Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

Size: px
Start display at page:

Download "Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters"

Transcription

1 Australian Journal of Basic and Applied Sciences, 5(6): , 0 ISSN Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters Abolfazl Mohammadi,, Mehrdad Manteghian, 3 Ali Mohammadi Department Of Chemical Engineering, Mahshahr Branch-Islamic Azad University, Mahshahr, Iran. Tarbiat Modares University, Tehran, Iran. 3 Islamic Azad University-Bojnourd Branch, Bojnourd, Iran Abstract: The Several numerical techniques have been developed and compared for solving the onedimensional advection-diffusion equation with constant coefficients. These techniques are based on the finite difference methods (FDM). By changing the values of temporal and spatial weighted parameters, solutions are obtained for both explicit and implicit techniques such as FTCS, FTBSCS, BTCS, BTBSCS and Crank Nicholson schemes. Numerical solution is given for two special cases which have been dealt with in the literature and for which an analytical solution has been provided. Comparison of the results has confirmed that the Crank-Nicholson numerical approach matches successfully with the analytical solution while the other techniques result in some levels of discrepancy. Key words: finite difference methods; advection diffusion equation; spatial weight; temporal weight; explicit and implicit techniques INTRODUCTION The significant applications of advection diffusion equation lie in fluid dynamics (Kumar, 988), heat transfer (Isenberg, 97) and mass transfer (Guvanasen, 983). Various approaches are available for solving one-dimensional advection diffusion partial differential equations. Analytical solutions (Dehghan, 004; Noye, 988; Noye, 989; Sankaranarayanan, 998) to solve engineering problems are highly desirable due to the elegant connection that becomes visible between physical and mathematical principles. But the analytical solution of these equations containing complex initial and boundary conditions are usually unavailable. Graphical methods, finite element methods and finite difference methods (Bear, 990; Kinzelbach, 986; Remson, 97; Wang, 98; Zheng, 995) are other approaches for solve partial differential equations (PDEs). Because the analytical solution of partial differential equations containing complex initial and boundary conditions are very difficult, it seems that the finite difference methods are appropriate for solving these equations. Eq. () shows the mathematical form of one-dimensional advection diffusion phenomenon. u D t x x c c c () initial condition cx (,0) f( x) 0 x L () and boundary conditions c(0, t) g( t), 0 t T (3) clt (, ) ht ( ) 0 t T (4) Where f, g and h are known functions. u and D are the speed of advection and diffusivity respectively. The domain contain 0 x L and 0 t T. Corresponding Author: Mehrdad Manteghian, Tarbiat Modares University, Tehran, Iran. 536

2 Aust. J. Basic & Appl. Sci., 5(6): , 0 By changing only the values of temporal, and spatial, weighted parameters, Eq. () can be solved by various finite difference methods in both explicit and implicit modes (Dehghan, 004; Karahan, 006; Karahan, 007).. Numerical Solution: The mesh of grid-lines are introduced as xi tn i x i 0,,,, M nt n 0,,,, N (5) (6) L T The constant spatial and temporal grid-spacing are x and t, respectively (Karahan, 006). M N Where M denotes the total number of spatial grid-spacing and N denotes the total number of temporal grid-spacing. Consider the following approximations of the derivatives in the advection diffusion equation which incorporate time and space weights and θ as follows: c cin t, cin, t c u u cin, ci, nci, ncin, x x u x cin, ci, n ci, n cin, c D D c i, n ci, nci, n x x D ci, n cin, ci, n x (7) (8) (9) where is a time weighting factor and θ is the spatial weighting factor. Substituting equations (7), (8) and (9) into Eq. () gives: cin Acin Aci n Aci 3 n Aci 4 n Aci 5 n A,,,,,, 0 (0) Where A0 a s A a s () () 537

