Cubic B-spline Collocation Method for One-Dimensional Heat Equation

Size: px
Start display at page:

Download "Cubic B-spline Collocation Method for One-Dimensional Heat Equation"

Transcription

1 Pure and Applied Mathematics Journal 27; 6(): doi:.648/j.pamj ISSN: (Print); ISSN: (Online) Cubic B-spline Collocation Method for One-Dimensional Heat Equation Mohamed Hassan Khabir, Rahma Abdullah Farah 2 Department of Mathematics, Faculty of Science, Sudan University of Science & Technology, Khartoum, Sudan 2 Department of Mathematics, Faculty of Science & Technology, Omdurman Islamic University, Khartoum, Sudan address: khabir@gmail.com (M. H. Khabir), rahma999@windowslive.com (R. A. Farah) To cite this article: Mohamed Hassan Khabir, Rahma Abdullah Farah. Cubic B-Spline Collocation Method for One-Dimensional Heat Equation. Pure and Applied Mathematics Journal. Vol. 6, No., 27, pp doi:.648/j.pamj Received: November 26, 26; Accepted: January 6, 27; Published: March 4, 27 Abstract: In this paper we discuss cubic B-spline collocation method. We have given the derivation of the B-spline method in general. We have applied the method for solving one-dimensional heat equation and the numerical result have been compared with the exact solution. Keywords: Cubic B-spline, Collocation Method, Heat Equation, Linear Partial Differential Equation. Introduction Consider the one dimensional initial-boundary value problem =,= =,=,,=.,=g. This problem is one of the well-known second order parabolic linear partial differential equation [, 3, 4]. The heat equation is a very important equation in physics and engineering. It shows that heat equation describes the distribution of heat (or variation in temperature) in a given region over time. The heat equation is of fundamental importance in diverse scientific fields. In mathematics, it is prototypical parabolic partial differential equation. In probability theory, the heat equation is connected with the study of Brownian motion via the Fokker Planck equation [5]. Numerical solutions of those equations are very useful to study physical phenomena. One of the linear evolution equation which we deal with the numerical solution is the heat equation [2]. In financial mathematics it is used to solve the Black Scholes partial differential equation. The diffusion equation, a more general version of the heat equation, arises in connection with the study of chemical diffusion and other related processes [5]. In history, the heat () equation proposed by Fourier in 822 has been applied to investigating a temperature distribution in materials [6]. The heat equation is used in probability and describes random walks. It is also applied in financial mathematics for this reason. It is also important in Riemannian geometry and thus topology: it was adapted by Richard S. Hamilton when he defined the Ricci flow that was later used by Grigori Perelman to solve the topological Poincaré conjecture. The heat equation arises in the modeling of a number of phenomena and is often used in financial mathematics in the modeling of options. The famous Black Scholes option pricing model's differential equation can be transformed into the heat equation allowing relatively easy solutions from a familiar body of mathematics. Many of the extensions to the simple option models do not have closed form solutions and thus must be solved numerically to obtain a modeled option price. The equation describing pressure diffusion in a porous medium is identical in form with the heat equation. Diffusion problems dealing with Dirichlet, Neumann and Robin boundary conditions have closed form analytic solutions (Thambynayagam 2). The heat equation is also widely used in image analysis (Perona & Malik 99) and in machine-learning as the driving theory behind scale-space or graph Laplacian methods. The heat equation can be efficiently solved numerically using the implicit Crank Nicolson method of (Crank & Nicolson 947). This method can be extended to many of the models with no closed form solution, see for instance (Wilmott, Howison & Dewynne

2 52 Mohamed Hassan Khabir and Rahma Abdullah Farah: Cubic B-spline Collocation Method for One-Dimensional Heat Equation 995). An abstract form of heat equation on manifolds provides a major approach to the Atiyah Singer index theorem, and has led to much further work on heat equations in Riemannian geometry [5]. In this study the cubic B-spline collocation method is used [7, 9, ] for solving the heat equation () and the solutions are compared with the exact solution. In the section two, we have given the derivation for the B-spline method and uniform convergence for the method has been discussed. Finally, we have solved the problem () using the method, the numerical results and graphs have also been shown. 2. B-spline Collocation Method We define the cubic B-spline for =,,2,,. "# $ %& '( ) *, if. $/, $, +3# $ %&4 )+3# $ %&4 ) / +# $ %&4 ) *, if. '( '( '( $,, =! +3# %54$ )+3# %54$ ) / +# %54$ ) *, if. '( '( '(, 6, # %5 $ where h? = 6,=,,,+. We introduce four additional knots as $/ < $ < B and C6/ > > C. From the above Eq. (2) we can simply check that each of the functions is twice continuously differentiable on the entire real line, also ) *, if. '( 6, 6/,, otherwise, [ * T ^_ U. Let ` be a linear operator with domain U and with range in U. Now we define = = $ $ + B B C C +. (6) (2) 4, if =J, E F G=H, if J= ±,, if J= ±2, and that = for 6/ and $/. Similarly we can show that and Q R = H, if =J, ± * '(, if J=±,, if J=±2, /, if =J, '( E F G= S, if J=±, '(, if J=±2. Each is also a piece-wise cubic with knots at T, and U. The values of, Q and at the nodal points W are shown in Table. Nodal values Table. B-Spline basis values. x x i-2 x i- x i x i+ x i+2 4 h? Q 3 3 h?/ Let Ω=Y $, B,,, Z and let [ * T=span Ω. The functions Ω are linearly independent on.,, thus [ * T is +3 -dimensional. Even one can show that (3) (4) (5) Then force ) to satisfy the collocation equations plus the boundary conditions. We have and `E F G=dE F G F N, (7) On solving Eq. (7), we get =f B,=f. (8) g F + he F G F = d F g j E F G+hE F G j E F G=d F g l F$ F$ E F G+ F F E F G+ F6 F6 F m +h F l F$ F$ E F G+ F F E F G + F6 F6 F m= d F J=,,,, F$ l g F$ E F G+h F F$ E F Gm+ F l g F E F G+ h F F E F Gm+ F6 l g F6 E F G+h F F6 E F Gm=d F J=,,2,,, (9) by using equations (3) and (5) we get E 6g+h F h?/ G F$ +E2g+4h F h?/ G F +E 6g+ h F h?/ G F6 =h?/ d F, J=,,,, () where he F G=h F and de F G= d F. The given boundary conditions (8) become

