Data-driven characterization of multidirectional pedestrian trac

Size: px
Start display at page:

Download "Data-driven characterization of multidirectional pedestrian trac"

Transcription

1 Data-driven characterization of multidirectional pedestrian trac Marija Nikoli Michel Bierlaire Flurin Hänseler TGF 5 Delft University of Technology, the Netherlands October 8, 5 / 5

2 Outline. Motivation and objective. Related research 3. Methodology. Empirical analysis 5. Conclusion and future work / 5

3 3 / 5

4 Background - context Understanding and predicting of pedestrian trac Convenience and safety for pedestrians LOS indicators: based on data or/and models of pedestrian dynamics Trac indicators Density: the number of pedestrians present in an area at a certain time instance [#ped/m ] Flow: the number of pedestrians passing a line segment in a unit of time [#ped/ms] Velocity: the average of the velocities of pedestrians present in an area at a certain time instance / passing a line segment in a unit of time [m/s] / 5

5 Characterization based on Edie's denitions General formulation Density: k(v ) = Flow: q(v ) = N t i i dx dy dt N d i i dx dy dt N d i i t i i Velocity: v(v ) = q(v ) k(v ) = [van Wageningen-Kessels et al., ], [Saberi and Mahmassani, ] 5 / 5

6 Characterization based on Edie's denitions Limit conditions Photo: [Saberi and Mahmassani, ] / 5

7 Characterization based on Edie's denitions Results depend on size, shape and the placement of a measurement unit May be highly sensitive to minor changes Arbitrary aggregation May generate noise in the data [Openshaw, 983] May lead to loss of heterogeneity across space Density indicator 7 / 5

8 Characterization based on Edie's denitions Arbitrary aggregation May lead to loss of heterogeneity across pedestrians Does not comply with multi-directional nature of pedestrian ows Extreme case: velocity and ow vectors cancel out when equally sized streams of pedestrians walk with the same speed but in the opposite directions Velocity and ow indicators 8 / 5

9 Voronoi-based spatial discretization A personal region A i is asigned to each pedestrian i Each point p = (x, y) in the personal region is closer to i positioned at p i = (x i, y i ) than to any other pedestrian, with respect of the Euclidean distance A i = {p d E (p, p i ) d E (p, p j ), j} Pedestrian ows: [Steen and Seyfried, ] 9 / 5

10 Data-driven discretization framework Pedestrian trajectories The trajectory of pedestrian i is a curve in space and time p i = (x i, y i, t i ) 3D Voronoi diagrams associated with trajectories Each trajectory Γ i is associated with a 3D Voronoi 'tube' V i A point p = (x, y, t) belongs to the set V i if d(p, Γ i ) d(p, Γ j ), j d(p, Γ i ) = min{d (p, p i ) p i Γ i } d (p, p i ) - spatio-temporal assignment rule / 5

11 Data-driven discretization framework Sample of points The trajectory is described as a nite collection of triplets p is = (x is, y is, t s ),t s = [t, t,..., t f ] 3D Voronoi diagrams associated with the points p is = (x is, y is, t s ) Each point p is is associated with a 3D Voronoi cell V is A point p = (x, y, t) belongs to the set V is if d (p, p is ) d (p, p js ), j d (p, p is ) - spatio-temporal assignment rule / 5

12 Spatio-temporal assignment rules Naive distance d N (p, p i ) = { (p pi ) T (p p i ), t =, otherwise Distance To Interaction (DTI) { (p pi ) T (p p i ), t = d DTI (p, p i ) = (p p i (t i + t)) v i (t i ) ( v i (t i )), otherwise p = (x, y, t), p i = (x i, y i, t i ), t = t t i / 5

13 Spatio-temporal assignment rules Time-Transform distance (TT) d TT (p, p i ) = (x x i ) + (y y i ) + α(t t i ) α is a conversion constant expressed in meters per second Mahalanobis distance d M (p, p i ) = (p p i ) T M i (p p i ) M i - symmetric, positive-denite matrix that denes how distances are measured from the perspective of pedestrian i p = (x, y, t), p i = (x i, y i, t i ) 3 / 5

