A short presentation on Newton-Raphson method

Size: px
Start display at page:

Download "A short presentation on Newton-Raphson method"

Transcription

1 A short presentation on Newton-Raphson method Doan Tran Nguyen Tung 5 Nguyen Quan Ba Hong 6 Students at Faculty of Math and Computer Science. Ho Chi Minh University of Science, Vietnam . nguyenquanbahong@gmail.com blog. May 2, Student ID: Student ID: oan Tran Nguyen Tung 7 Nguyen Quan Ba Hong Newton-Raphson 8 (Studentsmethod at Faculty of Math and Computer May 2, 2016 Science. 1 Ho / 24 Chi

2 Outline 1 Introduction 2 The Newton-Raphson method Geometrical view point Analytical view point 3 Selected examples 4 The Newton-Raphson method has fallen! The Newton-Raphson method can go bad 5 Improvements 6 N-R method for several variables 7 Extension to systems of equations oan Tran Nguyen Tung 9 Nguyen Quan Ba Hong Newton-Raphson 10 (Studentsmethod at Faculty of Math and Computer May 2, 2016 Science. 2 Ho / 24Ch

3 Historical notes 1 This algorithm was discovered by Sir Issac Newton, who formulated the result in Later improved by Joseph Raphson in 1690, the algorithm is presently known as the Newton-Raphson method, or more commonly Newton s method. 2 A method for finding the roots of an arbitrary function that uses the derivative was first circulated by Isaac Newton in John Wallis published Newton s method in 1685, and in 1690 Joseph Raphson ( ) published an improved version, essentially the form in which we use it today. 3 Newton s work was done in 1669 but published much later. Numerical methods related to the Newton Method were used by alkāshī, Viète, Briggs, and Oughtred, all many years before Newton. oan Tran Nguyen Tung 11 Nguyen Quan BaNewton-Raphson Hong 12 (Students method at Faculty of Math andmay Computer 2, 2016Science. 3 / Ho 24C

4 Later studies 1 Raphson, like Newton, seems unaware of the connection between his method and the derivative. The connection was made about 50 years later (Simpson, Euler), and the Newton Method finally moved beyond polynomial equations. The familiar geometric interpretation of the Newton Method may have been first used by Mourraille (1768). Analysis of the convergence of the Newton Method had to wait until Fourier and Cauchy in the 1820s. 2 The method was then studied and generalized by other mathematicians like Simpson ( ), Mourraille ( ), Cauchy ( ), Kantorovich ( ),... The important question of the choice of the starting point was first approached by Mourraille in 1768 and the difficulty to make this choice is the main drawback of the algorithm. oan Tran Nguyen Tung 13 Nguyen Quan BaNewton-Raphson Hong 14 (Students method at Faculty of Math andmay Computer 2, 2016Science. 4 / Ho 24C

5 Why does N-R method appear? Why does N-R method appear? Although the bisection method will always converge on the root, the rate of convergence is very slow. A faster method for converging on a single root of a function is the Newton-Raphson method. Perhaps it is the most widely used method of all locating formulas. Being one of iterative methods! 1 An initial estimate of the root. found by drawing a graph of the function in the neighborhood of the root. 2 The method is based upon a knowledge of the tangent to the curve near the root. 3 A powerful technique for solving equations numerically, based on the simple idea of linear approximation. oan Tran Nguyen Tung 15 Nguyen Quan BaNewton-Raphson Hong 16 (Students method at Faculty of Math andmay Computer 2, 2016Science. 5 / Ho 24C

6 Steps of N-R method The method consists of the following steps: 1 Pick a point x 0 close to a root. Find the corresponding point (x 0, f (x 0 )) on the curve. 2 Draw the tangent line to the curve at that point, and see where it crosses the x-axis. 3 The crossing point, x 1, is your next guess. Repeat the process starting from that point. oan Tran Nguyen Tung 17 Nguyen Quan BaNewton-Raphson Hong 18 (Students method at Faculty of Math andmay Computer 2, 2016Science. 6 / Ho 24C

