Observation of three-dimensional massless Kane fermions in a zinc-blende crystal

Size: px
Start display at page:

Download "Observation of three-dimensional massless Kane fermions in a zinc-blende crystal"

Transcription

1 DOI:.38/NPHYS857 Observation of three-dimensional massless Kane fermions in a zinc-blende crystal M. Orlita D. M. Basko M. Zholudev 3 4 F. Teppe 3 W. Knap 3 V. Gavrilenko 4 N. Mikhailov 5 S. Dvoretskii 5 P. Neugebauer 6 C. Faugeras A.-L. Barra G. Martinez and M. Potemski Laboratoire National des Champs Magnétiques Intenses CNRS-UJF-UPS-INSA Grenoble France Université Grenoble /CNRS LPMMC UMR 5493 B.P Grenoble France 3 Laboratoire Charles Coulomb LC) UMR CNRS 5 GIS-TERALAB Université Montpellier II 3495 Montpellier France 4 Institute for Physics of Microstructures RAS Nizhny Novgorod Russia 5 A.V. Rzhanov Institute of Semiconductor Physics Siberian Branch Russian Academy of Sciences Novosibirsk 639 Russia 6 Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring Stuttgart Germany SAMPLE STRUCTURE The studied sample was grown using the standard MBE technique on the 3)-oriented semi-insulating GaAs substrate. The growth sequence started with ZnTe and CdTe transition buffer) regions followed by the MCT epilayer with gradually changing cadmium content x. The profile of cadmium content is shown in Fig.. The prepared MCT layer contains a region with x.7 of thickness d 3.µm. The cadmium profile has been controlled during growth using in situ single wavelength ellipsometry see e.g. Ref.. FIG.. The profile of cadmium content in the studied sample. KANE MODEL AND THE EFFECTIVE BAND HAMILTONIAN In zinc-blende semiconductors the orbital degeneracies of the conduction and valence bands are and 3 respectively. At k = we can choose a real Bloch function u c r) for the conduction band and three real functions u X r) u Y r) u Z r) for the valence band. The function u c r) transforms according to the identical representation Γ of the crystal group T d while u X r) u Y r) u Z r) transform according to the vector Γ 5 representation equivalently to the functions xyz. Out of the three real functions u α r) one can make linear combinations u m r) corresponding to eigenfunctions of the z-projection of the orbital angular momentum l = : u + = i u X + iu Y ) u = iu Z u = i u X iu Y ). S) The spin structure of the wave functions can be accounted for by introducing two spinors χ χ corresponding to the two values of the spin projection on the z axis. Spin-orbit interaction splits the l + )-fold degenerate valence NATURE PHYSICS 4 Macmillan Publishers Limited. All rights reserved.

2 DOI:.38/NPHYS857 band into two subspaces corresponding to the total angular momentum J =/ and J =3/ the latter manifold corresponding to the topmost valence band. Explicitly u 3/;+3/ = u + χ u 3/;+/ = /3 u χ + /3 u + χ u 3/; / = /3 u χ + /3 u χ u 3/; 3/ = u χ u /;+/ = /3 u χ /3 u + χ u /; / = /3 u χ + /3 u χ S) It is convenient to arrange the basis vectors as ) uc χ u 3/+3/ u 3/ / u /+/ u c χ u 3/ 3/ u 3/+/ u / / S3) = ) u c χ u X χ u Y χ u Z χ u c χ u X χ u Y χ u Z χ U S4) / i /6 i /3 i / /6 /3 /3 i /3 i U = S5) /3 i / i /6 i /3 / /6 /3 i /3 i then the time reversal matrix is just σ y the second Pauli matrix acting in the space made of 4 4 blocks. In this basis the electronic Hamiltonian at k = is given by Hk =)= E g E g S6) where the energy is counted from the top of the J =3/ valence band. is the spin-orbit splitting between the J =3/ and the J =/ valence bands. The band gap is parametrized by E g x x c ).9 ev []. Since E g < at x<x c the semimetallic MCT is sometimes called a negative-gap semiconductor. The linear in k terms in the effective band Hamiltonian are obtained in the first order of the k p perturbation theory. The momentum matrix elements between the conduction and the valence band Bloch functions are determined by u α r) u cr) x β d 3 r = Pδ αβ S7) where P is the Kane s matrix element and P /m E P is called Kane s energy m is the free electron mass). NATURE PHYSICS 4 Macmillan Publishers Limited. All rights reserved.