3 Aust. J. Basic & Appl. Sci., 5(6): , 0 A a s A3 a s 4 A a s A5 a s and t a u x t s D x (3) (4) (5) (6) (7) (8) The stability of (0) for explicit finite difference schemes may be investigated using the von Neumann method (Hindmarsh, 984). Implicit finite difference schemes are unconditionally von Neumann stable. The application of this stability feature shows that Eq. (0) is stable if a a s 3. Explicit Finite Difference Schemes: In explicit finite difference schemes, for specified values of grid-nodes in n time levels, we could compute the value of grid-nodes in n + time levels, by solving a simple algebraic equation. A common feature of the explicit finite difference method is the restriction caused for the value of the time step due to the stability requirements. This restriction necessitates the choice of extremely small values for Δt (Isenberg, 97). 3.. The FTCS Technique: This scheme uses the forward-difference routine for the time-derivative and centered-difference routine for (9) all spatial derivatives. Application of the technique on solving Eq. (0) for below. 0 and θ = 0.5 is depicted a a cin s ci n s cin s ci n,,,, (0) Also by substituting the scheme. 0 and θ = 0.5 in Eq. (9), we can obtain the stability condition of this a s 0.5 () 3.. The FTBSCS Technique: This technique - also called the explicit Upwind - uses the forward-difference form for the time derivative, centered-difference forms for the diffusive derivatives and backward differences forms for the spatial derivatives in the advection terms. Application of the technique on solving Eq. (0) for below. 0 and θ = 0 is depicted 538

4 Aust. J. Basic & Appl. Sci., 5(6): , 0,,,, cin s a ci n s c cin sci n Also by substituting the 0 and θ = 0 in Eq. (9), we can obtain the stability condition of this scheme () a a a s (3) 4. Implicit Finite Difference Schemes: In implicit finite difference schemes, for evaluating one node in n + time level, we must know the value of grid-nodes that exist around it, in n and n + time levels. Therefore we must solve a system of algebraic equations for each time step. We can solve these systems using the iterative method. The main disadvantage of these techniques is the extensive amount of computer time consumed in determining the numerical solution compared to the explicit methods for the same selection of values of s and a. One advantage of implicit techniques is that they are unconditionally von Neumann stable. Thus we are not restricted in selecting the size of time step Δt (Dehghan, 004). 4.. The BTCS Technique: This scheme uses the backward-difference form for the time-derivative and centered-difference forms for all spatial derivatives. Application of the technique on solving Eq. (0) for below. and θ = 0.5 is depicted a a cin s ci n cin s ci n s,,,, (4) 4.. The BTBSCS Technique: This technique - also called the implicit Upwind- utilizes the backward-difference form for the time derivative, centered-difference forms for the diffusive derivatives and backward difference forms for the spatial derivatives in the advection terms. Application of the technique on solving Eq. (0) for and θ = 0 is depicted below. cin, s a ci, n cin, sci, n as (5) 4.3. The Crank-Nicolson Type Technique: In the implicit Crank Nicholson type technique we replace all spatial derivatives with the average of their values at the n and n + th time levels and then substitute centered-difference forms for all derivatives. Application of the technique on solving Eq. (0) for 0.5 and θ = 0.5 is depicted below. a s ci, n a s ci, n a s ci, n cin, 4 4s as ci, n 44 s cin, (6) The formulas derived in above finite difference methods are applied to ( i,,, M ). 5. Numerical Applications: In order to test the numerical schemes developed for solving (), a special problem for which an exact solution is available is required so that approximate results obtained using the numerical techniques may be 539

5 Aust. J. Basic & Appl. Sci., 5(6): , 0 compared with an exact solution. In this section two examples which have the analytical solutions in literature (Dehghan, 004; Sankaranarayanan, 998), are solved numerically to test the used finite difference schemes. Example : The analytical solution of the one-dimensional advection diffusion in a region bounded by 0 x and 0t is taken from Ref. [4] and given as 0.05 x0.5 t cx, t exp t t (7) In this example the values of various used parameters are D 0.0 m / s, u m/ s, x 0.0 m, t s and the initial and boundary conditions are x 0.5 cx,0exp (8) t c0, t exp t t (9) t c, t exp t t (30) Regarding the initial condition, we have an initial Gaussian pulse of unit height. Fig., shows the numerical solution of Eq. () at T = s utilizing five methods compared with analytical solution. Regarding Fig., the Crank-Nicolson scheme establishes results closer to the analytical solution. BTCS scheme provides suitable results too, and BTBSCS provides worst approximations. Fig., depicts the absolute errors associating various methods that were introduced in this paper at T = s. Maximum absolute error of Crank-Nicolson scheme tends to The error of this scheme in x = 0.5m and T = s is and this value is reported to be in Ref. (Hindmarsh, 984), and in Ref. (Dehghan, 004). Example : The analytical solution for the one-dimensional advection diffusion in a Gaussian pulse of unit height, centered at x=m in a region bounded by 0 x 9and 0 t.5 is taken from Ref. (Sankaranarayanan, 998) and given as x x0 ut cx, t exp 4t D 4t (3) Where u is the velocity in the x direction, x 0 is the center of the initial Gaussian pulse, D is the diffusion coefficient in the x direction and t is the time coordinate. The values of various used parameter are 540

