Consequences of the Completeness Property

Size: px
Start display at page:

Download "Consequences of the Completeness Property"

Transcription

1 Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10

2 Introduction In this section, we use the fact that R is complete to establish some important results. First, we will prove that Z is unbounded and establish the Archimedean principle. Second, we will prove that the rational numbers are dense in R. Finally, we will prove that Q is not complete. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 2 / 10

3 Z Unbounded We first establish that Z is unbounded. While this result seems obvious, it turns out that it is not as easy to prove. It depends upon the completeness property of R. We establish this result by proving several lemmas and then use these lemmas to establish the main result. Lemma Every non-empty subset S of the integers which is bounded above has a largest element. How might we prove this? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 3 / 10

4 Z Unbounded We first establish that Z is unbounded. While this result seems obvious, it turns out that it is not as easy to prove. It depends upon the completeness property of R. We establish this result by proving several lemmas and then use these lemmas to establish the main result. Lemma Every non-empty subset S of the integers which is bounded above has a largest element. How might we prove this? Let S be the subset in question, what can we say about S (remembering what we did before this)? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 3 / 10

5 Z Unbounded We first establish that Z is unbounded. While this result seems obvious, it turns out that it is not as easy to prove. It depends upon the completeness property of R. We establish this result by proving several lemmas and then use these lemmas to establish the main result. Lemma Every non-empty subset S of the integers which is bounded above has a largest element. How might we prove this? Let S be the subset in question, what can we say about S (remembering what we did before this)? Let w = sup S. How can we prove max S exists? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 3 / 10

6 Z Unbounded We first establish that Z is unbounded. While this result seems obvious, it turns out that it is not as easy to prove. It depends upon the completeness property of R. We establish this result by proving several lemmas and then use these lemmas to establish the main result. Lemma Every non-empty subset S of the integers which is bounded above has a largest element. How might we prove this? Let S be the subset in question, what can we say about S (remembering what we did before this)? Let w = sup S. How can we prove max S exists? How can we relate w with elements of Z at this point? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 3 / 10

7 Z Unbounded Remark The above lemma looks very similar to the least upper bound property. But its conclusion is quite different. Lemma Every non-empty subset S of the integers which is bounded below has a smallest element. Theorem Z is unbounded both above and below. We are now ready to state the Archimedean principle. We state two versions of it. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 4 / 10

8 Archimedean Principle Theorem For each strictly positive real number x, there exists a positive integer n such that 1 n < x. Hint for the proof: Since Z is unbounded, what can we say about 1 x? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 5 / 10

9 Archimedean Principle Theorem For each strictly positive real number x, there exists a positive integer n such that 1 n < x. Hint for the proof: Since Z is unbounded, what can we say about 1 x? What can t 1 x be to Z if Z is unbounded? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 5 / 10

10 Archimedean Principle Theorem For each strictly positive real number x, there exists a positive integer n such that 1 n < x. Hint for the proof: Since Z is unbounded, what can we say about 1 x? What can t 1 be to Z if Z is unbounded? x What does this imply? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 5 / 10

11 Archimedean Principle Remark This theorem tells us that by choosing n large enough, we can make 1 as close to 0 as we want. In other words, { n } 1 inf n : n Z+ = 0 where Z + denotes the set of positive integers. We will prove this in the exercises. Theorem If x and y are real numbers, x > 0, then there exists a positive integer n such that nx > y. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 6 / 10

12 Denseness We have already mentioned the fact that if we represented the rational numbers on the real line, there would be many holes. These holes would correspond to the irrational numbers. If we think of the rational numbers as dots on the real line and the irrational numbers as holes, one might ask how the holes are distributed with respect to the dots. The next concept gives us a partial answer. Definition A subset S of R is said to be dense in R if between any two real numbers there exists an element of S. Another way to think of this is that S is dense in R if for any real numbers a and b such that a < b, we have S (a, b). Theorem Q is dense in R. That is, between any two real numbers, there exists a rational number. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 7 / 10

13 Denseness We outline the proof. Write what we have to prove. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 8 / 10

14 Denseness We outline the proof. Write what we have to prove. a, b R, a < b, m, n Z, n 0 : a < m n Archimedean principle to b a. < b. Apply the Philippe B. Laval (KSU) Consequences of the Completeness Property Today 8 / 10

15 Denseness We outline the proof. Write what we have to prove. a, b R, a < b, m, n Z, n 0 : a < m < b. Apply the n Archimedean principle to b a. Let S = {x Z : x } n > a. Prove that S is bounded below and not empty. What does it imply? Philippe B. Laval (KSU) Consequences of the Completeness Property Today 8 / 10

16 Denseness We outline the proof. Write what we have to prove. a, b R, a < b, m, n Z, n 0 : a < m < b. Apply the n Archimedean principle to b a. Let S = {x Z : x } n > a. Prove that S is bounded below and not empty. What does it imply? Put everything together to finish the proof. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 8 / 10

