Independent Component Analysis

Size: px
Start display at page:

Download "Independent Component Analysis"

Transcription

1 Independent Component Analysis Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) ICA Fall / 18

2 Introduction Independent Component Analysis (ICA) falls under the broader topic of Blind Source Separation (BSS). BSS is the separation of a set of source signals (the signals we are looking for) from a set of mixed signals (the signals we can measure) where very little is known about the source signals and the mixing process. With ICA, we are assuming that the mixing is linear, that is the measured signals can be expressed as a linear combination of the source signals. We are also assuming that the source signals are statistically independent. Philippe B. Laval (KSU) ICA Fall / 18

3 Introduction A classical example of ICA is the cocktail party problem. Imagine a room in which p people are speaking. We are trying to extract each conversation. For this, we use p microphones spread throughout the room to record the various people speaking. We have to extract each conversation from the mixed signals captured by the microphones. Philippe B. Laval (KSU) ICA Fall / 18

4 Introduction Example Consider two signals s 1 (t) = sin (2t) + 2 cos (3t) and s 2 (t) = sin t cos t shown in the next 2 slides. Consider the linear mixings of these signals x 1 (t) = 2s 1 (t) + 3s 2 (t) and x 2 (t) = 1.5s 1 (t) 2.37s 2 (t) shown in the following 2 slides. s 1 (t) and s 2 (t) are the source signals while x 1 (t) and x 2 (t) are the measured signals and they are a linear combination of s 1 (t) and s 2 (t). Imagine that x 1 (t) and x 2 (t) are known and we have to recover s 1 (t) and s 2 (t) without actually knowing the linear combination which was given here. This seems to be an impossible problem as there are too many unknowns. However, we will see that with some additional assumptions, we can come extremely close to recovering s 1 (t) and s 2 (t). Philippe B. Laval (KSU) ICA Fall / 18

5 Introduction y x 2 3 s 1 (t) = sin (2t) + 2 cos (3t) Philippe B. Laval (KSU) ICA Fall / 18

6 Introduction y x 1.0 s 2 (t) = sin t cos t Philippe B. Laval (KSU) ICA Fall / 18

7 Introduction y x 5 10 x 1 (t) = 2s 1 (t) + 3s 2 (t) Philippe B. Laval (KSU) ICA Fall / 18

8 Introduction y x 4 6 x 2 (t) = 1.5s 1 (t) 2.37s 2 (t) Philippe B. Laval (KSU) ICA Fall / 18

9 Setup of the Problem s 1 s 2 Let s =. s p represent the source signals and x = represent the signals measured by the microphones. For the ICA model, we assume that each x k and s k is a random variable instead of a variable depending on time. The observed values x k (t) are just a sample of the random variable x k, k = 1, 2,..., p. We call B x the matrix of observation for the x variables and use a similar notation for the other observation matrices. Since both x and s are p 1, if we discretize the time interval in N points (that is if each variable has N measures) then B x and B s will be p N. Without loss of generality, we may assume that both the x i s and the s i s have zero mean. If this is not the case, we first subtract the sample mean to the x i s. Philippe B. Laval (KSU) ICA Fall / 18 x 1 x 2. x p

10 Setup of the Problem Since the x i s are a linear combination of the s i s, we can write x j = a j1 s 1 + a j2 s a jp s p p = a ji s i i=1 If we let A = (a ij ) be the p p matrix containing the coeffi cients of the above linear combination, then we can write x = As Philippe B. Laval (KSU) ICA Fall / 18

11 Setup of the Problem The goal of ICA is to find the matrix A (or its inverse) so we can recover the signal s from x. In other words, s = A 1 x. This seems to be an impossible problems because we are trying to find the p 2 entries of A plus the p entries of s from the p entries of x. The approach is to approximate A 1 by a matrix W such that if ^s = W x then ^s s. We will outline some of the steps which make this problem possible but will not go in detail through all the steps. Philippe B. Laval (KSU) ICA Fall / 18

12 Strategy for Solving ICA We find the matrix A in several steps. Knowing that A has an SVD of the form A = UΣV T, instead of finding A, we find U, Σ, and V. W (A 1 ) will then be W = V Σ 1 U T It is also important to remember that both U and V are orthogonal matrices hence their inverse is the same as their transpose. We will proceed in two stages: 1 Use the covariance of the data x to find Σ and U. 2 Use the assumption of independence of s to find V. We will describe stage 1 in detail but not stage 2. Philippe B. Laval (KSU) ICA Fall / 18

13 Strategy for Solving ICA To recover Σ and U, we make one additional assumption. We will discuss its meaning below. We assume that the covariance of the source data satisfies B s Bs T = I where I is the identity matrix. Recall from the homework of the section on PCA that if x = As then B x = AB s. Now, we compute the covariance of the measured data: B x B T x = AB s (AB s ) T = UΣ 2 U T Note that this equation shows that under our assumptions, the covariance of the measured data only depends on Σ and U, not V and s. Philippe B. Laval (KSU) ICA Fall / 18

