In this problem, we are given the following quantities: We want to find: Equations and basic calculations:

Size: px
Start display at page:

Download "In this problem, we are given the following quantities: We want to find: Equations and basic calculations:"

Transcription

1 .1 It takes. million tons of oal per year to a 1000-W power plant that operates at a apaity fator of 70%. If the heating value of the oal is 1,000 /lb, alulate the plant s effiieny and the heat rate. In this problem, we are given the following quantities: We want to find: W max 1000 W max 70% 6.x10 tons / year 1,000 / lb η (dim ensionless) and HeatRate ( / kwh) Equations and basi alulations: max (1000 W)(70%) 700 W 700,000kW max 6.x10 tons 1, lb year day x10 / hr year lb ton 65 days 4 hours With these values for power output and heat input we an alulate the desired final results. HeatRate W x10 hr 700,000 kw 8,611 kwh η 700,000 kw 6.074x10 hr 41 kwh 9 9.6%

2 .4 A syntheti ontains 50% by weight CO and 50% by weight H. Calulate its heating value, J/kg and J/kg produt, and stoihiometri air- ratio using the data of Table.1. In this problem, we are given the omposition of a syntheti on a mass basis and we want to find its heating value and its stoihiometri air/ ratio. Sine the data in Table.1 are on a mass basis, we an easily find the heating value per unit mass of synthesis gas as the weighted average of the heating values of the individual omponents from Table kg H J 0.5 kg CO J 65.0 J wh H + wcoco + kg kg H kg kg CO kg To find the heating value per unit mass of produts we have to determine the mass of produts per unit mass of. This requires a speifiation of the air/ ratio, whih is not given here. For onservation of mass the produt mass equals the mass of air plus the mass of. Thus the ratio of produt mass to mass is found by the following equation. m m prod mair + m mair m m A F We use the symbol A to denote the air/ ratio on a mass basis. We do not F have an air ratio speified in this problem, nor do we have any data from whih we an alulate suh a ratio. However, we are asked to ompute the air/ ratio for stoihiometri ombustion. We an then use this air/ ratio to ompute the heating value per unit mass of produt. We an use the data in Table [.1] on stoihiometri air ratios. The overall air/ ratio for the syntheti is simply the weighted average of the air/ ratios for eah. A F w [ A ] + w [ A CO ] 0.5 kg H kg 4.8 kg air kg H H + F H F CO A kg air F kg 0.5 kg CO.467 kg air kg kg CO With an air/ ratio of 18.7, the produt/ ratio is 19.7 and we an ompute the heating value per unit of mass of produts as follows prod 1 + A F 65.0 J kg kg 19.7 kg prod.57 kg kg prod

3 5.8 A oal has a heating value of 1,000 /lb and the following moleular omposition: C 100 H 100 S 1 N 0.5. It is burned in air with 0% exess air. (a) Calulate the emission rate of and NO in lb/btu. One more assume that the emission rate of NO is twie the emission rate of NO. In this problem, we are given the heat of ombustion, 1,000 /lb, and the general formula C x H y S z O w N v, with n 100, m 100, z 1, v 0.5, and w 0. We are also told that the total NOx emissions is a fator, f, times the NOx emissions that would our if all the nitrogen in the reated to form NO. For the given data that we have 0% exess air, we know that the air- equivalene ratio, λ, is 1.. If we assume that all the z atoms of sulfur in the burn to we have the following equation for the emission rate of per unit heat input. m n z n z n z n We an find the moleular weight of the formula from equation (1) in the ombustion notes x + y + z + w + v C H S O N (1) Substituting the data for the formula and the atomi weights of the elements into this formula gives as shown below. 100( ( ) + 1(.065) + (0.5)( ) We now have all the data neessary to solve for m. m z 1lbmol S lb lbmol lbmol S.98x10 lb lb lbmol 1, lb lb.98 million 6 The alulation for NOx is similar exept for the fator, f, by whih we multiply the NOx emissions to get the total NOx emissions. We an thus use the equation that we derived for if we use the appropriate moleular weight differenes and introdue the f fator.