14 Voronoi-based trac indicators The set of all points in V i corresponding to a specic time t V i (t) = {(x, y, t) V i } [m ] Density indicator k i = V i (t) / 5

15 Voronoi-based trac indicators The set of all points in V i corresponding to a given location x and y V i (x) = {(x, y, t) V i } [ms] V i (y) = {(x, y, t) V i } [ms] Flow indicator Velocity indicator q i = ( V i (x) V i (y) v i = q i k i ) 5 / 5

16 Empirical analysis Scenarios Synthetic pedestrian trajectories Voronoi-based characterization for trajectories with d N, d TT, d M, d DTI / 5

17 Properties of 3D Voronoi-based characterization! Discretization is performed at the level of an individual: suitable for multi-directional ow composition Reproduces dierent simulated settings with uniform and non-uniform movement Preserves heterogeneity across pedestrians and space Discretization is adjusted to the reality of the ow: leads to smooth transitions in measured trac characteristics 7 / 5

18 Properties of the 3D Voronoi-based characterization! Discretization is performed at the level of an individual: suitable for multi-directional ow composition! Reproduces dierent simulated settings with uniform and non-uniform movement Preserves heterogeneity across pedestrians and space Discretization is adjusted to the reality of the ow: leads to smooth transitions in measured trac characteristics 7 / 5

19 Unidirectional non-uniform straight-line movement

20 Bidirectional non-uniform straight-line movement

21 Properties of 3D Voronoi-based characterization! Discretization is performed at the level of an individual: suitable for multi-directional ow composition! Reproduces dierent simulated settings with uniform and non-uniform movement! Preserves heterogeneity across pedestrians and space Discretization is adjusted to the reality of the ow: leads to smooth transitions in measured trac characteristics 8 / 5

22 3D Voronoi-based characterization - density map 9 / 5

23 Properties of 3D Voronoi-based characterization! Discretization is performed at the level of an individual: suitable for multi-directional ow composition! Reproduces dierent simulated settings with uniform and non-uniform movement! Preserves heterogeneity across pedestrians and space! Discretization is adjusted to the reality of the ow: leads to smooth transitions in measured trac characteristics / 5

24 3D Voronoi-based characterization vs. grid-based method Density sequences / 5

25 Robustness to the sampling rate Sample of points from synthetic pedestrian trajectories obtained using dierent sampling rate Voronoi-based characterization for points with d N, d TT, d M, d DTI Numerical analysis Statistics of interests: distribution of k and v errors for randomly sampled points / 5

26 Unidirectional uniform straight-line movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

27 Unidirectional non-uniform straight-line movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

28 Unidirectional non-uniform zig-zag movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

29 Bidirectional uniform straight-line movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

30 Bidirectional non-uniform straight-line movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

31 Bidirectional non-uniform zig-zag movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

32 Crossing uniform straight-line movement Density indicator Speed indicator rate:.5s rate:.5s rate:s rate:s rate:.5s rate:.5s

33 Conclusions Pedestrian-oriented ow characterization: Edie's denitions adapted through a data-driven discretization Suitable for multi-directional ow composition Reproduces dierent simulated settings with uniform and non-uniform movement Preserves heterogeneity across pedestrians and space Leads to smooth transitions in measured trac characteristics Sampled data: 3D Voronoi diagrams with Time-Transform distance perform the best Reproduces dierent simulated settings Robust with respect to the sampling rate 3 / 5

34 Future directions Additional spatio-temporal assignment rules will be tested More numerical analysis based on synthetic and real-world data (case study: Lausanne train station) Stream-based denitions of indicators and their interaction [Nikoli and Bierlaire, ] / 5

35 Thank you for your attention Marija Nikoli Transport and Mobility Laboratory EPFL - École Polytechnique Fédérale de Lausanne marija.nikolic@ep.ch 5 / 5