3 DOI:.38/NPHYS857 SUPPLEMENTARY INFORMATION The effective Hamiltonian to Ok) is given by: Hk) =Hk = ) + U P m ik x ik y ik z ik x ik y ik z ) U = E g vk + 3/ vk / vk z / vk z vk / vk 3/ vk + / vk z = vk z / vk / vk z vk + / E g vk 3/ vk+ / vk z / vk + 3/ vk z vk / vk + / vk z / S8) where v 3/ P/m and k ± k x ± ik y. This Hamiltonian obeys the time-reversal symmetry σ y H k)σ y = H k) where σ y is the second Pauli matrix acting in the space made of 4 4 blocks. The eigenvalues of the Hamiltonian S8) can be found from the equation deth E) =E { E 3 + E g )E [E g + 3/)v k ]E v k } =. They do not depend on the direction of k. In the limit of large the Hamiltonian can be easily projected on the subspace orthogonal to the the split-off band. If we are not interested in terms quadratic in k the projection is done by simply eliminating the fourth and the eight row and column of the matrix in Eq. S8): E g vk + 3/ vk / vk z vk 3/ Hk) = vk + / vk z vk z E g vk 3/ vk+ / vk + 3/ vk z vk / This matrix has three doubly-degenerate eigenvalues: E k = E k = E g ± S9). S) E g 4 + v k. S) The eigenvalue E = corresponds to the heavy-hole band which in this approximation is completely flat. Let us see how the existence of the flat band follows from the property U c Hk)U c = Hk) with Hk) given by Eq. S) and U c = diag ). Consider the general situation: an n + m) n + m) matrix A anticommuting with a matrix U c which has m eigenvalues equal to and n eigenvalues equal to and m<n. Let us work in the basis of the eigenvectors of U c which are arranged in such an order that U c = diag......). The condition U c AU c = A implies that in this basis the matrix A has the following block structure: n n A A = n m A m n m m ). S) Consider now the n-dimensional subspace of column vectors x =x x...x n...) T. All these vectors satisfy the first n equations of the linear system Ax =. The remaining m equations leave an n m) dimensional subspace of solutions Ax = which corresponds to the zero eigenvalue of A with multiplicity n m. OPTICAL ABSORPTION AT ZERO MAGNETIC FIELD Let us start from the standard expression for the optical conductivity obtained from the Kubo formula for the response of the current to the monochromatically oscillating vector potential: 6 σ ij ω) = ie d 3 k π) 3 ll = f lk f l k E lk E l k l k v i l k l k v j l k ω E l k + E lk + i +. S3) NATURE PHYSICS Macmillan Publishers Limited. All rights reserved.

4 DOI:.38/NPHYS857 Here l l =...6 label the eigenstates of Hk) which is given by Eq. S) f lk are the occupations of these eigenstates and the velocity matrices are v i = Hk)/ k i = vj i where i j = xyz label the Cartesian components. To calculate the velocity matrix elements we note that the projection of the vector J on an arbitrary direction n = sin ϑ cos φ sin ϑ sin φ cos ϑ) determined by the spherical angles ϑ φ can be related to J z by a rotation J n = J x sin ϑ cos φ + J y sin ϑ sin φ + J z cos ϑ = U φj x sin ϑ + J z cos ϑ)u φ = U φu ϑ J zu ϑ U φ S4) U φ = diag e iφ/ e 3iφ/ e iφ/ e iφ/ e 3iφ/ e iφ/) S5) c s c 3 3cs s 3 3c s U ϑ = 3cs c 3 cs 3c s s 3 c s s c s 3 c cos ϑ s sin ϑ. S6) 3c s c 3 3cs 3c s s 3 +c s 3cs c 3 cs Thus the eigenstates l k for an arbitrary direction of k can be related to those for k along z by l k = U φu ϑ lkz where ϑ φ are the spherical angles of k. By symmetry the tensor structure of the conductivity is trivial σ ij ω) =σω). This can also be shown by the direct calculation whose details we do not give but which is fully analogous to the one given below. We calculate just one component σ zz. Since the energies E lk depend only on k we can integrate over the angles using Eq. S4): J ll = sin ϑ dϑ dφ l k J z l k = 8π 3 lkz J x l k z + 4π 3 lkz J z l k z. S7) The eigenvectors of the Hamiltonian S) for k along the z axis are in the order of decreasing energy) S C S C C S C S where we have denoted C = cos ϕg + π ) ϕg S = sin 4 + π ) E g / ϕ g arcsin. 4 E g/4+v k This gives 4c g s g 3 + s g ) 4s g c g J ll = π s g 4c g 3 s g ) c g 4s g 3 + s g ) 3 s g ) 3 3 s g ) 3 + s g ) 4s g c g 3 s g ) 4c g s g c g 4s g 3 + s g ) s g 4c g c g = cos ϕ g s g = sin ϕ g. S8) Substituting this into Eq. S3) we finally obtain Re σω >) = π e [ ) ξ dξ E g E 3 vω 8π 3 6 δ + g 4 + E ξ g ω +4 + Eg +4ξ [ = e θω E g E g ) E ) g ω 4πv ω ωe g + 6 θω E g ) ) δ Eg +4ξ ω) ] = + E g ω ) ω E g ]. S9) For the gapless case E g = we obtain Re σω > ) = 3 ω e vπ. The imaginary part of the dielectric function εω)=+iσω)/ε ω) then becomes Im εω >) = 3 c α where α is the fine structure constant. v 4 NATURE PHYSICS 4 Macmillan Publishers Limited. All rights reserved.