17 Completeness Definition A set S is said to be complete if every non-empty bounded subset of S has both a supremum and an infimum in S. Example R is complete. Example [0, 1] is complete while (0, 1) is not. Example Q is not complete. Hint, Let S = ( 0, 2 ) Q. Show 2 = sup S. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 9 / 10

18 Exercises See the problems at the end of my notes on some consequences of the completeness property of R. Philippe B. Laval (KSU) Consequences of the Completeness Property Today 10 / 10

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Review of Functions Functions Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Introduction Students are expected to know the following concepts about functions:

More information

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring /

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring / The Cross Product Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) The Cross Product Spring 2012 1 / 15 Introduction The cross product is the second multiplication operation between vectors we will

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Due date: Monday, February 6, 2017.

Due date: Monday, February 6, 2017. Modern Analysis Homework 3 Solutions Due date: Monday, February 6, 2017. 1. If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below

More information

Important Properties of R

Important Properties of R Chapter 2 Important Properties of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Relationship Between Integration and Differentiation

Relationship Between Integration and Differentiation Relationship Between Integration and Differentiation Fundamental Theorem of Calculus Philippe B. Laval KSU Today Philippe B. Laval (KSU) FTC Today 1 / 16 Introduction In the previous sections we defined

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S) 106 CHAPTER 3. TOPOLOGY OF THE REAL LINE 3.3 Limit Points 3.3.1 Main Definitions Intuitively speaking, a limit point of a set S in a space X is a point of X which can be approximated by points of S other

More information

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008 Studying Rudin s Principles of Mathematical Analysis Through Questions Mesut B. Çakır c August 4, 2008 ii Contents 1 The Real and Complex Number Systems 3 1.1 Introduction............................................

More information

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 Real Number Summary of terminology and theorems: Definition: (Supremum & infimum) A supremum (or least upper bound) of a non-empty

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x.

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. Advanced Calculus I, Dr. Block, Chapter 2 notes. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. 2. Definition. A sequence is a real-valued function

More information

Describing the Real Numbers

Describing the Real Numbers Describing the Real Numbers Anthony Várilly Math 25a, Fall 2001 1 Introduction The goal of these notes is to uniquely describe the real numbers by taking certain statements as axioms. This exercise might

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

REAL ANALYSIS: INTRODUCTION

REAL ANALYSIS: INTRODUCTION REAL ANALYSIS: INTRODUCTION DR. RITU AGARWAL EMAIL: RAGARWAL.MATHS@MNIT.AC.IN MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. The real number system 1 2. Field Axioms 1 3. Order Axioms 2 4.

More information

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Integration Darboux Sums Philippe B. Laval KSU Today Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Introduction The modern approach to integration is due to Cauchy. He was the first to construct a

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

1 The Real Number System

1 The Real Number System 1 The Real Number System The rational numbers are beautiful, but are not big enough for various purposes, and the set R of real numbers was constructed in the late nineteenth century, as a kind of an envelope

More information

Functions of Several Variables: Limits and Continuity

Functions of Several Variables: Limits and Continuity Functions of Several Variables: Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limits and Continuity Today 1 / 24 Introduction We extend the notion of its studied in Calculus

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

Chapter One. The Real Number System

Chapter One. The Real Number System Chapter One. The Real Number System We shall give a quick introduction to the real number system. It is imperative that we know how the set of real numbers behaves in the way that its completeness and

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Inverse of the Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Inverse of the Laplace Transform Today 1 / 12 Outline Introduction Inverse of the Laplace Transform

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Analysis III. Exam 1

Analysis III. Exam 1 Analysis III Math 414 Spring 27 Professor Ben Richert Exam 1 Solutions Problem 1 Let X be the set of all continuous real valued functions on [, 1], and let ρ : X X R be the function ρ(f, g) = sup f g (1)

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Definition of the Laplace Transform Today 1 / 16 Outline General idea behind the Laplace transform and other

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 200 CHAPTER 5. LIMIT AND CONTINUITY OF A FUNCTION 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

That is, there is an element

That is, there is an element Section 3.1: Mathematical Induction Let N denote the set of natural numbers (positive integers). N = {1, 2, 3, 4, } Axiom: If S is a nonempty subset of N, then S has a least element. That is, there is

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

Section 2.5 : The Completeness Axiom in R

Section 2.5 : The Completeness Axiom in R Section 2.5 : The Completeness Axiom in R The rational numbers and real numbers are closely related. The set Q of rational numbers is countable and the set R of real numbers is not, and in this sense there

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

Cauchy Sequences. x n = 1 ( ) 2 1 1, . As you well know, k! n 1. 1 k! = e, = k! k=0. k = k=1

Cauchy Sequences. x n = 1 ( ) 2 1 1, . As you well know, k! n 1. 1 k! = e, = k! k=0. k = k=1 Cauchy Sequences The Definition. I will introduce the main idea by contrasting three sequences of rational numbers. In each case, the universal set of numbers will be the set Q of rational numbers; all

