + y } coverges

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS C.PRAX ad H.SADAT Laboratoire d'etudes Thermiques,URA CNRS 403 40, Aveue du Recteur Pieau 86022 Poitiers Cedex,

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK Sequetial Mote Carlo Methods - A Review Araud Doucet Egieerig Departmet, Cambridge Uiversity, UK http://www-sigproc.eg.cam.ac.uk/ ad2/araud doucet.html ad2@eg.cam.ac.uk Istitut Heri Poicaré - Paris - 2

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Central Limit Theorem using Characteristic functions

Central Limit Theorem using Characteristic functions Cetral Limit Theorem usig Characteristic fuctios RogXi Guo MAT 477 Jauary 20, 2014 RogXi Guo (2014 Cetral Limit Theorem usig Characteristic fuctios Jauary 20, 2014 1 / 15 Itroductio study a radom variable

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

BC: Q401.CH9A Convergent and Divergent Series (LESSON 1)

BC: Q401.CH9A Convergent and Divergent Series (LESSON 1) BC: Q40.CH9A Coverget ad Diverget Series (LESSON ) INTRODUCTION Sequece Notatio: a, a 3, a,, a, Defiitio: A sequece is a fuctio f whose domai is the set of positive itegers. Defiitio: A ifiite series (or

More information

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data Appedix to: Hypothesis Testig for Multiple Mea ad Correlatio Curves with Fuctioal Data Ao Yua 1, Hog-Bi Fag 1, Haiou Li 1, Coli O. Wu, Mig T. Ta 1, 1 Departmet of Biostatistics, Bioiformatics ad Biomathematics,

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8) Elemets of Statistical Methods Lots of Data or Large Samples (Ch 8) Fritz Scholz Sprig Quarter 2010 February 26, 2010 x ad X We itroduced the sample mea x as the average of the observed sample values x

More information

arxiv: v1 [math.pr] 13 Oct 2011

arxiv: v1 [math.pr] 13 Oct 2011 A tail iequality for quadratic forms of subgaussia radom vectors Daiel Hsu, Sham M. Kakade,, ad Tog Zhag 3 arxiv:0.84v math.pr] 3 Oct 0 Microsoft Research New Eglad Departmet of Statistics, Wharto School,

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

METHOD OF FUNDAMENTAL SOLUTIONS FOR HELMHOLTZ EIGENVALUE PROBLEMS IN ELLIPTICAL DOMAINS

METHOD OF FUNDAMENTAL SOLUTIONS FOR HELMHOLTZ EIGENVALUE PROBLEMS IN ELLIPTICAL DOMAINS Please cite this article as: Staisław Kula, Method of fudametal solutios for Helmholtz eigevalue problems i elliptical domais, Scietific Research of the Istitute of Mathematics ad Computer Sciece, 009,

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Nonlinear regression

Nonlinear regression oliear regressio How to aalyse data? How to aalyse data? Plot! How to aalyse data? Plot! Huma brai is oe the most powerfull computatioall tools Works differetly tha a computer What if data have o liear

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Optimum LMSE Discrete Transform

Optimum LMSE Discrete Transform Image Trasformatio Two-dimesioal image trasforms are extremely importat areas of study i image processig. The image output i the trasformed space may be aalyzed, iterpreted, ad further processed for implemetig

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Graph Signal Processing for Image Compression & Restoration (Part II)

Graph Signal Processing for Image Compression & Restoration (Part II) ene Cheung, Xianming Liu National Institute of Informatics 11 th July, 016 raph Signal Processing for Image Compression & Restoration (Part II). ICME'16 utorial 07/11/016 1 Outline (Part II) Image Restoration

More information

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix Math 778S Spectral Graph Theory Hadout #3: Eigevalues of Adjacecy Matrix The Cartesia product (deoted by G H) of two simple graphs G ad H has the vertex-set V (G) V (H). For ay u, v V (G) ad x, y V (H),

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: ,

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: , . Sectio-A cotais 30 Multiple Choice Questios (MCQ). Each questio has 4 choices (a), (b), (c) ad (d), for its aswer, out of which ONLY ONE is correct. From Q. to Q.0 carries Marks ad Q. to Q.30 carries

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

CMSE 820: Math. Foundations of Data Sci.