5 DOI:.38/NPHYS857 SUPPLEMENTARY INFORMATION LANDAU LEVELS In the presence of a magnetic field described by the vector potential in the Landau gauge A x = By A y = A z = we make the standard Peierls substitution p p ea in the Hamiltonian S) and seek the eigenstates in the form ψx y) =e ip xx x Φ n y Φ n z Φ n x Φ n y Φ n 3 z Φ n ) T S) where Φ n =Φ n y + p x l B ) are the harmonic oscillator wave functions and l B is the magnetic length. It can be checked directly that the form S) is preserved upon action on ψx y) by the Hamiltonian. The coefficients satisfy the following linear system we denote ζ p z l B for brevity): E g E 3n n x + v/l B y z ζz = 3n x E y = v/l B n x E z ζx = v/l B ζz + E g E 3n ) n x y + z = v/l B 3n ) x E y = v/l B n ζx + x E z =. v/l B S) Its analysis is especially simple at p z = when the system is split into two decoupled 3 3 blocks for x y z and x y z respectively. It is convenient to shift n n in the block. In each block the Landau levels can be labeled by n =... ζ =. At n = only ζ = ± are allowed while at n = only ζ = exists: E nζ = ζ E g + ζ ψ n> = ψ n>± = ψ n> = ψ n>± = 4n Eg 4 + v lb 4n ± ) S) n Φn 3n Φn E + n /)v/l B ) 4n 3 ψ = ϕ E Φ n 3n/v/l B )Φ n n )/v/lb )Φ n 3n n Φn ψ = ) Φn E + n 3/)v/l B ) Φ E Φ n 3n )/v/lb )Φ n n/v/l B )Φ n The selection rules for the optical absorption at p z = are obtained by calculating the matrix elements of J ± = J x ±ij y :. S3) S4) S5) S6) n ζ σ J + nζσ δ σσ δ n n δ ζ δ ζ ). S7) At p z = the Landau levels can be found directly from the system S): E nζ = ζ E g + ζ Eg 4 + v lb 4n ± ) + v p z. S8) For E g = this expression reduces to Eq. 5) of the main text. NATURE PHYSICS Macmillan Publishers Limited. All rights reserved.

6 DOI:.38/NPHYS857 [] N. N. Mikhailov R. N. Smirnov S. A. Dvoretsky Yu. G. Sidorov V. A. Shvets E. V. Spesivtsev and S. V. Rykhlitski Int. J. Nanotechnology 3 6). [] M. H. Weiler in Semiconductors and Semimetals vol. 6 ed. by R. K. Willardson and A. C. Beer Elsevier 98). 6 NATURE PHYSICS 4 Macmillan Publishers Limited. All rights reserved.