7 Geometrical view point 1 Consider the following diagram showing a function f(x) with a simple root at x = x whose value is required. Initial analysis has indicated that the root is approximately located at x = x 0. The aim of any numerical procedure is to provide a better estimate to the location of the root. 2 The basic premise of the Newton-Raphson method is the assumption that the curve in the close neighbourhood of the simple root at x is approximately a straight line. Hence if we draw the tangent to the curve at x 0, this tangent will intersect the x axis at a point closer to x than is x 0 oan Tran Nguyen Tung 19 Nguyen Quan BaNewton-Raphson Hong 20 (Students method at Faculty of Math andmay Computer 2, 2016Science. 7 / Ho 24C

8 Figure 1 Figure 1: Diagram for the curve oan Tran Nguyen Tung 21 Nguyen Quan BaNewton-Raphson Hong 22 (Students method at Faculty of Math andmay Computer 2, 2016Science. 8 / Ho 24C

9 Figure 2 Figure 2: Figure 2. oan Tran Nguyen Tung 23 Nguyen Quan BaNewton-Raphson Hong 24 (Students method at Faculty of Math andmay Computer 2, 2016Science. 9 / Ho 24C

10 Establish the formula From the geometry of this diagram we see that x 1 = x 0 P Q But from the right-angled triangle PQR we have RQ P Q = tan θ = f (x 0 ) and so P Q = RQ f (x 0 ) = f (x 0) f (x 0 ) x 1 = x 0 f (x 0) f (x 0 ) If f(x) has a simple root near x 0 then a closer estimate to the root is x 1 where x 1 = x 0 f (x 0) f (x 0 ) This formula can be used time and time again giving rise to the following: oan Tran Nguyen Tung 25 Nguyen Quan BaNewton-Raphson Hong 26 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 10 / Ho 24C

11 The N-R iterative formula The Newton-Raphson iterative formula If f(x) has a simple root near x n then a closer estimate to the root is x n+1 where x n+1 = x n f (x n) f (x n ) This is the Newton-Raphson iterative formula. The iteration is begun with an initial estimate of the root, x 0, and continued to find x 1, x 2,... until a suitably accurate estimate of the position of the root is obtained. oan Tran Nguyen Tung 27 Nguyen Quan BaNewton-Raphson Hong 28 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 11 / Ho 24C

12 Analysis view point We suppose that f is a C 2 function on a given interval, then using Taylor s expansion near x f (x + h) = f (x) + hf (x) + O ( h 2) and if we stop at the first order (linearization of the equation), we are looking for a small h such as f (x + h) = 0 f (x) + hf (x) giving h = f(x) f (x) x + h = x f(x) f (x) oan Tran Nguyen Tung 29 Nguyen Quan BaNewton-Raphson Hong 30 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 12 / Ho 24C

13 Example for N-R method We just take one example, you should be try yourself! Example. f (x) = x 2 + ln x has a root near x = 1.5. Use the Newton-Raphson formula to obtain a better estimate. Solution. Here x 0 = 1.5, f (1.5) = ln 1.5 = , f (x) = x, f (1.5) = = 5 3. Hence using the formula x 1 = = The Newton-Raphson formula can be used again: this time beginning with as our initial estimate. This time use: x 2 = x 1 f(x 1) = = f(1.5567) f (x 1 ) ln f (1.5567) = This is in fact the correct value of the root to 4 d.p. oan Tran Nguyen Tung 31 Nguyen Quan BaNewton-Raphson Hong 32 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 13 / Ho 24C

14 The N-R method can go bad The Newton-Raphson method is a GOD TOOL, isn t it? To answer that question, we will show some non-trivial examples. Example 1. Consider the function defined by f (x) = { x x, if x 0 0, if x = 0 Easy to prove that f is continuous. The derivative of this function is f (x) = 1 2 x, x 0 oan Tran Nguyen Tung 33 Nguyen Quan BaNewton-Raphson Hong 34 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 14 / Ho 24C