36 Mahalanobis distance Directions of interest p is = (x is, y is, t s ), v i (t s ) = t (s+) t s x i(s+) x is y i(s+) y is d (t s ) = v i (t s) v i (t, d s) (t s ) = dx (t s ) d (t s ) = dy (t s ), d (t s ) T d (t s ) =, d (t s ) = d 3 (t s ) = t (s+) t s, d 3 (t s ) = t (s+) t s 5 / 5

37 Mahalanobis distance Change of coordinates S (t s, δ) = p is + (t (s+) t s )v i (t s ) + δd (t s ) S (t s, δ) = p is (t (s+) t s )v i (t s ) δd (t s ) S 3 (t s, δ) = p is + δd (t s ) S (t s, δ) = p is δd (t s ) S 5 (t s, δ) = p is + δd 3 (t s ) S (t s, δ) = p is δd 3 (t s ) d M = (S j (t s, δ) p is ) T M is (S j (t s, δ) p is ) = δ, j =,.., 5 / 5

Data-driven characterization of pedestrian trac

Data-driven characterization of pedestrian trac 9 th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba Data-driven characterization of pedestrian trac Marija Nikoli, Michel Bierlaire June 14, 2016 1 / 36 Outline 1 Introduction 2 Related

More information

Data-driven fundamental models for pedestrian movements

Data-driven fundamental models for pedestrian movements Workshop on Transportation Network and Management Data-driven fundamental models for pedestrian movements Marija Nikoli EPFL, March 9, 2017 Congestion Research challenges Understand, describe and predict

More information

Pedestrian multi-class speed-density relationship: evaluation of integrated and sequential approach

Pedestrian multi-class speed-density relationship: evaluation of integrated and sequential approach heart 2017-6 th Symposium of the European Association for Research in Transportation Pedestrian multi-class speed-density relationship: evaluation of integrated and sequential Marija Nikoli, Michel Bierlaire,

More information

Spatial tessellations of pedestrian dynamics

Spatial tessellations of pedestrian dynamics Spatial tessellations of pedestrian dynamics Marija Nikolić Michel Bierlaire Bilal Farooq TRANSP-OR, Ecole Polytechnique Fédérale de Lausanne heart2013 -- 2nd Symposium of the European Association for

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Variance reduction Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M.

More information

Activity path size for correlation between activity paths

Activity path size for correlation between activity paths Workshop in Discrete Choice Models Activity path size for correlation between activity paths Antonin Danalet, Michel Bierlaire EPFL, Lausanne, Switzerland May 29, 2015 Outline Motivation: Activity-based

More information

A path choice approach to ac,vity modeling with a pedestrian case study

A path choice approach to ac,vity modeling with a pedestrian case study A path choice approach to ac,vity modeling with a pedestrian case study Antonin Danalet Sta,s,que, transport et ac,vités, Grenoble November 5, 2013 Presenta,on outline Motivation: Why pedestrian activities?

More information

A macroscopic loading model for dynamic, multi-directional and congested pedestrian flows

A macroscopic loading model for dynamic, multi-directional and congested pedestrian flows HKSTS Post-Conference Workshop A macroscopic loading model for dynamic, multi-directional and congested pedestrian flows Flurin S. Hänseler, William H.K. Lam, Michel Bierlaire Hong Kong, December 16, 2014

More information

Adynamicnetworkloadingmodel for anisotropic and congested pedestrian flows

Adynamicnetworkloadingmodel for anisotropic and congested pedestrian flows heart 2015 Adynamicnetworkloadingmodel for anisotropic and congested pedestrian flows Flurin S. Hänseler, William H.K. Lam, Michel Bierlaire, Gael Lederrey, Marija Nikolić September 9, 2015 Unsteady, anisotropic

More information

Calculating indicators with Biogeme

Calculating indicators with Biogeme Calculating indicators with Biogeme Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne September 25,

More information

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into G25.2651: Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into thermal contact. By thermal contact, we mean that the

More information

A macroscopic loading model for dynamic, anisotropic and congested pedestrian flows. Implementation, calibration and case study analysis

A macroscopic loading model for dynamic, anisotropic and congested pedestrian flows. Implementation, calibration and case study analysis SS 201-2015, CSE-MA2 Start: 1.02.201 Finish: 15.0.2015 A macroscopic loading model for dynamic, anisotropic and congested pedestrian flows. Implementation, calibration and case study analysis Gael Lederrey