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Theoretical Concepts of Spin-Orbit Splitting

Theoretical Concepts of Spin-Orbit Splitting Chapter 9 Theoretical Concepts of Spin-Orbit Splitting 9.1 Free-electron model In order to understand the basic origin of spin-orbit coupling at the surface of a crystal, it is a natural starting point

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure PHYS85 Quantum Mechanics II, Spring HOMEWORK ASSIGNMENT 8: Solutions Topics covered: hydrogen fine structure. [ pts] Let the Hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Spin orbit interaction in semiconductors

Spin orbit interaction in semiconductors UNIVERSIDADE DE SÃO AULO Instituto de Física de São Carlos Spin orbit interaction in semiconductors J. Carlos Egues Instituto de Física de São Carlos Universidade de São aulo egues@ifsc.usp.br International

More information

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application

More information

PAPER 43 SYMMETRY AND PARTICLE PHYSICS

PAPER 43 SYMMETRY AND PARTICLE PHYSICS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 43 SYMMETRY AND PARTICLE PHYSICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

Physics 115C Homework 2

Physics 115C Homework 2 Physics 5C Homework Problem Our full Hamiltonian is H = p m + mω x +βx 4 = H +H where the unperturbed Hamiltonian is our usual and the perturbation is H = p m + mω x H = βx 4 Assuming β is small, the perturbation

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry Spin Dynamics Basic Theory Operators Richard Green SBD Research Group Department of Chemistry Objective of this session Introduce you to operators used in quantum mechanics Achieve this by looking at:

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Multielectron Atoms.

Multielectron Atoms. Multielectron Atoms. Chem 639. Spectroscopy. Spring 00 S.Smirnov Atomic Units Mass m e 1 9.109 10 31 kg Charge e 1.60 10 19 C Angular momentum 1 1.055 10 34 J s Permittivity 4 0 1 1.113 10 10 C J 1 m 1

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/314/586/1757/dc1 Supporting Online Material for Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells B. Andrei Bernevig, Taylor L. Hughes,

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

Crystal field effect on atomic states

Crystal field effect on atomic states Crystal field effect on atomic states Mehdi Amara, Université Joseph-Fourier et Institut Néel, C.N.R.S. BP 66X, F-3842 Grenoble, France References : Articles - H. Bethe, Annalen der Physik, 929, 3, p.

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

Inter-valence-band hole-hole scattering in cubic semiconductors

Inter-valence-band hole-hole scattering in cubic semiconductors PHYSICAL REVIEW B 73, 07537 006 Inter-valence-band hole-hole scattering in cubic semiconductors M. V. Dolguikh, A. V. Muravjov,* and R. E. Peale Department of Physics and College of Optics & Photonics,

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

f lmn x m y n z l m n (1) 3/πz/r and Y 1 ±1 = 3/2π(x±iy)/r, and also gives a formula for Y

f lmn x m y n z l m n (1) 3/πz/r and Y 1 ±1 = 3/2π(x±iy)/r, and also gives a formula for Y Problem Set 6: Group representation theory and neutron stars Graduate Quantum I Physics 6572 James Sethna Due Monday Nov. 12 Last correction at November 14, 2012, 2:32 pm Reading Sakurai and Napolitano,

More information

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II We continue our discussion of symmetries and their role in matrix representation in this lecture. An example

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by Contents 5 Topological States of Matter 1 5.1 Intro.......................................... 1 5.2 Integer Quantum Hall Effect..................... 1 5.3 Graphene......................................

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Degeneracy & in particular to Hydrogen atom

Degeneracy & in particular to Hydrogen atom Degeneracy & in particular to Hydrogen atom In quantum mechanics, an energy level is said to be degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely,

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Problem 1: A 3-D Spherical Well(10 Points)

Problem 1: A 3-D Spherical Well(10 Points) Problem : A 3-D Spherical Well( Points) For this problem, consider a particle of mass m in a three-dimensional spherical potential well, V (r), given as, V = r a/2 V = W r > a/2. with W >. All of the following

More information

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions Quantum Mechanical perators and Wavefunctions "well behaved" functions (φ), have the following properties must be continuous (no "breaks") must have continuous derivatives (no "kinks") must be normalizable.