15 Example (continue) If we choose any starting point off the actual root, x 1 = a 0, then x 2 = a a a 1 2 a = a 2a = a If follows that x n = { a, if n odd a, if n even Example 2. Take f : R R, x x 2 x + 1 and x 0 = 1. As f (x) = 2x 1, x 1 = 1 f(1) f (1) = = 0 and x 2 = 0 f(0) f (0) = = 1. It follows that { 1, if n is even x n = 0, if n is odd Thus {x n } does not converge. oan Tran Nguyen Tung 35 Nguyen Quan BaNewton-Raphson Hong 36 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 15 / Ho 24C

16 Nothing be perfect! Once the Newton Method catches scent of the root, it usually hunts it down with amazing speed. But since the method is based on local information, namely f(x n ) and f (x n ), the Newton Method s sense of smell is deficient. If the initial estimate is not close enough to the root, the Newton Method may not converge, or may converge to the wrong root The successive estimates of the Newton Method may converge to the root too slowly, or may not converge at all. oan Tran Nguyen Tung 37 Nguyen Quan BaNewton-Raphson Hong 38 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 16 / Ho 24C

17 Drawbacks The Newton-Raphson methods has some drawbacks. 1 It cannot handle multiple roots. 2 It has slow convergence (compared with newer techniques). 3 The solution may diverge near a point of inflection. 4 The solution might oscillates new local minima or maxima. 5 With near-zero slope, the solution may diverge or reach a different root. oan Tran Nguyen Tung 39 Nguyen Quan BaNewton-Raphson Hong 40 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 17 / Ho 24C

18 Improvements We can improve the Newton-Raphson method to (some) following other iterations. 1 Cubic iteration. 2 Householder s iteration. 3 High order iteration: Householder s method. More details for these iterations, please read attachment file of my team. oan Tran Nguyen Tung 41 Nguyen Quan BaNewton-Raphson Hong 42 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 18 / Ho 24C

19 N-R method for several variables Target Newton s method may also be used to find a root of a system of two or more non linear equations { f (x, y) = 0 g (x, y) = 0 where f and g are C 2 functions on a given domain. Using Taylor s expansion of the two functions near (x, y) we find f (x + h, y + k) = f (x, y) + h f x + k f y + O ( h 2 + k 2) g (x + h, y + k) = g (x, y) + h g x + k g y + O ( h 2 + k 2) and if we keep only the first order terms, we are looking for a couple (h, k) such as oan Tran Nguyen Tung 43 Nguyen Quan BaNewton-Raphson Hong 44 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 19 / Ho 24C

20 f (x + h, y + k) = 0 f (x, y) + h f x + k f y g (x + h, y + k) = 0 g (x, y) + h g x + k g y hence it s equivalent to the linear system ( ) f f ( ) x y h = k equivalent to g x g y J (x, y) ( h k ) = ( f (x, y) g (x, y) ( f (x, y) g (x, y) This suggest to define the new process ( ) ( ) xn+1 xn = J 1 (x n, y n ) y n+1 y n ) ) ( f (xn, y n ) g (x n, y n ) ) under certain conditions (which are not so easy to check and this is again the main disadvantage of the method), it s possible to show that this process converges to a root of the system. The convergence remains quadratic. oan Tran Nguyen Tung 45 Nguyen Quan BaNewton-Raphson Hong 46 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 20 / Ho 24C

21 Example. N-R for system of equations Example We are looking for a root near (x 0 = 0.6, y 0 = 0.6) of the following system { f (x, y) = x 3 3xy 2 1 g (x, y) = 3x 2 y y 3 here the Jacobian and its inverse become ( x 2 J (x n, y n ) = 3 n yn 2 ) 2x n y n 2x n y n ( x 2 n yn 2 J 1 1 x 2 (x n, y n ) = n yn 2 2x n y n 3(x 2 n +y2 n )2 2x n y n x 2 n yn 2 ) oan Tran Nguyen Tung 47 Nguyen Quan BaNewton-Raphson Hong 48 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 21 / Ho 24C