6 Aust. J. Basic & Appl. Sci., 5(6): , 0 Fig. : Comparison of analytical and numerical solutions for Example. Fig. : Absolute errors of various methods for Example. D m / s, u 0.8 m/ s, x 0.0 m, t 0.0 s The initial and boundary conditions could be obtained from Eq. (3). cx,0exp x D (3) t ut c0, t exp 4t D 4 (33) 54

7 Aust. J. Basic & Appl. Sci., 5(6): , 0 8 D t ut c9, t exp 4t 4 (34) Fig. 3, compares the numerical and analytical solutions in example, and Fig. 4 depicts the absolute errors of various methods for this example. Fig. 3: Comparison of analytical and numerical solutions for Example. Fig. 4: Absolute errors of various methods for Example. As shown in these two figures, the Crank-Nicolson scheme represents the minimum errors, such as previous example. And maximum absolute error of this scheme is Some examples about advection-diffusion equations are given in Ref. (Badrot-Nico, 007). 6. Conclusions: In this article several numerical methods were applied to the one-dimensional advection diffusion equation. The numerical schemes satisfy this model very good. As just the values of temporal and spatial weighted parameters are changed, the solutions could be determined for both explicit and implicit techniques such as FTCS, FTBSCS, BTCS, BTBSCS and Crank Nicolson schemes. The implicit methods are unconditionally stable but they need extensive computer time for determining the numerical solution. The explicit methods must satisfy the von Neumann stability conditions. By comparing the various techniques for determining the 54

8 Aust. J. Basic & Appl. Sci., 5(6): , 0 numerical solution, it was found that the Crank-Nicolson scheme has a very good agreement with analytical results. Since for implicit techniques, we must solve a system of algebraic equations, it seems that the iterative is a suitable method for solving these systems. Symbols: c u D L T i n concentration advection coefficient diffusivity length total time space counter time counter temporal weight θ spatial weight Δt time step Δx space step REFERENCES Badrot-Nico, F., F. Brissaud, V. Guinot, 007. A finite volume upwind scheme for the solution of the linear advection-diffusion equation with sharp gradients in multiple dimensions. Advances in Water Resources. Bear, J., Y. Bachma, 004. Introduction to modeling of transport phenomena, Dordrecht, Kluwer, 990. M. Dehghan, Numerical solution of the three-dimensional advection diffusion equation, Applied Mathematics and Computation, 50: 5-9. Dehghan, M., 004. Weighted finite difference techniques for one dimensional advection diffusion equation, Appl Math Comput., 47: Guvanasen, V., R.E. Volker, 983. Numerical solutions for solute transport in unconfined aquifers, Int. J. Numer. Methods Fluids, 3: Hindmarsh, A.C., P.M. Gresho, D.F. Griffiths, 984. The stability of explicit Euler time-integration for certain finite difference approximations of the advection diffusion equation, Int. J. Numer. Methods Fluids, 4: Isenberg, J., C. Gutfinger, 97. Heat transfer to a draining film, Int. J. Heat Transfer, 6: Karahan, H., 006. A third-order upwind scheme for the advection diffusion equation using spreadsheets, Advances in Engineering Software. Karahan, H., 006. Implicit finite difference techniques for the advection diffusion equation using spreadsheets, Adv Eng Software, 37(9): Karahan, H., 007. Unconditional stable explicit finite difference technique for the advection diffusion equation using spreadsheets, Advances in Engineering Software, 38: Kinzelbach, W., 986. Groundwater modeling: An introduction with sample rograms in BASIC, Amsterdam, Elsevier. Kumar, N., 988. Unsteady flow against dispersion in finite porous media, J. Hydrol., 63: Noye, B.J., H.H. Tan, 988. A third-order semi-implicit finite difference method for solving the onedimensional convection diffusion equation, Int J Numer Methods Engrg, 6: Noye, B.J., H.H. Tan, 989. Finite difference methods for the two-dimensional advection diffusion equation, Int J Numer Methods Fluids, 9: Remson, I., G.M. Hornberger, F.J. Molz, 97. Numerical methods in subsurface hydrology, New York, Wiley Interscience. Sankaranarayanan, S., N.J. Shankar, H.F. Cheong, 998. Three-dimensional finite difference model for transport of conservative pollutants, Ocean Engrg., 5(6): Wang, H.F., M.P. Anderson, 98. Introduction to groundwater modeling: Finite difference and finite element, London, Academic Press. Zheng, C., G.D. Bennett, 995. Applied contaminant transport modeling, New York, Int. Thomson Publishing Inc. 543