More information

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics O. Gallay, M.-O. Hongler, R. Colmorn, P. Cordes and M. Hülsmann Ecole Polytechnique Fédérale de Lausanne

More information

Lectures 15: Parallel Transport. Table of contents

Lectures 15: Parallel Transport. Table of contents Lectures 15: Parallel Transport Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this lecture we study the

More information

Integrating advanced discrete choice models in mixed integer linear optimization

Integrating advanced discrete choice models in mixed integer linear optimization Integrating advanced discrete choice models in mixed integer linear optimization Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron Transport and Mobility Laboratory (TRANSP-OR) École

More information

WiFi- Based Marauder's Map, or where are members of a campus and why?

WiFi- Based Marauder's Map, or where are members of a campus and why? WiFi- Based Marauder's Map, or where are members of a campus and why? Antonin Danalet Workshop on pedestrian models 2014 April 11, 2014 Presenta=on outline Motivation: Why pedestrian activities? Detection:

More information

Latent Geographic Feature Extraction from Social Media

Latent Geographic Feature Extraction from Social Media Latent Geographic Feature Extraction from Social Media Christian Sengstock* Michael Gertz Database Systems Research Group Heidelberg University, Germany November 8, 2012 Social Media is a huge and increasing

More information

Discrete panel data. Michel Bierlaire

Discrete panel data. Michel Bierlaire Discrete panel data Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M. Bierlaire (TRANSP-OR ENAC

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Simulating events: the Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

More information

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron

More information

Spatial fluctuation on speed-density relationship of pedestrian dynamics

Spatial fluctuation on speed-density relationship of pedestrian dynamics 2017/03/13 ETHZ-IVT Spatial fluctuation on speed-density relationship of pedestrian dynamics NAKANISHI, Wataru Specially Appointed Assistant Professor, Tokyo Institute of Technology nakanishi [at] plan.cv.titech.ac.jp

More information

Distance vs. Displacement

Distance vs. Displacement Distance vs. Displacement Assume a basketball player moves from one end of the court to the other and back. Distance is twice the length of the court Distance is always positive Displacement is zero x

More information

Multiplicative Multifractal Modeling of. Long-Range-Dependent (LRD) Trac in. Computer Communications Networks. Jianbo Gao and Izhak Rubin

Multiplicative Multifractal Modeling of. Long-Range-Dependent (LRD) Trac in. Computer Communications Networks. Jianbo Gao and Izhak Rubin Multiplicative Multifractal Modeling of Long-Range-Dependent (LRD) Trac in Computer Communications Networks Jianbo Gao and Izhak Rubin Electrical Engineering Department, University of California, Los Angeles

More information

Further Applications of Newton's. Laws of Motion

Further Applications of Newton's. Laws of Motion OpenStax-CNX module: m42132 1 Further Applications of Newton's * Laws of Motion OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Apply

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

GIST 4302/5302: Spatial Analysis and Modeling

GIST 4302/5302: Spatial Analysis and Modeling GIST 4302/5302: Spatial Analysis and Modeling Basics of Statistics Guofeng Cao www.myweb.ttu.edu/gucao Department of Geosciences Texas Tech University guofeng.cao@ttu.edu Spring 2015 Outline of This Week

More information

Displacement * Albert Hall. Based on Displacement by OpenStax

Displacement * Albert Hall. Based on Displacement by OpenStax OpenStax-CNX module: m57711 1 Displacement * Albert Hall Based on Displacement by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Kernels to detect abrupt changes in time series

Kernels to detect abrupt changes in time series 1 UMR 8524 CNRS - Université Lille 1 2 Modal INRIA team-project 3 SSB group Paris joint work with S. Arlot, Z. Harchaoui, G. Rigaill, and G. Marot Computational and statistical trade-offs in learning IHES

More information

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Luca Zaccarian LAAS-CNRS, Toulouse and University of Trento University of Oxford November