4 NO f v NO 0.5lbmol N lb NO lbmol lbmol N lb 1,000 lbmol lb.86x10 lb NO lb NO.86 million NO The flue gas of the plant in Problem 5.8 is to be treated with flue gas desulfurization (FGD) using a limestone (CaCO) wet srubber to remove the. Assume that moles of CaCO are neessary for every mole of. How muh limestone is onsumed per ton of oal? In this problem, we are given molar ratio, r moles CaCO per mole that is required for the FGD unit. From problem 5.8 we know that the plant in question has an emission rate of.98 pounds of per million BTU using a oal with a heat of ombustion, 1,000 /lb. The desired mass flow rate ratio for this problem may be omputed as follows. CaCO CaCO CaCO n n CaCO CaCO r Substituting the given data for r and 1,000 /lb as well as the results from the previous problem for the emission fator, and the appropriate moleular weights gives. CaCO lbmol lb CaCO r.98x10 lbmol CaCO lbmol 6 lb lb CaCO lb lb CaCO 1, lb lbmol CaCO CaCO We thus require.149 tons 0 ton 6.1 (a) Calulate the mass defiit ( m) in atomi mass units (amu) of the following fission reation. (Use literature values for the exat masses of the isotopes and neutrons.) 5 U + n 19 Xe + 95 Sr + n (b) Calulate the energy (ev) released per one fission. () Calulate the energy released per kilogram of 5 U and ompare it to the energy released in the ombustion of 1 kg of arbon.

5 The atomi mass data and their soures are shown in the table below. Nuleus ass (amu) Referene 5 U Fay and Golomb, page 11. n Class notes (taken from NIST web site) 19 Xe Sr (a) The mass defiit for the reation given is Δm amu (b) The annihilation of 1 amu of mass produes ev. Thus, the mass defiit omputed here would produe 18.6 ev. () One ev x10-19 J and one amu x10-7 kg. So the energy release per unit mass of the 5 U atom for the fission reation shown above is found as follows. The energy released in the ombustion of 1 kg of arbon is given on page 11 of Fay and Golomb as J/kg. The fission energy release is over two million times this amount. Note that the energy for the fission reation omputed here is slightly different from that omputed for the different fission reation disussed on page 11 of the text. 6.5 The isotope 19I has a half-life of 15.7 years. In a nulear power plant aident, 1 kg of the isotope is dispersed into the surroundings of the plant. How muh of the iodine isotope will remain in the surroundings after 1, 10, and 100 years. The leture notes for September 5 have the following equation that relates the urrent onentration, N, the initial onentration, N 0, the time, t, and the half-life, t 1/. N N e 0 ln()t / t 1 We an solve this equation for the ratio, N/N 0, whih is independent of the measure of the isotope present. Thus, we an also apply this equation to determine the mass of 19 I that will be present for the various times shown. If we replae N and N 0 by m and m 0 1 kg, we obtain the following results for the mass remaining after 1, 10, and 100 years.

6 m m m 1 year 10 years 100 years (1 kg)e (1 kg)e (1 kg)e l yr ln() 15.7 yr l0 yr ln() 15.7 yr l yr ln() yr kg 0.64 kg kg Of ourse, all these alulations assume that there is no further diffusion of the 19 I during the time periods used here. 8.7 A passenger vehile diesel engine has a minimum brake speifi onsumption of 0. kg/kwh. Calulate its maximum thermal effiieny. The relationship between the brake speifi onsumption (bsf) and the thermal effiieny (η) is given by the following equation. η.6 ( bsf )(kg/kwh) LHV (J/kg) For the LHV of ombustion of diesel, we an use the value of J/kg in the seond line of page 199 of the text. This gives the following result for the effiieny. η.6 9.7% A 1.5-ton vehile has a frontal area of m, a rolling resistane oeffiient of 0.01, and a drag oeffiient of 0.. Calulate the mehanial power delivered to the wheels at a steady speed of 50 and 100 km/h, if the atmospheri density is 1. kg/m. The wheel power requirement for a vehile operating at a steady speed is given by the following equation. P C R mgv + ( C D ρv A) In this equation, m is the vehile mass, g is the aeleration of gravity, C R is the rolling frition oeffiient, V is the vehile speed, ρ is the air density, C D is the drag oeffiient and A is the frontal area of the vehile. Substituting the given data, using g 9.81 m/s, and making the appropriate unit onversions gives the desired power as follows.