A semi-lagrangian scheme for advection-diffusion equation

A semi-lagrangian scheme for advection-diffusion equation EPiC Series in Engineering Volume 3, 2018, Pages 162 172 HIC 2018. 13th International Conference on Hydroinformatics Engineering A semi-lagrangian scheme for advection-diffusion equation Ersin Bahar 1,

More information

Finite Difference Methods for

Finite Difference Methods for CE 601: Numerical Methods Lecture 33 Finite Difference Methods for PDEs Course Coordinator: Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

More information

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS Pergamon Ocean Engng, Vol. 25, No. 6, pp. 425 442, 1998 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0029 8018/98 $19.00 + 0.00 PII: S0029 8018(97)00008 5 THREE-DIMENSIONAL FINITE

More information

Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods

Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods Applied Mathematical Sciences, Vol., 008, no. 53, 6-68 Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods H. Saberi Naafi Department of Mathematics, Faculty

More information

Finite Difference Methods (FDMs) 2

Finite Difference Methods (FDMs) 2 Finite Difference Methods (FDMs) 2 Time- dependent PDEs A partial differential equation of the form (15.1) where A, B, and C are constants, is called quasilinear. There are three types of quasilinear equations:

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

Pollution. Elixir Pollution 97 (2016)

Pollution. Elixir Pollution 97 (2016) 42253 Available online at www.elixirpublishers.com (Elixir International Journal) Pollution Elixir Pollution 97 (2016) 42253-42257 Analytical Solution of Temporally Dispersion of Solute through Semi- Infinite

More information

A Numerical Algorithm for Solving Advection-Diffusion Equation with Constant and Variable Coefficients

A Numerical Algorithm for Solving Advection-Diffusion Equation with Constant and Variable Coefficients The Open Numerical Methods Journal, 01, 4, 1-7 1 Open Access A Numerical Algorithm for Solving Advection-Diffusion Equation with Constant and Variable Coefficients S.G. Ahmed * Department of Engineering

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Conditional stability of Larkin methods with non-uniform grids

Conditional stability of Larkin methods with non-uniform grids Theoret. Appl. Mech., Vol.37, No., pp.139-159, Belgrade 010 Conditional stability of Larkin methods with non-uniform grids Kazuhiro Fukuyo Abstract Stability analysis based on the von Neumann method showed

More information

Module 3: BASICS OF CFD. Part A: Finite Difference Methods

Module 3: BASICS OF CFD. Part A: Finite Difference Methods Module 3: BASICS OF CFD Part A: Finite Difference Methods THE CFD APPROACH Assembling the governing equations Identifying flow domain and boundary conditions Geometrical discretization of flow domain Discretization

More information

An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems

An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems An Exponential High-Order Compact ADI Method for 3D Unsteady Convection Diffusion Problems Yongbin Ge, 1 Zhen F. Tian, 2 Jun Zhang 3 1 Institute of Applied Mathematics and Mechanics, Ningxia University,

More information

O.R. Jimoh, M.Tech. Department of Mathematics/Statistics, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria.