14 Strategy for Solving ICA Recall that B x Bx T we can write is symmetric hence diagonalizable. This means that B x B T x = PDP T where D is the matrix containing the eigenvalues of B x Bx T and P is the matrix containing the corresponding eigenvectors, written as column vectors. This tell us that U = P and Σ 2 = D will work. Therefore, we have identified U and Σ. Σ is a diagonal matrix containing the square root of the eigenvalues of B x Bx T and U is the matrix containing the corresponding eigenvectors, written as column vectors. Therefore, W = VD 1 2 P T V is the only orthogonal matrix left to find. Philippe B. Laval (KSU) ICA Fall / 18

15 Whitening of the Data Before we say a few words about V,let us discuss our assumption B s Bs T = I also known as whitening of the data. First, we note that ( P T ) ( B x P T ) T B x = D. ( ) Next, we define x w = D 1 2 P T x. This operation is called whitening of the data and note that B xw B T x w = I. Recall that our goal was to find W such that ^s = W x which amounts to solving ^s = V x w Hence it amounts to finding V from the whitened data x w. Recall V is an orthogonal (rotation) matrix. You will also not that this implies our assumption BŝB Ṱ s = I. Philippe B. Laval (KSU) ICA Fall / 18

16 Finding V Solving ICA amounts to finding the rotation matrix V so that ^s is statistically independent. As I mentioned, We will not discuss finding V here; it is a much more challenging and advanced problem. It involves using information theory and a quantity called the entropy of a distribution. Algorithms exist to perform this step; we will use them. Philippe B. Laval (KSU) ICA Fall / 18

17 PCA and MATLAB ICA is not included in the version of MATLAB one buys from MathWorks. However, some implementations can be downloaded from the internet for MATLAB and other platforms. Please, visit the fastica webpage. Philippe B. Laval (KSU) ICA Fall / 18

18 Exercises See the problems at the end of the notes on Independent Component Analysis. Philippe B. Laval (KSU) ICA Fall / 18

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

The Principal Component Analysis

The Principal Component Analysis The Principal Component Analysis Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) PCA Fall 2017 1 / 27 Introduction Every 80 minutes, the two Landsat satellites go around the world, recording images

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Direct Methods Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) Linear Systems: Direct Solution Methods Fall 2017 1 / 14 Introduction The solution of linear systems is one

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Definition of the Laplace Transform Today 1 / 16 Outline General idea behind the Laplace transform and other

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations Linear Equations Philippe B. Laval KSU Philippe B. Laval (KSU) 1st Order Linear Equations 1 / 11 Introduction We are still looking at 1st order equations. In today s

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Introduction to Independent Component Analysis. Jingmei Lu and Xixi Lu. Abstract

Introduction to Independent Component Analysis. Jingmei Lu and Xixi Lu. Abstract Final Project 2//25 Introduction to Independent Component Analysis Abstract Independent Component Analysis (ICA) can be used to solve blind signal separation problem. In this article, we introduce definition

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring /

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring / The Cross Product Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) The Cross Product Spring 2012 1 / 15 Introduction The cross product is the second multiplication operation between vectors we will

More information

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Inverse of the Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Inverse of the Laplace Transform Today 1 / 12 Outline Introduction Inverse of the Laplace Transform

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Numerical Linear Algebra

Numerical Linear Algebra Chapter 3 Numerical Linear Algebra We review some techniques used to solve Ax = b where A is an n n matrix, and x and b are n 1 vectors (column vectors). We then review eigenvalues and eigenvectors and

More information

Independent Component Analysis and Its Application on Accelerator Physics

Independent Component Analysis and Its Application on Accelerator Physics Independent Component Analysis and Its Application on Accelerator Physics Xiaoying Pang LA-UR-12-20069 ICA and PCA Similarities: Blind source separation method (BSS) no model Observed signals are linear

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of

More information

Homework 1. Yuan Yao. September 18, 2011

Homework 1. Yuan Yao. September 18, 2011 Homework 1 Yuan Yao September 18, 2011 1. Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to

More information

Independent Component Analysis

Independent Component Analysis 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 1 Introduction Indepent

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Recitation 9: Probability Matrices and Real Symmetric Matrices. 3 Probability Matrices: Definitions and Examples

Recitation 9: Probability Matrices and Real Symmetric Matrices. 3 Probability Matrices: Definitions and Examples Math b TA: Padraic Bartlett Recitation 9: Probability Matrices and Real Symmetric Matrices Week 9 Caltech 20 Random Question Show that + + + + +... = ϕ, the golden ratio, which is = + 5. 2 2 Homework comments

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

Independent Components Analysis

Independent Components Analysis CS229 Lecture notes Andrew Ng Part XII Independent Components Analysis Our next topic is Independent Components Analysis (ICA). Similar to PCA, this will find a new basis in which to represent our data.