3 Pure and Applied Mathematics Journal 27; 6(): and F = B = f B $ $ B + B B B + B + + B =f B $ +4 B + = f B, () F = C = f $ $ C + B B C + C + + C$ C$ C + C C C + C =f C$ +4 C + b f. (2) Eqs. (), () and (2) lead to a tridiagonal system with +3 unknowns C = $, B,, (where t stands for transpose). Now eliminating $ from the first equation of () and (), we find 36g B =d B h?/ f B E 6g+h B h?/ G. (3) Similarly, eliminating from the last equation of () and from (2), we find from () we get 36g C =d C h?/ f E 6g+h C h?/ G. (4) J=: 6g+h h?/ B +E2g+4h h?/ G +E 6g+h h?/ G / = Z h?/ J=2: 6g+h / h?/ +E2g+4h / h?/ G / +E 6g+h / h?/ G * = Z / h?/ J=: 6g+h h?/ $ +E2g+4h h?/ G +E 6g+h h?/ G 6 = Z h?/ J= : E 6g+h C$ h?/ G C$/ +E2g+4h C$ h?/ G C$ +E 6g+h C$ h?/ G C = Z t$ h?/. The above equations lead to the system of + linear equations u C = v C in the + unknowns C = B,, C of the form y 36g z { z y B x x x z { z x / x x x z { z x C$ w 36g} w C } = y dbh?/ f B z x d h?/ x d / h?/ x, (5) x x d C$ h?/ wd h?/ C f z} where z= 6g+hh?/, {=2g+4hh?/. Since h>, it is easily seen that the matrix u is strictly diagonally dominant and hence nonsingular. Since u is nonsingular, we can solve the system u C = v C for B,,, C and substitute into the boundary equations () and (2) to obtain $ and Lemma [8] The B-splines Y $, B,, Z defined in equation (2), satisfy the inequality t6 j B,. Proof. We know that ƒj B ƒ j. At any th nodal point we have t6 j B = B $ + B + B 6 =6<. Also we have 4 and $ 4 for. $,. Similarly $/ and 6 for. $,. Now for any point. $, we have j = $/ + $ Hence this proves the lemma. 3. Numerical Result The exact solution of problem () is known to be

4 54 Mohamed Hassan Khabir and Rahma Abdullah Farah: Cubic B-spline Collocation Method for One-Dimensional Heat Equation,= $ sin2t, g=sin2t. Denote the value of at the representative mesh point E F, G by ˆ =E F, G= F The forward difference approximation for is 54 Š $Š Substitute = F in (6) we get 6 = / / = (6) Substitute At =:Ž= B + = B (7) g + =g = j F, = j E F G, B = E F,G in (7) we get =ge F G, = j F + j F =g F l F$ F$ E F G+ F F E F G+ F6 F6 F m+ F$ F$ E F G+ F F E F G+ F6 F6 F = g F J=,,,, F$ l F$ E F G+ F$ E F Gm+ F l F E F G+ F E F Gm+ F6 l F6 E F G+ F6 F m=ge F G J=,,,, (8) by using equations (3) and (5) we get E 6 + h?/ G F$ +E2 +4h?/ G F +E 6 +h?/ G F6 =g F h?/ j=,,,n, (9) J=: 6 + h?/ B +E2 +4h?/ G +E 6 +h?/ G / = g h?/ J=2: 6 + h?/ +E2 +4h?/ G / +E 6 +h?/ G * = g / h?/ J=: 6 + h?/ $ +E2 +4h?/ G +E 6 +h?/ G 6 = g h?/ J= : E 6 +h?/ G C$/ +E2 +4h?/ G C$ +E 6 +h?/ G C = g t$ h?/. The above equations lead to the system of + linear equations u C = v C in the + unknowns C = B,,, C of the form y 36 z { z y B x x x z { z x / x x x z { z x C$ w 36 } w C } where z= 6 +h?/, {=2 +4h?/. = y g Bh?/ x g h?/ x g / h?/ x, (2) x xg t$ h?/ w g h?/ C } We can see that the system is strictly diagonally dominant and hence nonsingular. So we can solve the system for B,,, C and substitute into the boundary conditions () and (2) to obtain $ and. The table 2 below illustrates the numerical, exact solution and error for the heat equation Table 2. Numerical, Exact Solution And Error For The Heat Equation. x p_i Numerical U_exact error

5 Pure and Applied Mathematics Journal 27; 6(): Solution t axis x axis.6.8 Figure. Exact solution for the heat problem..5 Solution t axis x axis.6.8 Figure 2. Numerical solution for the heat problem using h=.5 and =..