7 50 10 P (0.01) ( ) (0.)( m ) P (0.01) ( ) (0.)( m ) kw 11.8kW 9.1 Compute the emission rate of (kg/s) from a large, oal-fired power plant that uses million tons of oal per year having a sulfur ontent of % by weight. In this problem, we are given the following quantities: x10 tons/year x10 kg/year 6 9 S We want to find the emission rate (kg/s). From the data given, we an ompute the average rate of, by assuming that all the sulfur in the oal is onverted to by the reation S + O. In this reation, kilograms of sulfur will reat to form 64 kilograms of. The mass ratio of produed to sulfur reated is. With this assumption, the annual average emission rate for this problem an be omputed as follows. w x10 kg oal 0.0 kg S 64 kg year w S S year kg oal kg S 65 days m.54kg/s day s 9. Calulate the emission rate of per heat input (g/gj) for oal with a heating value of 0 J/kg and a sulfur ontent of % by weight. In this problem, we are given the sulfur ontent, w S 0.0, and the heat of ombustion of the, 0 J/kg. We want to find the ratio of emissions to the heat input rate of the,. We an do this by using the relation between sulfur and emissions derived in the solution to problem 9.1, and the usual relationship that the heat

8 input is the mass flow rate of the times its heat of ombustion. This gives the following result. w Sm S w S Substituting the problem data gives. w m S S kg oal 1000 g oal 1000 J 0.0 g S 64g 0 J kg oal GJ g oal g S 1.g/GJ 9.4 The ozone data in the table represent hourly values on a high pollution day in Los Angeles. Plot the diurnal ozone profile. Determine the arithmeti average and geometri average ozone onentration for that day. Determine the maximum eight-hour average onentration and ompare it with the new ambient ozone standard of 80 ppb by volume. S The first two olumns in the table below are taken from the problem statement. The third olumn shows the results of omputing the eight-hour averages. The data from the problem statement are plotted in the figure below to give the diurnal ozone profile.

9 Ozone (ppb Hour vol) Eight-ho ur average

10 The daily average onentrations, both the arithmeti mean and the geometri mean are omputed, respetively. This gives the following results. Daily arithmeti mean 116 ppb vol Daily geometri mean 5 ppb vol In data with wide variations between the lowest and highest data points, the geometri mean gives greater weight to the lower data (as ompared to the arithmeti mean.) The individual eight-hour means in the table above were omputed. The maximum eight-hour is shown below. aximum daily eight-hour mean 6 ppb vol The maximum eight-hour value is muh greater than the new 80 ppb NAAS for ozone.

Module 4 Lesson 2 Exercises Answer Key squared square root

Module 4 Lesson 2 Exercises Answer Key squared square root Module Lesson Eerises Answer Key 1. The volume is 1 L so onentrations an be done by inspetion. Just substitute values and solve for K [ CO][ HO] K CO H (0.8)(0.8) (0.55) (0.55) K 0.659. [CH ][HS] K [H

More information

COPYRIGHTED MATERIAL. Gravimetrics. Key Terms. Key Concepts. Words that can be used as topics in essays: accuracy atomic theory

COPYRIGHTED MATERIAL. Gravimetrics. Key Terms. Key Concepts. Words that can be used as topics in essays: accuracy atomic theory 8684-X Ch02.F 2/9/01 7:49 AM Page 23 Gravimetris Key Terms Words that an be used as topis in essays: auray atomi theory density empirial formula extensive property frational rystallization heterogeneous

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #4: Due at 500 pm Monday 8 July,. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) o a very good approximation, ammonia obeys the Bertholet equation

More information

2 How far? Equilibrium Answers

2 How far? Equilibrium Answers How far? Equilibrium Answers ratie: pages 37 39 1 Answer is D. Only a hange in temperature harges the value of the equilibrium onstant. Answer is D. [B] /[A] so [B] [A] or [B] [A] 1/ 3 Answer is B. Amounts