More information

Pedestrian traffic models

Pedestrian traffic models December 1, 2014 Table of contents 1 2 3 to Pedestrian Dynamics Pedestrian dynamics two-dimensional nature should take into account interactions with other individuals that might cross walking path interactions

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

Nonlinear Autoregressive Processes with Optimal Properties

Nonlinear Autoregressive Processes with Optimal Properties Nonlinear Autoregressive Processes with Optimal Properties F. Blasques S.J. Koopman A. Lucas VU University Amsterdam, Tinbergen Institute, CREATES OxMetrics User Conference, September 2014 Cass Business

More information

Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems

Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems Peter Tiňo and Ali Rodan School of Computer Science, The University of Birmingham Birmingham B15 2TT, United Kingdom E-mail: {P.Tino,

More information

Introduction to Real Analysis

Introduction to Real Analysis Introduction to Real Analysis Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Sets Sets are the basic objects of mathematics. In fact, they are so basic that

More information

Fractal functional filtering ad regularization

Fractal functional filtering ad regularization Fractal functional filtering ad regularization R. Fernández-Pascual 1 and M.D. Ruiz-Medina 2 1 Department of Statistics and Operation Research, University of Jaén Campus Las Lagunillas 23071 Jaén, Spain

More information

Differentially Private Real-time Data Release over Infinite Trajectory Streams

Differentially Private Real-time Data Release over Infinite Trajectory Streams Differentially Private Real-time Data Release over Infinite Trajectory Streams Kyoto University, Japan Department of Social Informatics Yang Cao, Masatoshi Yoshikawa 1 Outline Motivation: opportunity &

More information

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv Math 1270 Honors ODE I Fall, 2008 Class notes # 1 We have learned how to study nonlinear systems x 0 = F (x; y) y 0 = G (x; y) (1) by linearizing around equilibrium points. If (x 0 ; y 0 ) is an equilibrium

More information

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models LOCAL NAVIGATION 1 LOCAL NAVIGATION Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models 2 LOCAL NAVIGATION Why do it? Could we use global motion

More information

Advanced Microeconomics

Advanced Microeconomics Welfare measures and aggregation October 30, 2012 The plan: 1 Welfare measures 2 Example: 1 Our consumer has initial wealth w and is facing the initial set of market prices p 0. 2 Now he is faced with

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Assertions and Measurements for Mixed-Signal Simulation

Assertions and Measurements for Mixed-Signal Simulation Assertions and Measurements for Mixed-Signal Simulation PhD Thesis Thomas Ferrère VERIMAG, University of Grenoble (directeur: Oded Maler) Mentor Graphics Corporation (co-encadrant: Ernst Christen) October

More information

Choice Theory. Matthieu de Lapparent

Choice Theory. Matthieu de Lapparent Choice Theory Matthieu de Lapparent matthieu.delapparent@epfl.ch Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

More information

Fraud within Asymmetric Multi-Hop Cellular Networks

Fraud within Asymmetric Multi-Hop Cellular Networks Financial Cryptography 2005 EPFL, Lausanne, Switzerland ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Wireless networks Single-hop cellular network Multi-hop network Multi-hop cellular network Asymmetric multi-hop

More information

Destination Choice Model including panel data using WiFi localization in a pedestrian facility

Destination Choice Model including panel data using WiFi localization in a pedestrian facility Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc Tinguely, Antonin Danalet, Matthieu de Lapparent & Michel Bierlaire Transport and Mobility Laboratory

More information

University of Genova - DITEN. Smart Patrolling. video and SIgnal Processing for Telecommunications ISIP40

University of Genova - DITEN. Smart Patrolling. video and SIgnal Processing for Telecommunications ISIP40 University of Genova - DITEN Smart Patrolling 1 Smart Patrolling Detection of the intruder Tracking of the intruder A cognitive node will active an operator, describing on his mobile terminal the characteristic

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Mortality Surface by Means of Continuous Time Cohort Models

Mortality Surface by Means of Continuous Time Cohort Models Mortality Surface by Means of Continuous Time Cohort Models Petar Jevtić, Elisa Luciano and Elena Vigna Longevity Eight 2012, Waterloo, Canada, 7-8 September 2012 Outline 1 Introduction Model construction

More information

Geometric Inference for Probability distributions

Geometric Inference for Probability distributions Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 July 8 F. Chazal, D. Cohen-Steiner, Q.