6 56 Mohamed Hassan Khabir and Rahma Abdullah Farah: Cubic B-spline Collocation Method for One-Dimensional Heat Equation Figure 3. This shows the error for the heat problem using h=.5 and =.. 8 x Figure 4. This shows the error for the heat problem using h=. and =..

7 Pure and Applied Mathematics Journal 27; 6(): x Figure 5. This shows the error for the heat problem using h=. and =.. 4. Conclusion We applied the cubic B-spline collocation method to solve one-dimensional heat equation. The results and graphs have also been shown using MATLAB for the comparison between the numerical and exact solutions. Numerical experiments are conducted to demonstrate the viability and the efficiency of the proposed method computationally. Appendix Program for the heat problem : Main_bspline: clc clear h =.5; x = ; x = ; b = ; t = ; t =.; k =.; % h =.5; x = ; x = ; b = ; t = ; t =.; k =.; % h =.; x = ; x = ; b = ; t = ; t =.; k =.; % h =.; x = ; x = ; b = ; t = ; t =.; k =.; % j = ;;...;n; x = x: h: x; sizex = x; t = t: k: t; M = length(x); N = length(t); p = sin(2*pi*x); u = zeros(n,m); u(,:) = p; % M = M - 2; for i = 2: N [p_i] = fun_bspline(p,h,k,m); u(i,:) = p_i; p = p_i; end %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% V = zeros(n,m); V(,:) = sin(2*pi*x); for i = : N for j = : M V(i,j) = exp(-4*t(i)*pi^2)*sin(2*pi*x(j)); U_exact(j) = exp(-4*t(i)*pi^2)*sin(2*pi*x(j)); end end error = max(abs(u V)); yerr = abs(u-v); y=[x' p_i' U_exact' error'] % Figure() surf(x,t,v) % % figure() % plot(x,yerr) % figure(2) surf(x,t,u) % %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% %

8 58 Mohamed Hassan Khabir and Rahma Abdullah Farah: Cubic B-spline Collocation Method for One-Dimensional Heat Equation % surf(x,t,u) Fun_bspline: function YYp = fun_bspline( p,h,k,m) gammaj = 2*k + 4*h^2; alphaj = -6*k + h^2; betaj = -6*k + h^2; A = zeros(m,m); Mvalue = M; A = diag([36*k ones(,m-2)*gammaj 36*k], + diag([ ones(,m-2)*alphaj],) + diag([ones(,m-2)*betaj ],-); ft = p; alpha = ; alpha = ; yp = alpha; yp = alpha; dm = h^2*ft; dm() = dm() - yp*(-6*k+h^2); dm(m) = dm(m) - yp*(-6*k+h^2); Amatrix = A; dm = dm'; sizea = size(a); sizedm = size(dm); cc = A\dm; ccm = - 4*cc() - cc(2); ccmp = - 4*cc(M) - cc(m-); ccc = [ccm cc' ccmp]; YYp = ccc(:m) + 4*ccc(2:M+) + ccc(3:m+2); end References [] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Pres., 959. [2] I. Dag, B. Saka, D. Irk, Application Cubic B-splines for Numerical Solution of the RLW Equation, Appl. Maths. and Comp., 59 (24) [3] D. V. Widder, The Heat Equation, Academic Press, 976. [4] J. R. Cannon, The One-Dimensional Heat Equation, Cambridge University Pres., 984. [5] en.wikipedia.org/wiki/heat_equation. [6] JBJ Fourier, Theorie analytique dela Chaleur, Didot Paris: (822). [7] J. M. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of splines and Their Applications, Academic Press, New York, 967. [8] M. K. Kadalbajoo and V. K. Aggarwal, Fitted mesh B-spline collocation method for solving self-adjoint singularly perturbed boundary value problems, Applied Mathematics and Computation 6 (25), [9] G. Micula, Handbook of Splines, Kluwer Academic Publishers, Dordrecht, The Netherlands, 999. [] L. L. Schumaker, Spline Functions: Basic Theory, Krieger Publishing Company, Florida, 98.