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Process engineers are often faced with the task of

Process engineers are often faced with the task of Fluids and Solids Handling Eliminate Iteration from Flow Problems John D. Barry Middough, In. This artile introdues a novel approah to solving flow and pipe-sizing problems based on two new dimensionless

More information

SHIELDING MATERIALS FOR HIGH-ENERGY NEUTRONS

SHIELDING MATERIALS FOR HIGH-ENERGY NEUTRONS SHELDNG MATERALS FOR HGH-ENERGY NEUTRONS Hsiao-Hua Hsu Health Physis Measurements Group Los Alamos National Laboratory Los Alamos, New Mexio, 87545 USA Abstrat We used the Monte Carlo transport ode Los

More information

DEVELOPMENT OF A MULTI-FEED P-T WELLBORE MODEL FOR GEOTHERMAL WELLS

DEVELOPMENT OF A MULTI-FEED P-T WELLBORE MODEL FOR GEOTHERMAL WELLS PROCEEDINGS, Thirty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 3-February 1, 6 SGP-TR-179 DEVELOPMENT OF MULTI-FEED P-T WELLBORE MODEL FOR GEOTHERML

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

JF Physical Chemistry JF CH 1101: Introduction to Physical Chemistry.

JF Physical Chemistry JF CH 1101: Introduction to Physical Chemistry. JF Physial Chemistry 010-011. JF CH 1101: Introdution to Physial Chemistry. Dr Mike Lyons. Shool of Chemistry Trinity College Dublin. melyons@td.ie A ompendium of past examination questions set on Physial

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

Possibility of Refuse Derived Fuel Fire Inception by Spontaneous Ignition

Possibility of Refuse Derived Fuel Fire Inception by Spontaneous Ignition Possibility of Refuse Derived Fuel Fire Ineption by Spontaneous Ignition Lijing Gao 1, Takashi Tsuruda 1, Takeshi Suzuki 1, Yoshio Ogawa 1, Chihong Liao 1 and Yuko Saso 1 1 National Researh Institute of

More information

Solutions to Self Check Exercises

Solutions to Self Check Exercises hapter elf hek Exerise.1 357 5 3.57 3 10 0.0055 5 5.5 3 10 3 elf hek Exerise. a. hree signifiant figures. he leading zeros (to the left of the 1) do not ount, but the trailing zeros do. b. ive signifiant

More information

Mass Transfer (Stoffaustausch) Fall 2012

Mass Transfer (Stoffaustausch) Fall 2012 Mass Transfer (Stoffaustaush) Fall Examination 9. Januar Name: Legi-Nr.: Edition Diffusion by E. L. Cussler: none nd rd Test Duration: minutes The following materials are not permitted at your table and

More information

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules Prog. Theor. Exp. Phys. 05, 063I0 ( pages DOI: 0.093/ptep/ptv068 Appliation of the Dyson-type boson mapping for low-lying eletron exited states in moleules adao Ohkido, and Makoto Takahashi Teaher-training

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of lassial thermodynamis Fundamental Laws, roperties and roesses () First Law - Energy Balane hermodynami funtions of state Internal energy, heat and work ypes of paths (isobari, isohori, isothermal,

More information

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2 Chapter 9 Relativeity Chapter Outline 9-1 The Postulate t of Speial Relativity it 9- The Relativity of Time and Time Dilation 9-3 The Relativity of Length and Length Contration 9-4 The Relativisti Addition

More information

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction Review for Exam # Speifi Heat, Thermal Condutivity, and Thermal Diffusivity Speifi heat ( p ) A measure of how muh energy is required to raise the temperature of an objet Thermal ondutivity (k) A measure

More information

Homework Assignment Number Two. where, for the oxygen molecule κ = ,

Homework Assignment Number Two. where, for the oxygen molecule κ = , D. eer, MSE 506, Dept. o Materials Siene & Engineering, University o Tennessee, noville Homework Assignment Numer Two Prolem. Consider the Peng-Roinson Equation o state as given elow. The ritial temperature