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005 POL502: Foundations Kosuke Imai Department of Politics, Princeton University October 10, 2005 Our first task is to develop the foundations that are necessary for the materials covered in this course. 1

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Lagrange s Theorem Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Introduction In this chapter, we develop new tools which will allow us to extend

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Set Notation and the Real Numbers

Set Notation and the Real Numbers Set Notation and the Real Numbers Oh, and some stuff on functions, too 1 Elementary Set Theory Vocabulary: Set Element Subset Union Intersection Set Difference Disjoint A intersects B Empty set or null

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

1 The Well Ordering Principle, Induction, and Equivalence Relations

1 The Well Ordering Principle, Induction, and Equivalence Relations 1 The Well Ordering Principle, Induction, and Equivalence Relations The set of natural numbers is the set N = f1; 2; 3; : : :g. (Some authors also include the number 0 in the natural numbers, but number

More information

Midterm Review Math 311, Spring 2016

Midterm Review Math 311, Spring 2016 Midterm Review Math 3, Spring 206 Material Review Preliminaries and Chapter Chapter 2. Set theory (DeMorgan s laws, infinite collections of sets, nested sets, cardinality) 2. Functions (image, preimage,

More information

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra 206/7 MA03 Introduction to Abstract Mathematics Second part, Analysis and Algebra Amol Sasane Revised by Jozef Skokan, Konrad Swanepoel, and Graham Brightwell Copyright c London School of Economics 206

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

M208 Pure Mathematics AA1. Numbers

M208 Pure Mathematics AA1. Numbers M208 Pure Mathematics AA1 Numbers Note to reader Mathematical/statistical content at the Open University is usually provided to students in printed books, with PDFs of the same online. This format ensures

More information

1 More concise proof of part (a) of the monotone convergence theorem.

1 More concise proof of part (a) of the monotone convergence theorem. Math 0450 Honors intro to analysis Spring, 009 More concise proof of part (a) of the monotone convergence theorem. Theorem If (x n ) is a monotone and bounded sequence, then lim (x n ) exists. Proof. (a)

More information

Essential Background for Real Analysis I (MATH 5210)

Essential Background for Real Analysis I (MATH 5210) Background Material 1 Essential Background for Real Analysis I (MATH 5210) Note. These notes contain several definitions, theorems, and examples from Analysis I (MATH 4217/5217) which you must know for

More information

4130 HOMEWORK 4. , a 2

4130 HOMEWORK 4. , a 2 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem.

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis Foundations of Mathematical Analysis Fabio Bagagiolo Dipartimento di Matematica, Università di Trento email:fabio.bagagiolo@unitn.it Contents 1 Introduction 2 2 Basic concepts in mathematical analysis

More information

1.3. The Completeness Axiom.

1.3. The Completeness Axiom. 13 The Completeness Axiom 1 13 The Completeness Axiom Note In this section we give the final Axiom in the definition of the real numbers, R So far, the 8 axioms we have yield an ordered field We have seen

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Lecture 4: Completion of a Metric Space

Lecture 4: Completion of a Metric Space 15 Lecture 4: Completion of a Metric Space Closure vs. Completeness. Recall the statement of Lemma??(b): A subspace M of a metric space X is closed if and only if every convergent sequence {x n } X satisfying

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis Foundations of Mathematical Analysis Fabio Bagagiolo Dipartimento di Matematica, Università di Trento email:bagagiol@science.unitn.it Contents 1 Introduction 3 2 Basic concepts in mathematical analysis

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

Sequences CHAPTER 3. Definition. A sequence is a function f : N R.

Sequences CHAPTER 3. Definition. A sequence is a function f : N R. CHAPTER 3 Sequences 1. Limits and the Archimedean Property Our first basic object for investigating real numbers is the sequence. Before we give the precise definition of a sequence, we will give the intuitive

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

Class VIII Chapter 1 Rational Numbers Maths. Exercise 1.1

Class VIII Chapter 1 Rational Numbers Maths. Exercise 1.1 Question 1: Using appropriate properties find: Exercise 1.1 (By commutativity) Page 1 of 11 Question 2: Write the additive inverse of each of the following: (iii) (iv) (v) Additive inverse = Additive inverse

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay Lecture Notes in Real Analysis 2010 Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay August 6, 2010 Lectures 1-3 (I-week) Lecture 1 Why real numbers? Example 1 Gaps in the

More information

Sets, Structures, Numbers

Sets, Structures, Numbers Chapter 1 Sets, Structures, Numbers Abstract In this chapter we shall introduce most of the background needed to develop the foundations of mathematical analysis. We start with sets and algebraic structures.

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Analysis I We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Copier s Message These notes may contain errors. In fact, they almost

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

3 Lecture Separation

3 Lecture Separation 3 Lecture 3 3.1 Separation We are now going to move on to an extremely useful set of results called separation theorems. Basically, these theorems tell us that, if we have two convex sets, then we can

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information