22 Example (continue and the process gives x 1 = , y 1 = x 2 = , y 2 = x 3 = , y 3 = x 4 = , y 4 = x 5 = , y 5 = Depending on your initial guess Newton s process may converge to one of the three roots of the system: ( 1 ) ( 3 2,, 1 ) 3 2 2,, (1, 0) 2 and for some values of (x 0, y 0 ) the convergence of the process may be tricky! oan Tran Nguyen Tung 49 Nguyen Quan BaNewton-Raphson Hong 50 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 22 / Ho 24C

23 Final generalization of this text For further studying and for references only. Extension to systems of equations f 1 (x 1,..., x n ) = 0... f m (x 1,..., x n ) = 0 or f(x) = 0 The Newton-Raphson method becomes x n+1 = x n J 1 (x n ) f (x n ), n = 0, 1,... oan Tran Nguyen Tung 51 Nguyen Quan BaNewton-Raphson Hong 52 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 23 / Ho 24C

24 References Adi Ben-Israel, A Newton-Raphson Method for the Solution of Systems of Equations, Technion-Israel Institute of Technology and Northwestern University, Journal of Mathematical Analysis and Applications 15, (1966). Helm, Workbook Level 1, The Newton-Raphson Method, March 18, Aaron Burton, Newton s method and fractals. David M. Bressoud, Newton-Raphson Method, Appendix to A Radical Approach to Real analysis 2nd edition, June 20, Pascal Sebah, Xavier Gourdon, Newton s method and high order iterations, October 3, Dr. Ibrahim A. Assakkaf, Numerical methods for engineers, Spring oan Tran Nguyen Tung 53 Nguyen Quan BaNewton-Raphson Hong 54 (Students method at Faculty of Math andmay Computer 2, 2016 Science. 24 / Ho 24C

Project on Newton-Raphson Method

Project on Newton-Raphson Method Project on Newton-Raphson Method Nguyen Quan Ba Hong Doan Tran Nguyen Tung Students at Faculty of Math and Computer Science, Ho Chi Minh University of Science, Vietnam email. email. dtrngtung@live.com

More information

Newton s Method and Linear Approximations

Newton s Method and Linear Approximations Newton s Method and Linear Approximations Curves are tricky. Lines aren t. Newton s Method and Linear Approximations Newton s Method for finding roots Goal: Where is f (x) = 0? f (x) = x 7 + 3x 3 + 7x

More information

Spring 2015, Math 111 Lab 8: Newton s Method

Spring 2015, Math 111 Lab 8: Newton s Method Spring 2015, Math 111 Lab 8: William and Mary April 7, 2015 Spring 2015, Math 111 Lab 8: Historical Outline Intuition Learning Objectives Today, we will be looking at applications of. Learning Objectives:

More information

Chapter 3: Root Finding. September 26, 2005

Chapter 3: Root Finding. September 26, 2005 Chapter 3: Root Finding September 26, 2005 Outline 1 Root Finding 2 3.1 The Bisection Method 3 3.2 Newton s Method: Derivation and Examples 4 3.3 How To Stop Newton s Method 5 3.4 Application: Division

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 20, 2014 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 17, 2017 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

ROOT FINDING REVIEW MICHELLE FENG

ROOT FINDING REVIEW MICHELLE FENG ROOT FINDING REVIEW MICHELLE FENG 1.1. Bisection Method. 1. Root Finding Methods (1) Very naive approach based on the Intermediate Value Theorem (2) You need to be looking in an interval with only one

More information

Newton s Method and Linear Approximations 10/19/2011

Newton s Method and Linear Approximations 10/19/2011 Newton s Method and Linear Approximations 10/19/2011 Curves are tricky. Lines aren t. Newton s Method and Linear Approximations 10/19/2011 Newton s Method Goal: Where is f (x) =0? f (x) =x 7 +3x 3 +7x