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method

Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method 2014 (2014) 1-8 Available online at www.ispacs.com/iasc Volume 2014, Year 2014 Article ID iasc-00042, 8 Pages doi:10.5899/2014/iasc-00042 Research Article Numerical Solution of One-dimensional Telegraph

More information

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

Numerical studies of non-local hyperbolic partial differential equations using collocation methods Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 3, 2018, pp. 326-338 Numerical studies of non-local hyperbolic partial differential equations using collocation methods

More information

The Trigonometric Cubic B-spline Algorithm for Burgers Equation

The Trigonometric Cubic B-spline Algorithm for Burgers Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(017) No., pp.10-18 The Trigonometric Cubic B-spline Algorithm for Burgers Equation Idris Dag 1, Ozlem Ersoy Hepson,

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 4, No. 3, 016, pp. 191-04 Application of linear combination between cubic B-spline collocation methods with different basis

More information

A robust uniform B-spline collocation method for solving the generalized PHI-four equation

A robust uniform B-spline collocation method for solving the generalized PHI-four equation Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 11, Issue 1 (June 2016), pp. 364-376 Applications and Applied Mathematics: An International Journal (AAM) A robust uniform B-spline

More information

Application of the Differential Transform Method for the Nonlinear Differential Equations

Application of the Differential Transform Method for the Nonlinear Differential Equations American Journal of Applied Mathematics 27; 5(): 4- http://www.sciencepublishinggroup.com//aam doi:.64/.aam.275.2 ISSN: 233-43 (Print); ISSN: 233-6X (Online) Application of the Differential Transform Method

More information

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 Cubic Splines Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 1 References on splines 1. J. H. Ahlberg, E. N. Nilson, J. H. Walsh. Theory of

More information

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.142012 No.3,pp.336-344 Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems K.N.S. Kasi Viswanadham,

More information

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane-Emden Type Equations

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane-Emden Type Equations Iranian Journal of Mathematical Sciences and Informatics Vol. 12, No. 2 (2017), pp 15-34 DOI: 10.7508/ijmsi.2017.2.002 A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane-Emden

More information

A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 4, March 216, pp 3 41. Published online in International Academic Press (www.iapress.org) A cubic B-spline Galerkin approach

More information

Lecture 4.5 Schemes for Parabolic Type Equations

Lecture 4.5 Schemes for Parabolic Type Equations Lecture 4.5 Schemes for Parabolic Type Equations 1 Difference Schemes for Parabolic Equations One-dimensional problems: Consider the unsteady diffusion problem (parabolic in nature) in a thin wire governed

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

NUMERICAL SOLUTION OF GENERAL SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS BASED ON ADAPTIVE CUBIC SPLINE

NUMERICAL SOLUTION OF GENERAL SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS BASED ON ADAPTIVE CUBIC SPLINE TWMS Jour. Pure Appl. Math., V.3, N.1, 2012, pp.11-21 NUMERICAL SOLUTION OF GENERAL SINGULAR PERTURBATION BOUNDARY VALUE PROBLEMS BASED ON ADAPTIVE CUBIC SPLINE R. MOHAMMADI 1 Abstract. We use adaptive

More information

Quintic B-Spline Galerkin Method for Numerical Solutions of the Burgers Equation

Quintic B-Spline Galerkin Method for Numerical Solutions of the Burgers Equation 5 1 July 24, Antalya, Turkey Dynamical Systems and Applications, Proceedings, pp. 295 39 Quintic B-Spline Galerkin Method for Numerical Solutions of the Burgers Equation İdris Dağ 1,BülentSaka 2 and Ahmet

More information

HIGH ORDER VARIABLE MESH EXPONENTIAL FINITE DIFFERENCE METHOD FOR THE NUMERICAL SOLUTION OF THE TWO POINTS BOUNDARY VALUE PROBLEMS

HIGH ORDER VARIABLE MESH EXPONENTIAL FINITE DIFFERENCE METHOD FOR THE NUMERICAL SOLUTION OF THE TWO POINTS BOUNDARY VALUE PROBLEMS JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL Vol. 8(2018), 19-33 DOI: 10.7251/JMVI1801019P Former BULLETIN OF THE

More information

An explicit exponential finite difference method for the Burgers equation

An explicit exponential finite difference method for the Burgers equation European International Journal of Science and Technology Vol. 2 No. 10 December, 2013 An explicit exponential finite difference method for the Burgers equation BİLGE İNAN*, AHMET REFİK BAHADIR Department

More information

A Parameter-uniform Method for Two Parameters Singularly Perturbed Boundary Value Problems via Asymptotic Expansion

A Parameter-uniform Method for Two Parameters Singularly Perturbed Boundary Value Problems via Asymptotic Expansion Appl. Math. Inf. Sci. 7, No. 4, 1525-1532 (2013) 1525 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/070436 A Parameter-uniform Method for Two Parameters

More information

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(01) No.3,pp.59-66 A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional

More information

A stencil of the finite-difference method for the 2D convection diffusion equation and its new iterative scheme

A stencil of the finite-difference method for the 2D convection diffusion equation and its new iterative scheme International Journal of Computer Mathematics Vol. 87, No. 11, September 2010, 2588 2600 A stencil of the finite-difference method for the 2D convection diffusion equation and its new iterative scheme

More information

1. Introduction We consider the following self-adjoint singularly perturbed boundary value problem: ɛu + p(x)u = q(x), p(x) > 0,