More information

QCLAS Sensor for Purity Monitoring in Medical Gas Supply Lines

QCLAS Sensor for Purity Monitoring in Medical Gas Supply Lines DOI.56/sensoren6/P3. QLAS Sensor for Purity Monitoring in Medial Gas Supply Lines Henrik Zimmermann, Mathias Wiese, Alessandro Ragnoni neoplas ontrol GmbH, Walther-Rathenau-Str. 49a, 7489 Greifswald, Germany

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014 Amount of reatant/produt //01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever go

More information

What s New in ChemSep TM 6.8

What s New in ChemSep TM 6.8 What s New in ChemSep TM 6.8 January 2011 (Updated Marh 2011) Harry Kooijman and Ross Taylor In this doument we identify and desribe the most important new features in ChemSep. 1. New: GUI an diretly load

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING. Kinetics Lecture #1

CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING. Kinetics Lecture #1 Updated: 8 Deember 0 Print version CEE 670 TRNSPORT PROCESSES IN ENVIRONMENTL ND WTER RESOURCES ENGINEERING Kinetis Leture # Introdution: Simple Rate Laws Clark, 9.-9.6 Brezonik, pp.-39 Introdution Kinetis

More information

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13 APPENDIX A APPENDIX A Due to its extension, the dissertation ould not inlude all the alulations and graphi explanantions whih, being not essential, are neessary to omplete the researh. This appendix inludes

More information

Chemistry (Physical chemistry) Lecture 10.

Chemistry (Physical chemistry) Lecture 10. Chemistry (Physial hemistry) Leture 0. EPM, semester II by Wojieh Chrzanowsi, PhD, DS Wyłady współfinansowane ze środów Unii Europejsiej w ramah EFS, UDA-POKL 04.0.02.-00-37/-00 Absolwent Wydziału Chemiznego

More information

Exercise 3: Quadratic sequences

Exercise 3: Quadratic sequences Exerise 3: s Problem 1: Determine whether eah of the following sequenes is: a linear sequene; a quadrati sequene; or neither.. 3. 4. 5. 6. 7. 8. 8;17;3;53;80; 3 p ;6 p ;9 p ;1 p ;15 p ; 1;,5;5;8,5;13;

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014 Amount of reatant/produt 5/7/01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever

More information

6.4 Dividing Polynomials: Long Division and Synthetic Division

6.4 Dividing Polynomials: Long Division and Synthetic Division 6 CHAPTER 6 Rational Epressions 6. Whih of the following are equivalent to? y a., b. # y. y, y 6. Whih of the following are equivalent to 5? a a. 5, b. a 5, 5. # a a 6. In your own words, eplain one method

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Properties of Quarks

Properties of Quarks PHY04 Partile Physis 9 Dr C N Booth Properties of Quarks In the earlier part of this ourse, we have disussed three families of leptons but prinipally onentrated on one doublet of quarks, the u and d. We

More information

9.4 Determination of the reaction order

9.4 Determination of the reaction order 0,1 0,2 0,3 r 0,1 r 0,2 r 0,3 t Signifiane r = k [A] [B] [C] One we determine the order of a reation, we an write out the rate equation of the reation and tell the details of the kineti harateristis of

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Leture 6 Chemial Reation Engineering (CRE) is the field that studies the rates and mehanisms of hemial reations and the design of the reators in whih they tae plae. Web Leture 6 Class Leture Course Information

More information

7.1 Roots of a Polynomial

7.1 Roots of a Polynomial 7.1 Roots of a Polynomial A. Purpose Given the oeffiients a i of a polynomial of degree n = NDEG > 0, a 1 z n + a 2 z n 1 +... + a n z + a n+1 with a 1 0, this subroutine omputes the NDEG roots of the

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

REVIEW QUESTIONS Chapter 15

REVIEW QUESTIONS Chapter 15 hemistry 10 ANSWER EY REVIEW QUESTIONS hapter 15 1. A mixture of 0.10 mol of NO, 0.050 mol of H and 0.10 mol of HO is plaed in a 1.0-L flask and allowed to reah equilibrium as shown below: NO (g) + H (g)

More information

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley.