O.R. Jimoh, M.Tech. Department of Mathematics/Statistics, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria. Comparative Analysis of a Non-Reactive Contaminant Flow Problem for Constant Initial Concentration in Two Dimensions by Homotopy-Perturbation and Variational Iteration Methods OR Jimoh, MTech Department

More information

Partial Differential Equations

Partial Differential Equations Next: Using Matlab Up: Numerical Analysis for Chemical Previous: Ordinary Differential Equations Subsections Finite Difference: Elliptic Equations The Laplace Equations Solution Techniques Boundary Conditions

More information

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(01) No.3,pp.59-66 A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional

More information

FUNDAMENTALS OF FINITE DIFFERENCE METHODS

FUNDAMENTALS OF FINITE DIFFERENCE METHODS FUNDAMENTALS OF FINITE DIFFERENCE METHODS By Deep Gupta 3 rd Year undergraduate, Mechanical Engg. Deptt., IIT Bombay Supervised by: Prof. Gautam Biswas, IIT Kanpur Acknowledgements It has been a pleasure

More information

Solving the One Dimensional Advection Diffusion Equation Using Mixed Discrete Least Squares Meshless Method

Solving the One Dimensional Advection Diffusion Equation Using Mixed Discrete Least Squares Meshless Method Proceedings of the International Conference on Civil, Structural and Transportation Engineering Ottawa, Ontario, Canada, May 4 5, 2015 Paper No. 292 Solving the One Dimensional Advection Diffusion Equation

More information

A note on benchmarking of numerical models for density dependent flow in porous media

A note on benchmarking of numerical models for density dependent flow in porous media Advances in Water Resources 29 (2006) 1918 1923 www.elsevier.com/locate/advwatres A note on benchmarking of numerical models for density dependent flow in porous media B. Ataie-Ashtiani *, M.M. Aghayi

More information

COMPLETED RICHARDSON EXTRAPOLATION IN SPACE AND TIME

COMPLETED RICHARDSON EXTRAPOLATION IN SPACE AND TIME COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, Vol. 13, 573±582 (1997) COMPLETED RICHARDSON EXTRAPOLATION IN SPACE AND TIME SHANE A. RICHARDS Department of Applied Mathematics, The University of Adelaide,

More information

Numerical Hydraulics

Numerical Hydraulics ETHZ, Fall 017 Numerical Hydraulics Assignment 4 Numerical solution of 1D solute transport using Matlab http://www.bafg.de/ http://warholian.com Numerical Hydraulics Assignment 4 ETH 017 1 Introduction

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 1, pp. 51 62 (213) http://campus.mst.edu/adsa Schur Complement Technique for Advection-Diffusion Equation using Matching Structured

More information

Approximations of diffusions. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Approximations of diffusions. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 3b Approximations of diffusions Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.1 04/10/2018 1 Learning objectives Become aware of the existence of stability conditions for the

More information

Numerical Algorithms for Visual Computing II 2010/11 Example Solutions for Assignment 6

Numerical Algorithms for Visual Computing II 2010/11 Example Solutions for Assignment 6 Numerical Algorithms for Visual Computing II 00/ Example Solutions for Assignment 6 Problem (Matrix Stability Infusion). The matrix A of the arising matrix notation U n+ = AU n takes the following form,

More information

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0139.9 NUMERICAL FLUID MECHANICS SPRING 015 Problem Set 4 Issued: Wednesday, March 18, 015 Due: Wednesday,

More information

A numerical method for the wave equation subject to a non-local conservation condition

A numerical method for the wave equation subject to a non-local conservation condition A numerical method for the wave equation subject to a non-local conservation condition Whye-Teong Ang Division of Engineering Mechanics School of Mechanical and Production Engineering Nanyang Technological

More information

Lecture 17: Initial value problems

Lecture 17: Initial value problems Lecture 17: Initial value problems Let s start with initial value problems, and consider numerical solution to the simplest PDE we can think of u/ t + c u/ x = 0 (with u a scalar) for which the solution