More information

Displacement. OpenStax College. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

Displacement. OpenStax College. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Connexions module: m42033 1 Displacement OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Dene position, displacement,

More information

Binary choice. Michel Bierlaire

Binary choice. Michel Bierlaire Binary choice Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL)

More information

Approximate Algorithms for Maximizing the Capacity of the Reverse Link in Multiple Class CDMA Systems

Approximate Algorithms for Maximizing the Capacity of the Reverse Link in Multiple Class CDMA Systems Approximate Algorithms for Maximizing the Capacity of the Reverse Link in Multiple Class CDMA Systems Arash Abadpour and Attahiru Sule Alfa Department of Electrical and Computer Engineering, University

More information

Simulation of Pedestrian Dynamics and Model Adjustments: A Reality-Based Approach

Simulation of Pedestrian Dynamics and Model Adjustments: A Reality-Based Approach Simulation of Pedestrian Dynamics and Model Adjustments: A Reality-Based Approach Mario Höcker 1, Peter Milbradt 1 and Armin Seyfried 2 1 Institut für Bauinformatik, Leibniz Universität Hannover, 30167

More information

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m)

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m) 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

Unstable K=K T=T. Unstable K=K T=T

Unstable K=K T=T. Unstable K=K T=T G252651: Statistical Mechanics Notes for Lecture 28 I FIXED POINTS OF THE RG EQUATIONS IN GREATER THAN ONE DIMENSION In the last lecture, we noted that interactions between block of spins in a spin lattice

More information

Delay and Accessibility in Random Temporal Networks

Delay and Accessibility in Random Temporal Networks Delay and Accessibility in Random Temporal Networks 2nd Symposium on Spatial Networks Shahriar Etemadi Tajbakhsh September 13, 2017 Outline Z Accessibility in Deterministic Static and Temporal Networks

More information

Rigid body motion Limits on Acceleration

Rigid body motion Limits on Acceleration Rigid body motion Limits on Acceleration John Freidenfelds, PhD December 23, 2016 Abstract It is well-known that, according to special relativity, there is an absolute speed limit on objects traveling

More information

Inferring activity choice from context measurements using Bayesian inference and random utility models

Inferring activity choice from context measurements using Bayesian inference and random utility models Inferring activity choice from context measurements using Bayesian inference and random utility models Ricardo Hurtubia Gunnar Flötteröd Michel Bierlaire Transport and mobility laboratory - EPFL Urbanics

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Route choice models: Introduction and recent developments

Route choice models: Introduction and recent developments Route choice models: Introduction and recent developments Michel Bierlaire transp-or.epfl.ch Transport and Mobility Laboratory, EPFL Route choice models: Introduction and recent developments p.1/40 Route

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Fundamentals Miguel A. Veganzones Grupo Inteligencia Computacional Universidad del País Vasco (Grupo Inteligencia Vapnik Computacional Universidad del País Vasco) UPV/EHU 1

More information

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit Paul Dupuis Division of Applied Mathematics Brown University IPAM (J. Doll, M. Snarski,

More information

Passenger-oriented railway disposition timetables in case of severe disruptions

Passenger-oriented railway disposition timetables in case of severe disruptions Passenger-oriented railway disposition timetables in case of severe disruptions Stefan Binder Yousef Maknoon Michel Bierlaire STRC 2015, April 17th Outline Motivation Problem description Research question

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Visual Analytics ofmovement

Visual Analytics ofmovement Gennady Andrienko. Natalia Andrienko Peter Bak Daniel Keim Stefan Wrobel Visual Analytics ofmovement ~ Springer Contents 1 Introduction... 1 1.1 A Single Trajectory.....................................