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Principal

More information

STATS 306B: Unsupervised Learning Spring Lecture 12 May 7

STATS 306B: Unsupervised Learning Spring Lecture 12 May 7 STATS 306B: Unsupervised Learning Spring 2014 Lecture 12 May 7 Lecturer: Lester Mackey Scribe: Lan Huong, Snigdha Panigrahi 12.1 Beyond Linear State Space Modeling Last lecture we completed our discussion

More information

HST.582J/6.555J/16.456J

HST.582J/6.555J/16.456J Blind Source Separation: PCA & ICA HST.582J/6.555J/16.456J Gari D. Clifford gari [at] mit. edu http://www.mit.edu/~gari G. D. Clifford 2005-2009 What is BSS? Assume an observation (signal) is a linear

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

ICA. Independent Component Analysis. Zakariás Mátyás

ICA. Independent Component Analysis. Zakariás Mátyás ICA Independent Component Analysis Zakariás Mátyás Contents Definitions Introduction History Algorithms Code Uses of ICA Definitions ICA Miture Separation Signals typical signals Multivariate statistics

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. 3.3 Diagonalization Let A = 4. Then and are eigenvectors of A, with corresponding eigenvalues 2 and 6 respectively (check). This means 4 = 2, 4 = 6. 2 2 2 2 Thus 4 = 2 2 6 2 = 2 6 4 2 We have 4 = 2 0 0

More information

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Review of Functions Functions Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Introduction Students are expected to know the following concepts about functions:

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?)

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?) Math 35 Exam Review SOLUTIONS Overview In this third of the course we focused on linear learning algorithms to model data. summarize: To. Background: The SVD and the best basis (questions selected from

More information

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 07 Exercise set Please justify your answers! The most important part is how you arrive at an

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

Linear Least Squares. Using SVD Decomposition.

Linear Least Squares. Using SVD Decomposition. Linear Least Squares. Using SVD Decomposition. Dmitriy Leykekhman Spring 2011 Goals SVD-decomposition. Solving LLS with SVD-decomposition. D. Leykekhman Linear Least Squares 1 SVD Decomposition. For any

More information

Independent Component Analysis

Independent Component Analysis Chapter 5 Independent Component Analysis Part I: Introduction and applications Motivation Skillikorn chapter 7 2 Cocktail party problem Did you see that Have you heard So, yesterday this guy I said, darling

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 The Singular Value Decomposition (SVD) continued Linear Algebra Methods for Data Mining, Spring 2007, University

More information

Summary of Week 9 B = then A A =

Summary of Week 9 B = then A A = Summary of Week 9 Finding the square root of a positive operator Last time we saw that positive operators have a unique positive square root We now briefly look at how one would go about calculating the

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Principal Component Analysis vs. Independent Component Analysis for Damage Detection

Principal Component Analysis vs. Independent Component Analysis for Damage Detection 6th European Workshop on Structural Health Monitoring - Fr..D.4 Principal Component Analysis vs. Independent Component Analysis for Damage Detection D. A. TIBADUIZA, L. E. MUJICA, M. ANAYA, J. RODELLAR

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach Dr. Guangliang Chen February 9, 2016 Outline Introduction Review of linear algebra Matrix SVD PCA Motivation The digits

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

The Mathematics of Facial Recognition

The Mathematics of Facial Recognition William Dean Gowin Graduate Student Appalachian State University July 26, 2007 Outline EigenFaces Deconstruct a known face into an N-dimensional facespace where N is the number of faces in our data set.

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Math Spring 2011 Final Exam

Math Spring 2011 Final Exam Math 471 - Spring 211 Final Exam Instructions The following exam consists of three problems, each with multiple parts. There are 15 points available on the exam. The highest possible score is 125. Your

More information

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Prof. Tesler Math 283 Fall 2015 Prof. Tesler Principal Components Analysis Math 283 / Fall 2015

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =

AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A = AMS1 HW Solutions All credit is given for effort. (- pts for any missing sections) Problem 1 ( pts) Consider the following matrix 1 1 9 a. Calculate the eigenvalues of A. Eigenvalues are 1 1.1, 9.81,.1

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Dimensionality Reduction

Dimensionality Reduction 394 Chapter 11 Dimensionality Reduction There are many sources of data that can be viewed as a large matrix. We saw in Chapter 5 how the Web can be represented as a transition matrix. In Chapter 9, the

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Announce Statistical Motivation Properties Spectral Theorem Other ODE Theory Spectral Embedding. Eigenproblems I

Announce Statistical Motivation Properties Spectral Theorem Other ODE Theory Spectral Embedding. Eigenproblems I Eigenproblems I CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Eigenproblems I 1 / 33 Announcements Homework 1: Due tonight

More information

Math 4242 Fall 2016 (Darij Grinberg): homework set 8 due: Wed, 14 Dec b a. Here is the algorithm for diagonalizing a matrix we did in class:

Math 4242 Fall 2016 (Darij Grinberg): homework set 8 due: Wed, 14 Dec b a. Here is the algorithm for diagonalizing a matrix we did in class: Math 4242 Fall 206 homework page Math 4242 Fall 206 Darij Grinberg: homework set 8 due: Wed, 4 Dec 206 Exercise Recall that we defined the multiplication of complex numbers by the rule a, b a 2, b 2 =

More information