More information

Discretization of Convection Diffusion type equation

Discretization of Convection Diffusion type equation Discretization of Convection Diffusion type equation 10 th Indo German Winter Academy 2011 By, Rajesh Sridhar, Indian Institute of Technology Madras Guides: Prof. Vivek V. Buwa Prof. Suman Chakraborty

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM Hyun Geun LEE 1, Jeong-Whan CHOI 1 and Junseok KIM 1 1) Department of Mathematics, Korea University, Seoul

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

1906 Dilip kumar Jaiswal et al./ Elixir Pollution 31 (2011) Available online at (Elixir International Journal)

1906 Dilip kumar Jaiswal et al./ Elixir Pollution 31 (2011) Available online at   (Elixir International Journal) 196 Dilip kumar Jaiswal et al./ Eliir Pollution 31 (211) 196-191 ARTICLE INF O Article history: Received: 21 December 21; Received in revised form: 16 January 211; Accepted: 1 February 211; Keywords Advection,

More information

[Yadav*, 4.(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

[Yadav*, 4.(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IMPROVEMENT OF CLASSICAL LUMPED MODEL FOR TRANSIENT HEAT CONDUCTION IN SLAB USING HERMITE APROXIMATION Rakesh Krishna Yadav*,

More information

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, México, March 3-April 2 Numerical Solution of the Two-Dimensional Time-Dependent

More information

Finite difference method for heat equation

Finite difference method for heat equation Finite difference method for heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions Applied Mathematical Sciences, Vol. 5, 211, no. 3, 113-123 The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions M. Ghoreishi School of Mathematical

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 2. Jan. 2012, No. 2, pp. 1-9. ISSN: 2090-5858. http://www.fcaj.webs.com/ CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION

More information

ABSTRACT GOVERNING EQUATIONS

ABSTRACT GOVERNING EQUATIONS A three dimensional finite element model for fluid flow and transport in confined or unconfined aquifer F. Jacob*, J.M. Crolef, P. Lesaint*, J. Mania* "Laboratoire de calcul scientifique, ^Laboratoire

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Chapter 5. Formulation of FEM for Unsteady Problems

Chapter 5. Formulation of FEM for Unsteady Problems Chapter 5 Formulation of FEM for Unsteady Problems Two alternatives for formulating time dependent problems are called coupled space-time formulation and semi-discrete formulation. The first one treats

More information

A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods

A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods Paper 64 Civil-Comp Press, 4. Proceedings of the Seventh International Conference on Computational Structures Technology, B.H.V. Topping and C.A. Mota Soares (Editors, Civil-Comp Press, Stirling, Scotland.

More information

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q ! Revised Tuesday, December 8, 015! 1 Chapter 7: Diffusion Copyright 015, David A. Randall 7.1! Introduction Diffusion is a macroscopic statistical description of microscopic advection. Here microscopic

More information

The Power of Spreadsheet Models. Mary P. Anderson 1, E. Scott Bair 2 ABSTRACT

The Power of Spreadsheet Models. Mary P. Anderson 1, E. Scott Bair 2 ABSTRACT MODFLOW 00 and Other Modeling Odysseys Proceedings, 00, International Ground Water Modeling Center, Colorado School of Mines, Golden, CO, p. 85-8 The Power of Spreadsheet Models Mary P. Anderson, E. Scott

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Stability of solution of the diffusion equation using various formulation of finite difference method

Stability of solution of the diffusion equation using various formulation of finite difference method Stability of solution of the diffusion equation using various formulation of finite difference method Michael J. Malachowski * Abstract A probabilistic approach has been used to analyze the stability of

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

Finite Differences: Consistency, Stability and Convergence

Finite Differences: Consistency, Stability and Convergence Finite Differences: Consistency, Stability and Convergence Varun Shankar March, 06 Introduction Now that we have tackled our first space-time PDE, we will take a quick detour from presenting new FD methods,

More information

Richardson Extrapolated Numerical Methods for Treatment of One-Dimensional Advection Equations

Richardson Extrapolated Numerical Methods for Treatment of One-Dimensional Advection Equations Richardson Extrapolated Numerical Methods for Treatment of One-Dimensional Advection Equations Zahari Zlatev 1, Ivan Dimov 2, István Faragó 3, Krassimir Georgiev 2, Ágnes Havasi 4, and Tzvetan Ostromsky

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

7 Hyperbolic Differential Equations

7 Hyperbolic Differential Equations Numerical Analysis of Differential Equations 243 7 Hyperbolic Differential Equations While parabolic equations model diffusion processes, hyperbolic equations model wave propagation and transport phenomena.