More information

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically:

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically: DEGREE REDUCTION OF BÉZIER CURVES DAVE MORGAN Abstract. This paper opens with a description of Bézier curves. Then, techniques for the degree reduction of Bézier curves, along with a discussion of error

More information

Monsuru Adepeju 1 and Andy Evans 2. School of Geography, University of Leeds, LS21 1HB 1

Monsuru Adepeju 1 and Andy Evans 2. School of Geography, University of Leeds, LS21 1HB 1 Investigating the impacts of training data set length (T) and the aggregation unit size (M) on the accuracy of the self-exciting point process (SEPP) hotspot method Monsuru Adepeju 1 and Andy Evans 2 1,

More information

A new trial to estimate the noise propagation characteristics of a traffic noise system

A new trial to estimate the noise propagation characteristics of a traffic noise system J. Acoust. Soc. Jpn. (E) 1, 2 (1980) A new trial to estimate the noise propagation characteristics of a traffic noise system Mitsuo Ohta*, Kazutatsu Hatakeyama*, Tsuyoshi Okita**, and Hirofumi Iwashige*

More information

= w 2. w 1. B j. A j. C + j1j2

= w 2. w 1. B j. A j. C + j1j2 Local Minima and Plateaus in Multilayer Neural Networks Kenji Fukumizu and Shun-ichi Amari Brain Science Institute, RIKEN Hirosawa 2-, Wako, Saitama 35-098, Japan E-mail: ffuku, amarig@brain.riken.go.jp

More information

arxiv: v1 [physics.soc-ph] 3 Dec 2009

arxiv: v1 [physics.soc-ph] 3 Dec 2009 A Modification of the Social Force Model by Foresight Preprint, to appear in the Proceedings of PED2008 arxiv:0912.0634v1 [physics.soc-ph] 3 Dec 2009 Bernhard Steffen Juelich Institute for Supercomputing,

More information

A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS

A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS J. Anselmi 1, G. Casale 2, P. Cremonesi 1 1 Politecnico di Milano, Via Ponzio 34/5, I-20133 Milan, Italy 2 Neptuny

More information

DEFINITE INTEGRALS - AREA UNDER A CURVE

DEFINITE INTEGRALS - AREA UNDER A CURVE Mathematics Revision Guides Definite Integrals, Area Under a Curve Page of M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year / AS DEFINITE INTEGRALS - AREA UNDER A CURVE Version :. Date:

More information

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Physics 2210 Fall 2015 smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Collective Motion and Center-of-Mass Take a group of particles, each with mass m i, position r i and velocity

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Transit-Oriented Development. Christoffer Weckström

Transit-Oriented Development. Christoffer Weckström Transit-Oriented Development Christoffer Weckström 31.10.2017 Outline Context of Transit-oriented Development Elements of Transit-oriented Development A short history of land use and transit integration

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki October 13, 2017 Lecture 06: Spatial Analysis Outline Today Concepts What is spatial interpolation Why is necessary Sample of interpolation (size and pattern)

More information

Safe Transportation Research & Education Center UC Berkeley

Safe Transportation Research & Education Center UC Berkeley Safe Transportation Research & Education Center UC Berkeley Title: A 3D Computer Simulation Test of the Leibowitz Hypothesis Author: Barton, Joseph E., UC Berkeley Department of Mechanical Engineering

More information

in order to insure that the Liouville equation for f(?; t) is still valid. These equations of motion will give rise to a distribution function f(?; t)

in order to insure that the Liouville equation for f(?; t) is still valid. These equations of motion will give rise to a distribution function f(?; t) G25.2651: Statistical Mechanics Notes for Lecture 21 Consider Hamilton's equations in the form I. CLASSICAL LINEAR RESPONSE THEORY _q i = @H @p i _p i =? @H @q i We noted early in the course that an ensemble

More information

Sensitivity Analysis of a Nuclear Reactor System Finite Element Model

Sensitivity Analysis of a Nuclear Reactor System Finite Element Model Westinghouse Non-Proprietary Class 3 Sensitivity Analysis of a Nuclear Reactor System Finite Element Model 2018 ASME Verification & Validation Symposium VVS2018-9306 Gregory A. Banyay, P.E. Stephen D.