1. Introduction We consider the following self-adjoint singularly perturbed boundary value problem: ɛu + p(x)u = q(x), p(x) > 0, TWMS J. Pure Appl. Math. V., N., 00, pp. 6-5 NON-POLYNOMIAL SPLINE APPROXIMATIONS FOR THE SOLUTION OF SINGULARLY-PERTURBED BOUNDARY VALUE PROBLEMS J. RASHIDINIA, R. MOHAMMADI Abstract. We consider the

More information

Numerical solution of General Rosenau-RLW Equation using Quintic B-splines Collocation Method

Numerical solution of General Rosenau-RLW Equation using Quintic B-splines Collocation Method Available online at www.ispacs.com/cna Volume 2012, Year 2012 Article ID cna-00129, 16 pages doi:10.5899/2012/cna-00129 Research Article Numerical solution of General Rosenau-RLW Equation using Quintic

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 2. Jan. 2012, No. 2, pp. 1-9. ISSN: 2090-5858. http://www.fcaj.webs.com/ CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION

More information

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0139.9 NUMERICAL FLUID MECHANICS SPRING 015 Problem Set 4 Issued: Wednesday, March 18, 015 Due: Wednesday,

More information

Hyperbolic Gradient Flow: Evolution of Graphs in R n+1

Hyperbolic Gradient Flow: Evolution of Graphs in R n+1 Hyperbolic Gradient Flow: Evolution of Graphs in R n+1 De-Xing Kong and Kefeng Liu Dedicated to Professor Yi-Bing Shen on the occasion of his 70th birthday Abstract In this paper we introduce a new geometric

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

Math 307 Learning Goals

Math 307 Learning Goals Math 307 Learning Goals May 14, 2018 Chapter 1 Linear Equations 1.1 Solving Linear Equations Write a system of linear equations using matrix notation. Use Gaussian elimination to bring a system of linear

More information

Numerical algorithms for one and two target optimal controls

Numerical algorithms for one and two target optimal controls Numerical algorithms for one and two target optimal controls Sung-Sik Kwon Department of Mathematics and Computer Science, North Carolina Central University 80 Fayetteville St. Durham, NC 27707 Email:

More information

Solution of Partial Integro-Differential Equations by using Aboodh and Double Aboodh Transform Methods

Solution of Partial Integro-Differential Equations by using Aboodh and Double Aboodh Transform Methods Global Journal of Pure and Applied Mathematics ISSN 0973-1768 Volume 13, Number 8 (2017), pp 4347-4360 Research India Publications http://wwwripublicationcom Solution of Partial Integro-Differential Equations

More information

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters Australian Journal of Basic and Applied Sciences, 5(6): 536-543, 0 ISSN 99-878 Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

More information

International Journal of Theoretical and Applied Mathematics

International Journal of Theoretical and Applied Mathematics International Journal of Theoretical and Applied Mathematics 2016; 2(2): 45-51 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20160202.14 A Comparative Study of Homotopy Perturbation

More information

Stability of Finite Difference Schemes on the Diffusion Equation with Discontinuous Coefficients

Stability of Finite Difference Schemes on the Diffusion Equation with Discontinuous Coefficients Stability of Finite Difference Schemes on the Diffusion Equation with Discontinuous Coefficients Jordan Lee under the direction of Mr. Sungwoo Jeong Department of Mathematics Massachusetts Institute of

More information

Du Fort Frankel finite difference scheme for Burgers equation

Du Fort Frankel finite difference scheme for Burgers equation Arab J Math (13) :91 11 DOI 1.17/s465-1-5-1 RESEARCH ARTICLE K. Pandey Lajja Verma Amit K. Verma Du Fort Frankel finite difference scheme for Burgers equation Received: 8 February 1 / Accepted: 1 September

More information

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 1, Issue 1Ver. I. (Jan. 214), PP 8-12 Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation Saad A.

More information

Thomas Algorithm for Tridiagonal Matrix

Thomas Algorithm for Tridiagonal Matrix P a g e 1 Thomas Algorithm for Tridiagonal Matrix Special Matrices Some matrices have a particular structure that can be exploited to develop efficient solution schemes. Two of those such systems are banded

More information

[Ahmed*, 5(3): March, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

[Ahmed*, 5(3): March, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DENSITIES OF DISTRIBUTIONS OF SOLUTIONS TO DELAY STOCHASTIC DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS INITIAL DATA ( PART II)

More information

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY Electronic Journal of Differential Equations, Vol. 2003(2003), No.??, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) SELF-ADJOINTNESS

More information

(Received 10 December 2011, accepted 15 February 2012) x x 2 B(x) u, (1.2) A(x) +

(Received 10 December 2011, accepted 15 February 2012) x x 2 B(x) u, (1.2) A(x) + ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol13(212) No4,pp387-395 Numerical Solution of Fokker-Planck Equation Using the Flatlet Oblique Multiwavelets Mir Vahid

More information

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals. March 23, 2010 Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

More information

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction 0 The Open Mechanics Journal, 007,, 0-5 Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations N. Tolou, D.D. Ganji*, M.J. Hosseini and Z.Z. Ganji Department

More information

Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with Negative Shift. 1 Introduction

Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with Negative Shift. 1 Introduction ISSN 749-3889 print), 749-3897 online) International Journal of Nonlinear Science Vol.8204) No.3,pp.200-209 Numerical Solution of Second Order Singularly Perturbed Differential Difference Equation with