More information

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

High-order ADI schemes for convection-diffusion equations with mixed derivative terms High-order ADI schemes for convection-diffusion equations with mixed derivative terms B. Düring, M. Fournié and A. Rigal Abstract We consider new high-order Alternating Direction Implicit ADI) schemes

More information

Numerical Solutions of the Burgers System in Two Dimensions under Varied Initial and Boundary Conditions

Numerical Solutions of the Burgers System in Two Dimensions under Varied Initial and Boundary Conditions Applied Mathematical Sciences, Vol. 6, 22, no. 3, 563-565 Numerical Solutions of the Burgers System in Two Dimensions under Varied Initial and Boundary Conditions M. C. Kweyu, W. A. Manyonge 2, A. Koross

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Higher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives

Higher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives International Mathematical Forum, 2, 2007, no. 67, 3339-3350 Higher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives Jürgen Geiser Department of Mathematics

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions International Mathematics and Mathematical Sciences Volume 212, Article ID 82197, 13 pages doi:1.1155/212/82197 Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

A CCD-ADI method for unsteady convection-diffusion equations

A CCD-ADI method for unsteady convection-diffusion equations A CCD-ADI method for unsteady convection-diffusion equations Hai-Wei Sun, Leonard Z. Li Department of Mathematics, University of Macau, Macao Abstract With a combined compact difference scheme for the

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations Australian Journal of Basic and Applied Sciences, 5(10): 406-416, 2011 ISSN 1991-8178 The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations 1 M.A. Fariborzi

More information

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg Advanced numerical methods for transport and reaction in porous media Peter Frolkovič University of Heidelberg Content R 3 T a software package for numerical simulation of radioactive contaminant transport

More information

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

Numerical Solution of an Inverse Diffusion Problem

Numerical Solution of an Inverse Diffusion Problem Applied Mathematical Sciences, Vol. 1, 2007, no. 18, 863-868 Numerical Solution of an Inverse Diffusion Problem Y. Ahmadizadeh Physics Dept., Faculty of Sciences Air University, Postal Code 1384663113,

More information

Lecture 4.5 Schemes for Parabolic Type Equations

Lecture 4.5 Schemes for Parabolic Type Equations Lecture 4.5 Schemes for Parabolic Type Equations 1 Difference Schemes for Parabolic Equations One-dimensional problems: Consider the unsteady diffusion problem (parabolic in nature) in a thin wire governed

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 219 On finite element methods for 3D time dependent convection diffusion reaction equations

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 09 Sep p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 09 Sep p-issn: International Research Journal of Engineering and Technology (IRJET) e-issn: 395-56 Volume: 4 Issue: 9 Sep -7 www.irjet.net p-issn: 395-7 An analytical approach for one-dimensional advection-diffusion

More information

A robust uniform B-spline collocation method for solving the generalized PHI-four equation

A robust uniform B-spline collocation method for solving the generalized PHI-four equation Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 11, Issue 1 (June 2016), pp. 364-376 Applications and Applied Mathematics: An International Journal (AAM) A robust uniform B-spline

More information

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

Thermal Analysis Contents - 1

Thermal Analysis Contents - 1 Thermal Analysis Contents - 1 TABLE OF CONTENTS 1 THERMAL ANALYSIS 1.1 Introduction... 1-1 1.2 Mathematical Model Description... 1-3 1.2.1 Conventions and Definitions... 1-3 1.2.2 Conduction... 1-4 1.2.2.1

More information

Time stepping methods

Time stepping methods Time stepping methods ATHENS course: Introduction into Finite Elements Delft Institute of Applied Mathematics, TU Delft Matthias Möller (m.moller@tudelft.nl) 19 November 2014 M. Möller (DIAM@TUDelft) Time