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study:

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Review for Final The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Chapter 2 Find the exact answer to a limit question by using the

More information

CHAPTER-II ROOTS OF EQUATIONS

CHAPTER-II ROOTS OF EQUATIONS CHAPTER-II ROOTS OF EQUATIONS 2.1 Introduction The roots or zeros of equations can be simply defined as the values of x that makes f(x) =0. There are many ways to solve for roots of equations. For some

More information

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD BISECTION METHOD If a function f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs, then there exists at least one root between a and b. It is shown graphically as, Let f a be negative

More information

Math 4329: Numerical Analysis Chapter 03: Newton s Method. Natasha S. Sharma, PhD

Math 4329: Numerical Analysis Chapter 03: Newton s Method. Natasha S. Sharma, PhD Mathematical question we are interested in numerically answering How to find the x-intercepts of a function f (x)? These x-intercepts are called the roots of the equation f (x) = 0. Notation: denote the

More information

Constant Acceleration

Constant Acceleration Constant Acceleration Ch. in your text book Objectives Students will be able to: ) Write the definition of acceleration, either in words or as an equation ) Create an equation for the movement of an object

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

x 2 x n r n J(x + t(x x ))(x x )dt. For warming-up we start with methods for solving a single equation of one variable.

x 2 x n r n J(x + t(x x ))(x x )dt. For warming-up we start with methods for solving a single equation of one variable. Maria Cameron 1. Fixed point methods for solving nonlinear equations We address the problem of solving an equation of the form (1) r(x) = 0, where F (x) : R n R n is a vector-function. Eq. (1) can be written

More information

Newton s Method and Linear Approximations

Newton s Method and Linear Approximations Newton s Method and Linear Approximations Newton s Method for finding roots Goal: Where is f (x) =0? f (x) =x 7 +3x 3 +7x 2 1 2-1 -0.5 0.5-2 Newton s Method for finding roots Goal: Where is f (x) =0? f

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture - 09 Newton-Raphson Method Contd We will continue with our

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy,

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy, Outline Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

Numerical Methods. Roots of Equations

Numerical Methods. Roots of Equations Roots of Equations by Norhayati Rosli & Nadirah Mohd Nasir Faculty of Industrial Sciences & Technology norhayati@ump.edu.my, nadirah@ump.edu.my Description AIMS This chapter is aimed to compute the root(s)

More information

Introduction to Real Analysis MATH 2001

Introduction to Real Analysis MATH 2001 Introduction to Real Analysis MATH 2001 Juris Steprāns York University September 13, 2010 Instructor Instructor: Juris Steprāns My office is N530 in the Ross building. Office hours are Mondays from 4:00

More information

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Extended Introduction to Computer Science CS1001.py Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Instructors: Benny Chor, Amir Rubinstein Teaching Assistants: Yael Baran,

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Polynomials Polynomials A polynomial is of the form: ( x) = a 0 + a 1 x + a 2 x 2 +L+ a n x n f

More information

CHAPTER 4 ROOTS OF EQUATIONS

CHAPTER 4 ROOTS OF EQUATIONS CHAPTER 4 ROOTS OF EQUATIONS Chapter 3 : TOPIC COVERS (ROOTS OF EQUATIONS) Definition of Root of Equations Bracketing Method Graphical Method Bisection Method False Position Method Open Method One-Point

More information

3.1 Introduction. Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x x 1.5 =0, tan x x =0.

3.1 Introduction. Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x x 1.5 =0, tan x x =0. 3.1 Introduction Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x 3 +1.5x 1.5 =0, tan x x =0. Practical existence test for roots: by intermediate value theorem, f C[a, b] & f(a)f(b)

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter IV: Locating Roots of Equations Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2011 fasshauer@iit.edu

More information

Numerical Methods. Root Finding

Numerical Methods. Root Finding Numerical Methods Solving Non Linear 1-Dimensional Equations Root Finding Given a real valued function f of one variable (say ), the idea is to find an such that: f() 0 1 Root Finding Eamples Find real