More information

The method of lines (MOL) for the diffusion equation

The method of lines (MOL) for the diffusion equation Chapter 1 The method of lines (MOL) for the diffusion equation The method of lines refers to an approximation of one or more partial differential equations with ordinary differential equations in just

More information

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 12 (December. 2013), V3 PP 22-27 The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

More information

The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems

The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems European Society of Computational Methods in Sciences and Engineering ESCMSE) Journal of Numerical Analysis, Industrial and Applied Mathematics JNAIAM) vol. 1, no. 1, 2006, pp. 49-58 ISSN 1790 8140 The

More information

arxiv: v1 [physics.comp-ph] 29 Sep 2017

arxiv: v1 [physics.comp-ph] 29 Sep 2017 Meshfree Local Radial Basis Function Collocation Method with Image Nodes Seung Ki Baek and Minjae Kim arxiv:179.124v1 [physics.comp-ph] 29 Sep 217 Department of Physics, Pukyong National University, Busan

More information

Regularization on Discrete Spaces

Regularization on Discrete Spaces Regularization on Discrete Spaces Dengyong Zhou and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany {dengyong.zhou, bernhard.schoelkopf}@tuebingen.mpg.de

More information

Lecture 21: Stochastic Differential Equations

Lecture 21: Stochastic Differential Equations : Stochastic Differential Equations In this lecture, we study stochastic differential equations. See Chapter 9 of [3] for a thorough treatment of the materials in this section. 1. Stochastic differential

More information

Numerical Solutions of the Combined KdV-MKdV Equation by a Quintic B-spline Collocation Method

Numerical Solutions of the Combined KdV-MKdV Equation by a Quintic B-spline Collocation Method Appl. Math. Inf. Sci. Lett. 4 No. 1 19-24 (2016) 19 Applied Mathematics & Information Sciences Letters An International Journal http://d.doi.org/18576/amisl/040104 Numerical Solutions of the Combined KdV-MKdV

More information

Galerkin method for the numerical solution of the RLW equation using quintic B-splines

Galerkin method for the numerical solution of the RLW equation using quintic B-splines Journal of Computational and Applied Mathematics 19 (26) 532 547 www.elsevier.com/locate/cam Galerkin method for the numerical solution of the RLW equation using quintic B-splines İdris Dağ a,, Bülent

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

Quintic B-spline method for numerical solution of fourth order singular perturbation boundary value problems

Quintic B-spline method for numerical solution of fourth order singular perturbation boundary value problems Stud. Univ. Babeş-Bolyai Math. 63(2018, No. 1, 141 151 DOI: 10.24193/subbmath.2018.1.09 Quintic B-spline method for numerical solution of fourth order singular perturbation boundary value problems Ram

More information

An improved collocation method based on deviation of the error for solving BBMB equation

An improved collocation method based on deviation of the error for solving BBMB equation Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 2, 2018, pp. 238-247 An improved collocation method based on deviation of the error for solving BBMB equation Reza

More information

Finite Difference, Finite element and B-Spline Collocation Methods Applied to Two Parameter Singularly Perturbed Boundary Value Problems 1

Finite Difference, Finite element and B-Spline Collocation Methods Applied to Two Parameter Singularly Perturbed Boundary Value Problems 1 European Society of Computational Methods in Sciences and Engineering (ESCMSE) Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) vol. 5, no. 3-4, 2011, pp. 163-180 ISSN 1790 8140

More information

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS Bendikov, A. and Saloff-Coste, L. Osaka J. Math. 4 (5), 677 7 ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS ALEXANDER BENDIKOV and LAURENT SALOFF-COSTE (Received March 4, 4)

More information

A NUMERICAL APPROACH FOR SOLVING A CLASS OF SINGULAR BOUNDARY VALUE PROBLEMS ARISING IN PHYSIOLOGY

A NUMERICAL APPROACH FOR SOLVING A CLASS OF SINGULAR BOUNDARY VALUE PROBLEMS ARISING IN PHYSIOLOGY INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 8, Number 2, Pages 353 363 c 2011 Institute for Scientific Computing and Information A NUMERICAL APPROACH FOR SOLVING A CLASS OF SINGULAR

More information

Solution of fractional oxygen diffusion problem having without singular kernel

Solution of fractional oxygen diffusion problem having without singular kernel Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 1 (17), 99 37 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Solution of fractional oxygen diffusion

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

Second Order Iterative Techniques for Boundary Value Problems and Fredholm Integral Equations

Second Order Iterative Techniques for Boundary Value Problems and Fredholm Integral Equations Computational and Applied Mathematics Journal 2017; 3(3): 13-21 http://www.aascit.org/journal/camj ISSN: 2381-1218 (Print); ISSN: 2381-1226 (Online) Second Order Iterative Techniques for Boundary Value

More information

A Fast High Order Algorithm for 3D Helmholtz Equation with Dirichlet Boundary

A Fast High Order Algorithm for 3D Helmholtz Equation with Dirichlet Boundary Applied and Computational Mathematics 2018; 7(4): 180-187 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20180704.11 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Fast High Order