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

Corona Losses Calculation in HVAC Transmission Lines Using FEM and Comparison with HVDC Corona Losses

Corona Losses Calculation in HVAC Transmission Lines Using FEM and Comparison with HVDC Corona Losses Australian Journal of Basic and Applied Sciences, 5(5): 833-843, 011 ISSN 1991-8178 Corona Losses Calculation in HVAC Transmission Lines Using FEM and Comparison with HVDC Corona Losses 1 M. Mohammadi

More information

Stabilitätsanalyse des Runge-Kutta- Zeitintegrationsschemas für das konvektionserlaubende Modell COSMO-DE

Stabilitätsanalyse des Runge-Kutta- Zeitintegrationsschemas für das konvektionserlaubende Modell COSMO-DE Stabilitätsanalyse des Runge-Kutta- Zeitintegrationsschemas für das konvektionserlaubende Modell COSMO-DE DACH-Tagung 20.-24.09.200, Bonn Michael Baldauf GB FE, Deutscher Wetterdienst, Offenbach M. Baldauf

More information

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 5, 237-245 Numerical Study of Natural Convection in an Inclined L-shaped Porous Enclosure S. M. Moghimi 1 *, G. Domairry 2, H. Bararnia 2, Soheil Soleimani 2

More information

Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind

Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Australian Journal of Basic Applied Sciences 4(5): 817-825 2010 ISSN 1991-8178 Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Omid Solaymani

More information

1D Verification Examples

1D Verification Examples 1 Introduction 1D Verification Examples Software verification involves comparing the numerical solution with an analytical solution. The objective of this example is to compare the results from CTRAN/W

More information

Evolution equations with spectral methods: the case of the wave equation

Evolution equations with spectral methods: the case of the wave equation Evolution equations with spectral methods: the case of the wave equation Jerome.Novak@obspm.fr Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France in collaboration with

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall

MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall James Cherry, Mehmet Sözen Grand Valley State University, cherryj1@gmail.com,

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

Numerical studies of non-local hyperbolic partial differential equations using collocation methods Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 3, 2018, pp. 326-338 Numerical studies of non-local hyperbolic partial differential equations using collocation methods

More information

Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants

Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 4, 2018, pp. 448-455 Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment

More information

Soliton and Numerical Solutions of the Burgers Equation and Comparing them

Soliton and Numerical Solutions of the Burgers Equation and Comparing them Int. Journal of Math. Analysis, Vol. 4, 2010, no. 52, 2547-2564 Soliton and Numerical Solutions of the Burgers Equation and Comparing them Esmaeel Hesameddini and Razieh Gholampour Shiraz University of

More information

QUESTIONS FOR THE TESTS-ECI 146

QUESTIONS FOR THE TESTS-ECI 146 QUESTIONS FOR THE TESTS-ECI 46 IMPORTANT: Please note that the questions in the exams WILL BE DIFFERENT than these. (These questions are valid for the midterm and for the final exam) Remember: A) both

More information

Basics of Discretization Methods

Basics of Discretization Methods Basics of Discretization Methods In the finite difference approach, the continuous problem domain is discretized, so that the dependent variables are considered to exist only at discrete points. Derivatives

More information

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

IOSR Journal of Mathematics (IOSRJM) ISSN: Volume 2, Issue 1 (July-Aug 2012), PP

IOSR Journal of Mathematics (IOSRJM) ISSN: Volume 2, Issue 1 (July-Aug 2012), PP IOSR Journal of Mathematics (IOSRJM) ISSN: 78-578 Volume, Issue (July-Aug ), PP - Analytical Solutions of One-Dimensional Temporally Dependent Advection-Diffusion Equation along Longitudinal Semi-Infinite

More information

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2 10.34 Numerical Methods Applied to Chemical Engineering Quiz 2 This quiz consists of three problems worth 35, 35, and 30 points respectively. There are 4 pages in this quiz (including this cover page).

More information

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Songxin Liang, David J. Jeffrey Department of Applied Mathematics, University of Western Ontario, London,

More information