More information

INTRODUCTION TO NUMERICAL ANALYSIS

INTRODUCTION TO NUMERICAL ANALYSIS INTRODUCTION TO NUMERICAL ANALYSIS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 3. SOLVING NONLINEAR EQUATIONS 3.1 Background 3.2 Estimation of errors in numerical solutions

More information

Taylor series. Chapter Introduction From geometric series to Taylor polynomials

Taylor series. Chapter Introduction From geometric series to Taylor polynomials Chapter 2 Taylor series 2. Introduction The topic of this chapter is find approximations of functions in terms of power series, also called Taylor series. Such series can be described informally as infinite

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Project on Runge Kutta method

Project on Runge Kutta method Project on Runge Kutta method Nguyen Quan Ba Hong Doan Tran Nguyen Tung Nguyen An Thinh 3 Students at Faculty of Math and Computer Science Ho Chi Minh University of Science, Vietnam email. email. nguyenquanbahong@gmail.com

More information

Chapter 1. Root Finding Methods. 1.1 Bisection method

Chapter 1. Root Finding Methods. 1.1 Bisection method Chapter 1 Root Finding Methods We begin by considering numerical solutions to the problem f(x) = 0 (1.1) Although the problem above is simple to state it is not always easy to solve analytically. This

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

Outline schemes of work A-level Mathematics 6360

Outline schemes of work A-level Mathematics 6360 Outline schemes of work A-level Mathematics 6360 Version.0, Autumn 013 Introduction These outline schemes of work are intended to help teachers plan and implement the teaching of the AQA A-level Mathematics

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 3 Lecture 3 3.1 General remarks March 4, 2018 This

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Goals for This Lecture:

Goals for This Lecture: Goals for This Lecture: Learn the Newton-Raphson method for finding real roots of real functions Learn the Bisection method for finding real roots of a real function Look at efficient implementations of

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

Numerical Analysis: Solving Nonlinear Equations

Numerical Analysis: Solving Nonlinear Equations Numerical Analysis: Solving Nonlinear Equations Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University Fixed Points and Contractive Transformations Ron Goldman Department of Computer Science Rice University Applications Computer Graphics Fractals Bezier and B-Spline Curves and Surfaces Root Finding Newton

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter IV: Locating Roots of Equations Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2011 fasshauer@iit.edu

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Solving Non-Linear Equations (Root Finding)

Solving Non-Linear Equations (Root Finding) Solving Non-Linear Equations (Root Finding) Root finding Methods What are root finding methods? Methods for determining a solution of an equation. Essentially finding a root of a function, that is, a zero

More information

Ch. 7.6 Squares, Squaring & Parabolas

Ch. 7.6 Squares, Squaring & Parabolas Ch. 7.6 Squares, Squaring & Parabolas Learning Intentions: Learn about the squaring & square root function. Graph parabolas. Compare the squaring function with other functions. Relate the squaring function

More information

Newton-Raphson Type Methods

Newton-Raphson Type Methods Int. J. Open Problems Compt. Math., Vol. 5, No. 2, June 2012 ISSN 1998-6262; Copyright c ICSRS Publication, 2012 www.i-csrs.org Newton-Raphson Type Methods Mircea I. Cîrnu Department of Mathematics, Faculty

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Week 7, Day 1 13 Oct 2014 1 Student projects: 20% of the final grade: you will receive a numerical score for the project and final grade will

More information

Curriculum and Pacing Guide Mr. White AP Calculus AB Revised May 2015

Curriculum and Pacing Guide Mr. White AP Calculus AB Revised May 2015 Curriculum and Pacing Guide Mr. White AP Calculus AB Revised May 2015 Students who successfully complete this course will receive one credit AP Calculus AB and will take the AP Calculus AB Exam. 1. The