More information

Dirac Operator. Göttingen Mathematical Institute. Paul Baum Penn State 6 February, 2017

Dirac Operator. Göttingen Mathematical Institute. Paul Baum Penn State 6 February, 2017 Dirac Operator Göttingen Mathematical Institute Paul Baum Penn State 6 February, 2017 Five lectures: 1. Dirac operator 2. Atiyah-Singer revisited 3. What is K-homology? 4. The Riemann-Roch theorem 5. K-theory

More information

An Exponentially Fitted Non Symmetric Finite Difference Method for Singular Perturbation Problems

An Exponentially Fitted Non Symmetric Finite Difference Method for Singular Perturbation Problems An Exponentially Fitted Non Symmetric Finite Difference Method for Singular Perturbation Problems GBSL SOUJANYA National Institute of Technology Department of Mathematics Warangal INDIA gbslsoujanya@gmail.com

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

Collocation Method with Quintic B-Spline Method for Solving the Hirota equation

Collocation Method with Quintic B-Spline Method for Solving the Hirota equation NTMSCI 1, No. 1, 1-1 (016) 1 Journal of Abstract and Computational Mathematics http://www.ntmsci.com/jacm Collocation Method with Quintic B-Spline Method for Solving the Hirota equation K. R. Raslan 1,

More information

Two-parameter regularization method for determining the heat source

Two-parameter regularization method for determining the heat source Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 8 (017), pp. 3937-3950 Research India Publications http://www.ripublication.com Two-parameter regularization method for

More information

Parametric Spline Method for Solving Bratu s Problem

Parametric Spline Method for Solving Bratu s Problem ISSN 749-3889 print, 749-3897 online International Journal of Nonlinear Science Vol4202 No,pp3-0 Parametric Spline Metod for Solving Bratu s Problem M Zarebnia, Z Sarvari 2,2 Department of Matematics,

More information

An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations.

An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations. An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations by Tong Chen A thesis submitted in conformity with the requirements

More information

A Classes of Variational Inequality Problems Involving Multivalued Mappings

A Classes of Variational Inequality Problems Involving Multivalued Mappings Science Journal of Applied Mathematics and Statistics 2018; 6(1): 43-48 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20180601.15 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan

Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan ttp://www.lifesciencesite.com Septic B-Spline Collocation metod for numerical solution of te Equal Widt Wave (EW) equation 1 Fazal-i-Haq, 2 Inayat Ali sa and 3 Sakeel Amad 1 Department of Matematics, Statistics

More information

An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems

An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems Yongbin Ge, 1 Zhen F. Tian, 2 Jun Zhang 3 1 Institute of Applied Mathematics and Mechanics, Ningxia University,

More information

Inverse Eigenvalue Problems for Two Special Acyclic Matrices

Inverse Eigenvalue Problems for Two Special Acyclic Matrices mathematics Communication Inverse Eigenvalue Problems for Two Special Acyclic Matrices Debashish Sharma, *, and Mausumi Sen, Department of Mathematics, Gurucharan College, College Road, Silchar 788004,

More information

Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines. Songting Luo. Department of Mathematics Iowa State University

Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines. Songting Luo. Department of Mathematics Iowa State University Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Draft Songting

More information

Efficient Numerical Solution of Diffusion Convection Problem of Chemical Engineering

Efficient Numerical Solution of Diffusion Convection Problem of Chemical Engineering Cheical and Process Engineering Research ISSN 4-7467 (Paper) ISSN 5-9 (Online) Vol, 5 Efficient Nuerical Solution of Diffusion Convection Proble of Cheical Engineering Bharti Gupta VK Kukreja * Departent

More information

On a New Class of Regular Doubly Stochastic Processes

On a New Class of Regular Doubly Stochastic Processes American Journal of Theoretical and Applied tatistics 217; 6(3): 156-16 http://wwwsciencepublishinggroupcom/j/ajtas doi: 111648/jajtas2176314 I: 2326-8999 (Print); I: 2326-96 (nline) n a ew Class of Regular

More information

B-SPLINE COLLOCATION METHODS FOR NUMERICAL SOLUTIONS OF THE BURGERS EQUATION

B-SPLINE COLLOCATION METHODS FOR NUMERICAL SOLUTIONS OF THE BURGERS EQUATION B-SPLINE COLLOCATION METHODS FOR NUMERICAL SOLUTIONS OF THE BURGERS EQUATION İDRİS DAĞ, DURSUN IRK, AND ALİŞAHİN Received 25 August 24 and in revised form 22 December 24 Both time- and space-splitted Burgers

More information

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005 Numerical Methods for Partial Differential Equations Instructor: Tim Warburton Class Location: Duncan Hall 1046 Class Time: 9:5am to 10:40am Office Hours: 10:45am to noon in DH 301 CAAM 45 Spring 005 Homeworks

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

Chordal cubic spline interpolation is fourth order accurate

Chordal cubic spline interpolation is fourth order accurate Chordal cubic spline interpolation is fourth order accurate Michael S. Floater Abstract: It is well known that complete cubic spline interpolation of functions with four continuous derivatives is fourth