CMSE 820: Math. Foundations of Data Sci. Lecture 17 8.4 Weighted path graphs Take from [10, Lecture 3] As alluded to at the ed of the previous sectio, we ow aalyze weighted path graphs. To that ed, we prove the followig: Theorem 6 (Fiedler).

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Statistical Noise Models and Diagnostics

Statistical Noise Models and Diagnostics L. Yaroslavsky: Advaced Image Processig Lab: A Tutorial, EUSIPCO2 LECTURE 2 Statistical oise Models ad Diagostics 2. Statistical models of radom iterfereces: (i) Additive sigal idepedet oise model: r =

More information

577. Estimation of surface roughness using high frequency vibrations

577. Estimation of surface roughness using high frequency vibrations 577. Estimatio of surface roughess usig high frequecy vibratios V. Augutis, M. Sauoris, Kauas Uiversity of Techology Electroics ad Measuremets Systems Departmet Studetu str. 5-443, LT-5368 Kauas, Lithuaia

More information

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data Proceedigs 59th ISI World Statistics Cogress, 5-30 August 013, Hog Kog (Sessio STS046) p.09 Kolmogorov-Smirov type Tests for Local Gaussiaity i High-Frequecy Data George Tauche, Duke Uiversity Viktor Todorov,

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20 Math 58 Eam 2 Jerry L. Kazda December 9, 24 9: :2 Directios This eam has three parts. Part A has 8 True/False questio (2 poits each so total 6 poits), Part B has 5 shorter problems (6 poits each, so 3

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

Position Time Graphs 12.1

Position Time Graphs 12.1 12.1 Positio Time Graphs Figure 3 Motio with fairly costat speed Chapter 12 Distace (m) A Crae Flyig Figure 1 Distace time graph showig motio with costat speed A Crae Flyig Positio (m [E] of pod) We kow

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Complex Algorithms for Lattice Adaptive IIR Notch Filter

Complex Algorithms for Lattice Adaptive IIR Notch Filter 4th Iteratioal Coferece o Sigal Processig Systems (ICSPS ) IPCSIT vol. 58 () () IACSIT Press, Sigapore DOI:.7763/IPCSIT..V58. Complex Algorithms for Lattice Adaptive IIR Notch Filter Hog Liag +, Nig Jia

More information

Vassilis Katsouros, Vassilis Papavassiliou and Christos Emmanouilidis

Vassilis Katsouros, Vassilis Papavassiliou and Christos Emmanouilidis Vassilis Katsouros, Vassilis Papavassiliou ad Christos Emmaouilidis ATHENA Research & Iovatio Cetre, Greece www.athea-iovatio.gr www.ceti.athea-iovatio.gr/compsys e-mail: christosem AT ieee.org Problem

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 9 Number 1 (017) pp. 45-51 Iteratioal Research Publicatio House http://www.irphouse.com A collocatio method for sigular itegral equatios

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading :

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading : ME 537: Learig-Based Cotrol Week 1, Lecture 2 Neural Network Basics Aoucemets: HW 1 Due o 10/8 Data sets for HW 1 are olie Proect selectio 10/11 Suggested readig : NN survey paper (Zhag Chap 1, 2 ad Sectios

More information

Image Spaces. What might an image space be

Image Spaces. What might an image space be Image Spaces What might a image space be Map each image to a poit i a space Defie a distace betwee two poits i that space Mabe also a shortest path (morph) We have alread see a simple versio of this, i

More information

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution Large Sample Theory Covergece Covergece i Probability Covergece i Distributio Cetral Limit Theorems Asymptotic Distributio Delta Method Covergece i Probability A sequece of radom scalars {z } = (z 1,z,

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

A Lattice Green Function Introduction. Abstract

A Lattice Green Function Introduction. Abstract August 5, 25 A Lattice Gree Fuctio Itroductio Stefa Hollos Exstrom Laboratories LLC, 662 Nelso Park Dr, Logmot, Colorado 853, USA Abstract We preset a itroductio to lattice Gree fuctios. Electroic address:

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information