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL

YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL Journal of Comput. & Applied Mathematics 139(2001), 197 213 DIRECT APPROACH TO CALCULUS OF VARIATIONS VIA NEWTON-RAPHSON METHOD YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL Abstract. Consider m functions

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will produce various graphs of Taylor polynomials. Students will discover how the accuracy of a Taylor polynomial is associated with the degree of the Taylor polynomial. Students

More information

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 2013/2014 SEMESTER 1 MID-TERM TEST MA1505 MATHEMATICS I 1 October 2013 8:30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 1. This test paper consists of TEN (10) multiple choice questions

More information

Evaluating implicit equations

Evaluating implicit equations APPENDIX B Evaluating implicit equations There is a certain amount of difficulty for some students in understanding the difference between implicit and explicit equations, and in knowing how to evaluate

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method.

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method. 80 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0 y y = f(x) (p, 0) p 2 p 1 p 0 x (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- Figure 2.16 cant method. Secant Method The

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

ARE202A, Fall 2005 CONTENTS. 1. Graphical Overview of Optimization Theory (cont) Separating Hyperplanes 1

ARE202A, Fall 2005 CONTENTS. 1. Graphical Overview of Optimization Theory (cont) Separating Hyperplanes 1 AREA, Fall 5 LECTURE #: WED, OCT 5, 5 PRINT DATE: OCTOBER 5, 5 (GRAPHICAL) CONTENTS 1. Graphical Overview of Optimization Theory (cont) 1 1.4. Separating Hyperplanes 1 1.5. Constrained Maximization: One

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

22.4. Numerical Determination of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.4. Numerical Determination of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Numerical Determination of Eigenvalues and Eigenvectors 22.4 Introduction In Section 22. it was shown how to obtain eigenvalues and eigenvectors for low order matrices, 2 2 and. This involved firstly solving

More information

Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revision Guides Numerical Methods for Solving Equations Page of M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C3 Edecel: C3 OCR: C3 NUMERICAL METHODS FOR SOLVING EQUATIONS

More information

Intro to Scientific Computing: How long does it take to find a needle in a haystack?

Intro to Scientific Computing: How long does it take to find a needle in a haystack? Intro to Scientific Computing: How long does it take to find a needle in a haystack? Dr. David M. Goulet Intro Binary Sorting Suppose that you have a detector that can tell you if a needle is in a haystack,

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Lec7p1, ORF363/COS323

Lec7p1, ORF363/COS323 Lec7 Page 1 Lec7p1, ORF363/COS323 This lecture: One-dimensional line search (root finding and minimization) Bisection Newton's method Secant method Introduction to rates of convergence Instructor: Amir

More information

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010)

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) Course Prerequisites MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) As a prerequisite to this course, students are required to have a reasonable mastery of precalculus mathematics

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

(10) What is the domain of log 123 (x)+ x

(10) What is the domain of log 123 (x)+ x EXAM 1 MASTER STUDY GUIDE MATH 131 I don't expect you to complete this. This is a very large list. I wanted to give you as much information about things that could be asked of you as possible. On Tuesday,

More information

UNIVERSITY OF CAMBRIDGE

UNIVERSITY OF CAMBRIDGE UNIVERSITY OF CAMBRIDGE DOWNING COLLEGE MATHEMATICS FOR ECONOMISTS WORKBOOK This workbook is intended for students coming to Downing College Cambridge to study Economics 2018/ 19 1 Introduction Mathematics

More information

Single Variable Calculus, Early Transcendentals

Single Variable Calculus, Early Transcendentals Single Variable Calculus, Early Transcendentals 978-1-63545-100-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax

More information

Go over the illustrated examples in each section.