More information

QUINTIC SPLINE SOLUTIONS OF FOURTH ORDER BOUNDARY-VALUE PROBLEMS

QUINTIC SPLINE SOLUTIONS OF FOURTH ORDER BOUNDARY-VALUE PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Number, Pages 0 c 2008 Institute for Scientific Computing Information QUINTIC SPLINE SOLUTIONS OF FOURTH ORDER BOUNDARY-VALUE PROBLEMS

More information

ARTICLE IN PRESS Discrete Applied Mathematics ( )

ARTICLE IN PRESS Discrete Applied Mathematics ( ) Discrete Applied Mathematics ( ) Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Forwarding index of cube-connected cycles Jun Yan a,

More information

Operational Matrices for Solving Burgers' Equation by Using Block-Pulse Functions with Error Analysis

Operational Matrices for Solving Burgers' Equation by Using Block-Pulse Functions with Error Analysis Australian Journal of Basic and Applied Sciences, 5(12): 602-609, 2011 ISSN 1991-8178 Operational Matrices for Solving Burgers' Equation by Using Block-Pulse Functions with Error Analysis 1 K. Maleknejad,

More information

Conditional stability of Larkin methods with non-uniform grids

Conditional stability of Larkin methods with non-uniform grids Theoret. Appl. Mech., Vol.37, No., pp.139-159, Belgrade 010 Conditional stability of Larkin methods with non-uniform grids Kazuhiro Fukuyo Abstract Stability analysis based on the von Neumann method showed

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

MIXED PROBLEM WITH INTEGRAL BOUNDARY CONDITION FOR A HIGH ORDER MIXED TYPE PARTIAL DIFFERENTIAL EQUATION

MIXED PROBLEM WITH INTEGRAL BOUNDARY CONDITION FOR A HIGH ORDER MIXED TYPE PARTIAL DIFFERENTIAL EQUATION Applied Mathematics and Stochastic Analysis, 16:1 (200), 6-7. Printed in the U.S.A. 200 by North Atlantic Science Publishing Company MIXED PROBLEM WITH INTEGRAL BOUNDARY CONDITION FOR A HIGH ORDER MIXED

More information

Using Lagrange Interpolation for Solving Nonlinear Algebraic Equations

Using Lagrange Interpolation for Solving Nonlinear Algebraic Equations International Journal of Theoretical and Applied Mathematics 2016; 2(2): 165-169 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20160202.31 ISSN: 2575-5072 (Print); ISSN: 2575-5080

More information

On the consistency of finite difference approximations of the Black Scholes equation on nonuniform grids

On the consistency of finite difference approximations of the Black Scholes equation on nonuniform grids INVOLVE :49 On the consistency of finite difference approimations of the Black Scholes equation on nonuniform grids Myles D. Baker and Daniel D. Sheng Communicated by Johnny Henderson The Black Scholes

More information

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae)

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae) Benha University Faculty of Science Department of Mathematics (Curriculum Vitae) (1) General *Name : Mohamed Meabed Bayuomi Khader *Date of Birth : 24 May 1973 *Marital Status: Married *Nationality : Egyptian

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Partial Differential Equations

Partial Differential Equations Next: Using Matlab Up: Numerical Analysis for Chemical Previous: Ordinary Differential Equations Subsections Finite Difference: Elliptic Equations The Laplace Equations Solution Techniques Boundary Conditions

More information

On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation

On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation Tamás Szabó Eötvös Loránd University, Institute of Mathematics 1117 Budapest, Pázmány P. S. 1/c, Hungary

More information

Memory Effects Due to Fractional Time Derivative and Integral Space in Diffusion Like Equation Via Haar Wavelets

Memory Effects Due to Fractional Time Derivative and Integral Space in Diffusion Like Equation Via Haar Wavelets Applied and Computational Mathematics 206; (4): 77-8 http://www.sciencepublishinggroup.com/j/acm doi: 0.648/j.acm.206004.2 SSN: 2328-60 (Print); SSN: 2328-63 (Online) Memory Effects Due to Fractional Time

More information

G-SPLINE INTERPOLATION FOR APPROXIMATING THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS USING LINEAR MULTI- STEP METHODS

G-SPLINE INTERPOLATION FOR APPROXIMATING THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS USING LINEAR MULTI- STEP METHODS Journal of Al-Nahrain University Vol.0(), December, 00, pp.8- Science G-SPLINE INTERPOLATION FOR APPROXIMATING THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS USING LINEAR MULTI- STEP METHODS Osama H.

More information

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on manifolds. Author: Ognjen Milatovic Department Address: Department

More information

The New Integral Transform ''Mohand Transform''

The New Integral Transform ''Mohand Transform'' Advances in Theoretical and Applied Mathematics ISSN 973-4554 Volume 12, Number 2 (217), pp. 113-12 Research India Publications http://www.ripublication.com The New Integral Transform ''Mohand Transform''

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc 153 Kragujevac J. Math. 26 (2004) 153 164. ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD Mustafa Inc Department of Mathematics, Firat University, 23119 Elazig Turkiye

More information

A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem

A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol.3(2007) No.1,pp.27-31 A Numerical Algorithm for Finding Positive Solutions of Superlinear Dirichlet Problem G.A.Afrouzi

More information