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T :

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T : 1 Time reversal 1.1 Without spin Time-dependent Schrödinger equation: i t ψ (r, t = Local time-reversal transformation, T : Transformed Schrödinger equation d (f T (t dt ] 2m + V (r ψ (r, t (1 t 1 < t

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Symmetry Properties of Superconductors

Symmetry Properties of Superconductors Australian Journal of Basic and Applied Sciences, 6(3): 81-86, 2012 ISSN 1991-8178 Symmetry Properties of Superconductors Ekpekpo, A. Department of Physics, Delta State University, Abraka, Nigeria. Abstract:

More information

1 Supplementary Figure

1 Supplementary Figure Supplementary Figure Tunneling conductance ns.5..5..5 a n =... B = T B = T. - -5 - -5 5 Sample bias mv E n mev 5-5 - -5 5-5 - -5 4 n 8 4 8 nb / T / b T T 9T 8T 7T 6T 5T 4T Figure S: Landau-level spectra

More information

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows.

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows. Errata 1 Front inside cover: e 2 /4πɛ 0 should be 1.44 10 7 ev-cm. h/e 2 should be 25800 Ω. p. 5 The third line from the end should read one of the four rows... not one of the three rows. p. 8 The eigenstate

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation Phys50.nb 37 The rhombohedral and hexagonal lattice systems are not fully compatible with point group symmetries. Knowing the point group doesn t uniquely determine the lattice systems. Sometimes we can

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer Lok С. Lew Yan Voon Morten Willatzen The k-p Method Electronic Properties of Semiconductors Springer Acronyms xxi 1 Introduction 1 1.1 What Is к p Theory? 1 1.2 Electronic Properties of Semiconductors

More information

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer. B Chemistry 3502/4502 Exam III All Hallows Eve/Samhain, 2003 1) This is a multiple choice exam. Circle the correct answer. 2) There is one correct answer to every problem. There is no partial credit. 3)

More information

ĝ r = {R v} r = R r + v.

ĝ r = {R v} r = R r + v. SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS134 Topological semimetal in a fermionic optical lattice Kai Sun, 1 W. Vincent Liu,, 3, 4 Andreas Hemmerich, 5 and S. Das Sarma 1 1 Condensed Matter Theory Center

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 8 6 Energy (ev 4 2 2 4 Γ M K Γ Supplementary Figure : Energy bands of antimonene along a high-symmetry path in the Brillouin zone, including spin-orbit coupling effects. Empty circles

More information

The energy level structure of low-dimensional multi-electron quantum dots

The energy level structure of low-dimensional multi-electron quantum dots The energy level structure of low-dimensional multi-electron quantum dots Tokuei Sako, a Josef Paldus b and Geerd H. F. Diercksen c a Laboratory of Physics, College of Science and Technology, Nihon University,

More information

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b Physics 17c: Statistical Mechanics Second Quantization Ladder Operators in the SHO It is useful to first review the use of ladder operators in the simple harmonic oscillator. Here I present the bare bones

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

2.3 Band structure and lattice symmetries: example of diamond

2.3 Band structure and lattice symmetries: example of diamond 2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G H. If we have two representations D 1 and

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

P3317 HW from Lecture 7+8 and Recitation 4

P3317 HW from Lecture 7+8 and Recitation 4 P3317 HW from Lecture 7+8 and Recitation 4 Due Friday Tuesday September 25 Problem 1. In class we argued that an ammonia atom in an electric field can be modeled by a two-level system, described by a Schrodinger

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Welcome to the Solid State

Welcome to the Solid State Max Planck Institut für Mathematik Bonn 19 October 2015 The What 1700s 1900s Since 2005 Electrical forms of matter: conductors & insulators superconductors (& semimetals & semiconductors) topological insulators...

More information

On the K-theory classification of topological states of matter

On the K-theory classification of topological states of matter On the K-theory classification of topological states of matter (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering

More information

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle Chapter 1 Identical particles 1.1 Distinguishable particles The Hilbert space of N has to be a subspace H = N n=1h n. Observables Ân of the n-th particle are self-adjoint operators of the form 1 1 1 1

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume Department of Physics Quantum II, 570 Temple University Instructor: Z.-E. Meziani Solution Set of Homework # 6 Monday, December, 06 Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second

More information

Plane wave solutions of the Dirac equation

Plane wave solutions of the Dirac equation Lecture #3 Spherical spinors Hydrogen-like systems again (Relativistic version) irac energy levels Chapter, pages 48-53, Lectures on Atomic Physics Chapter 5, pages 696-76, Bransden & Joachain,, Quantum

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II January 22, 2016 9:00 a.m. 1:00 p.m. Do any four problems. Each problem is worth 25 points.

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information