Go over the illustrated examples in each section. Math 242 Fall 2009 Please before you start the practice problems, go over the illustrated examples in each section first. Cover up the solutions and try to work out the answers on your own. Practice Problems

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) 1 Computer Simulations Why is computation becoming so important in physics? One reason is that most of our analytical tools such as differential calculus are best

More information

A Novel Computational Technique for Finding Simple Roots of Nonlinear Equations

A Novel Computational Technique for Finding Simple Roots of Nonlinear Equations Int. Journal of Math. Analysis Vol. 5 2011 no. 37 1813-1819 A Novel Computational Technique for Finding Simple Roots of Nonlinear Equations F. Soleymani 1 and B. S. Mousavi 2 Young Researchers Club Islamic

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science 1 AOSC 652 Week 7, Day 1 10 Oct 2016 Student projects: 20% of the final grade: you will receive a numerical score for the project and final grade will

More information

Numerical Methods in Informatics

Numerical Methods in Informatics Numerical Methods in Informatics Lecture 2, 30.09.2016: Nonlinear Equations in One Variable http://www.math.uzh.ch/binf4232 Tulin Kaman Institute of Mathematics, University of Zurich E-mail: tulin.kaman@math.uzh.ch

More information

Business Calculus

Business Calculus Business Calculus 978-1-63545-025-5 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Senior Contributing Authors: Gilbert

More information

MATH 1242 FINAL EXAM Spring,

MATH 1242 FINAL EXAM Spring, MATH 242 FINAL EXAM Spring, 200 Part I (MULTIPLE CHOICE, NO CALCULATORS).. Find 2 4x3 dx. (a) 28 (b) 5 (c) 0 (d) 36 (e) 7 2. Find 2 cos t dt. (a) 2 sin t + C (b) 2 sin t + C (c) 2 cos t + C (d) 2 cos t

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 31B, Spring 2017 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in

More information

AP Calculus BC Syllabus Course Overview

AP Calculus BC Syllabus Course Overview AP Calculus BC Syllabus Course Overview Textbook Anton, Bivens, and Davis. Calculus: Early Transcendentals, Combined version with Wiley PLUS. 9 th edition. Hoboken, NJ: John Wiley & Sons, Inc. 2009. Course

More information

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR)

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) Autumn Session UNIT 1 Numerical analysis is the study of algorithms that uses, creates and implements algorithms for obtaining numerical solutions to problems

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4776/01 MATHEMATICS (MEI) Numerical Methods WEDNESDAY 20 JUNE 2007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2) Afternoon

More information

0 MATH Last Updated: September 7, 2012

0 MATH Last Updated: September 7, 2012 Problem List 0.1 Trig. Identity 0.2 Basic vector properties (Numeric) 0.3 Basic vector properties (Conceptual) 0.4 Vector decomposition (Conceptual) 0.5 Div, grad, curl, and all that 0.6 Curl of a grad

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico Lecture 5 September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico 1 Review: Office hours at regularly scheduled times this week Tuesday: 9:30am-11am Wed: 2:30pm-4:00pm

More information

Outline Goals and Assumptions Real Numbers Rational and Irrational. L11: Numbers. Alice E. Fischer

Outline Goals and Assumptions Real Numbers Rational and Irrational. L11: Numbers. Alice E. Fischer L11: Numbers Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing March 5-8, 2018 1 Goals and Assumptions 2 Real Numbers 3 Rational and Irrational Assumptions We rely the following assumptions:

More information

ENGINEERING MATHEMATICS I. CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 PART-A

ENGINEERING MATHEMATICS I. CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 PART-A ENGINEERING MATHEMATICS I CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 Total Hrs: 52 Exam Marks:100 PART-A Unit-I: DIFFERENTIAL CALCULUS - 1 Determination of n th derivative of standard functions-illustrative

More information

MA 8019: Numerical Analysis I Solution of Nonlinear Equations

MA 8019: Numerical Analysis I Solution of Nonlinear Equations MA 8019: Numerical Analysis I Solution of Nonlinear Equations Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

Contraction Mappings Consider the equation

Contraction Mappings Consider the equation Contraction Mappings Consider the equation x = cos x. If we plot the graphs of y = cos x and y = x, we see that they intersect at a unique point for x 0.7. This point is called a fixed point of the function

More information