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Structural Cause of Missed Eruption in the Lunayyir Basaltic

Structural Cause of Missed Eruption in the Lunayyir Basaltic GSA DATA REPOSITORY 2015140 Supplementary information for the paper Structural Cause of Missed Eruption in the Lunayyir Basaltic Field (Saudi Arabia) in 2009 Koulakov, I., El Khrepy, S., Al-Arifi, N.,

More information

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation M.-O. Hongler, O. Gallay, R. Colmorn, P. Cordes and M. Hülsmann Ecole Polytechnique Fédérale de Lausanne (EPFL), (CH)

More information

Chaotic Billiards. Part I Introduction to Dynamical Billiards. 1 Review of the Dierent Billiard Systems. Ben Parker and Alex Riina.

Chaotic Billiards. Part I Introduction to Dynamical Billiards. 1 Review of the Dierent Billiard Systems. Ben Parker and Alex Riina. Chaotic Billiards Ben Parker and Alex Riina December 3, 2009 Part I Introduction to Dynamical Billiards 1 Review of the Dierent Billiard Systems In investigating dynamical billiard theory, we focus on

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Calculating Moments of Inertia

Calculating Moments of Inertia OpenStax-CNX module: m58330 1 Calculating Moments of Inertia OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you

More information

Data Science Unit. Global DTM Support Team, HQ Geneva

Data Science Unit. Global DTM Support Team, HQ Geneva NET FLUX VISUALISATION FOR FLOW MONITORING DATA Data Science Unit Global DTM Support Team, HQ Geneva March 2018 Summary This annex seeks to explain the way in which Flow Monitoring data collected by the

More information

Generating Urban Mobility Data Sets Using Scalable GANs

Generating Urban Mobility Data Sets Using Scalable GANs Generating Urban Mobility Data Sets Using Scalable GANs Abhinav Jauhri & John Paul Shen ECE Department Carnegie Mellon University {ajauhri, jpshen}@cmu.edu Objective Generate city-scale human mobility

More information

Generalisation and Multiple Representation of Location-Based Social Media Data

Generalisation and Multiple Representation of Location-Based Social Media Data Generalisation and Multiple Representation of Location-Based Social Media Data Dirk Burghardt, Alexander Dunkel and Mathias Gröbe, Institute of Cartography Outline 1. Motivation VGI and spatial data from

More information

only nite eigenvalues. This is an extension of earlier results from [2]. Then we concentrate on the Riccati equation appearing in H 2 and linear quadr

only nite eigenvalues. This is an extension of earlier results from [2]. Then we concentrate on the Riccati equation appearing in H 2 and linear quadr The discrete algebraic Riccati equation and linear matrix inequality nton. Stoorvogel y Department of Mathematics and Computing Science Eindhoven Univ. of Technology P.O. ox 53, 56 M Eindhoven The Netherlands

More information

Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

INSTITUT FÜR INFORMATIK

INSTITUT FÜR INFORMATIK INSTITUT FÜR INFORMATIK DER LUDWIGMAXIMILIANSUNIVERSITÄT MÜNCHEN Bachelorarbeit Propagation of ESCL Cardinality Constraints with Respect to CEP Queries Thanh Son Dang Aufgabensteller: Prof. Dr. Francois

More information

Macroscopic Equation and Its Application for Free Ways

Macroscopic Equation and Its Application for Free Ways Open Journal of Geology, 017, 7, 915-9 http://www.scirp.org/journal/ojg ISSN Online: 161-7589 ISSN Print: 161-7570 Macroscopic Equation and Its Application for Free Ways Mahmoodreza Keymanesh 1, Amirhossein

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

heart 2013 Amesoscopicdynamicflowmodelfor pedestrian movement in railway stations

heart 2013 Amesoscopicdynamicflowmodelfor pedestrian movement in railway stations heart 2013 Amesoscopicdynamicflowmodelfor pedestrian movement in railway stations F. Hänseler, B. Farooq, T. Mühlematter and M. Bierlaire September 6, 2013 1/17 Pedestrian flows in train stations (Lucerne,

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information