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley. SP2h.1 Aelerating trolleys Your teaher may wath to see if you an follow instrutions safely take areful measurements. Introdution The work done y a fore is a measure of the energy transferred when a fore

More information

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass.

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass. The Complete Energy Translations in the Detailed Deay Proess of Baryoni Su-Atomi Partiles. [4] P.G.Bass. PGBass P12 Version 1..3 www.relativitydomains.om August 218 Astrat. This is the final paper on the

More information

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T.

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T. BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Kosak-Kolin, S., Kurevija, T. Faulty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering Pierottijeva 6, Zagreb 0 000, Croatia

More information

Homework Set 4. gas B open end

Homework Set 4. gas B open end Homework Set 4 (1). A steady-state Arnold ell is used to determine the diffusivity of toluene (speies A) in air (speies B) at 298 K and 1 atm. If the diffusivity is DAB = 0.0844 m 2 /s = 8.44 x 10-6 m

More information

The Antimatter Photon Drive A Relativistic Propulsion System

The Antimatter Photon Drive A Relativistic Propulsion System The Antimatter Photon Drive A Relativisti Propulsion System Darrel Smith & Jonathan Webb Embry-Riddle Aeronautial University Presott, AZ 8630 This paper desribes a propulsion system that derives its thrust

More information

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO Evaluation of effet of blade internal modes on sensitivity of Advaned LIGO T0074-00-R Norna A Robertson 5 th Otober 00. Introdution The urrent model used to estimate the isolation ahieved by the quadruple

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

MATHEMATICAL AND NUMERICAL BASIS OF BINARY ALLOY SOLIDIFICATION MODELS WITH SUBSTITUTE THERMAL CAPACITY. PART II

MATHEMATICAL AND NUMERICAL BASIS OF BINARY ALLOY SOLIDIFICATION MODELS WITH SUBSTITUTE THERMAL CAPACITY. PART II Journal of Applied Mathematis and Computational Mehanis 2014, 13(2), 141-147 MATHEMATICA AND NUMERICA BAI OF BINARY AOY OIDIFICATION MODE WITH UBTITUTE THERMA CAPACITY. PART II Ewa Węgrzyn-krzypzak 1,

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Topics Adiabatic Combustion Adiabatic Flame Temperature Example Combustion Efficiency Second and First Law Efficiencies Contrasted Example Problem

Topics Adiabatic Combustion Adiabatic Flame Temperature Example Combustion Efficiency Second and First Law Efficiencies Contrasted Example Problem ME 410 Day 12 opis diabati Combustion diabati Flame emperature Example Combustion Eiieny Seond and First Law Eiienies Contrasted Example roblem 1. he Case o diabati Combustion Here is it assumed that there

More information

2.6 Absolute Value Equations

2.6 Absolute Value Equations 96 CHAPTER 2 Equations, Inequalities, and Problem Solving 89. 5-8 6 212 + 2 6-211 + 22 90. 1 + 2 6 312 + 2 6 1 + 4 The formula for onverting Fahrenheit temperatures to Celsius temperatures is C = 5 1F

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now?

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now? Physis 07 Problem. If the speed of light were smaller than it is, would relatiisti phenomena be more or less onspiuous than they are now? All of the phenomena of speial relatiity depend upon the fator

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

MC Practice F2 Solubility Equilibrium, Ksp Name

MC Practice F2 Solubility Equilibrium, Ksp Name MC Pratie F Solubility Equilibrium, Ksp Name This is pratie - Do NOT heat yourself of finding out what you are apable of doing. Be sure you follow the testing onditions outlined below. DO NOT USE A CALCULATOR.

More information

Lecture 13 Bragg-Williams Theory

Lecture 13 Bragg-Williams Theory Leture 13 Bragg-Williams Theory As noted in Chapter 11, an alternative mean-field approah is to derive a free energy, F, in terms of our order parameter,m, and then minimize F with respet to m. We begin

More information

A Comparison between the Iteration Methods and Adomian Decomposition Method for Solving Nonlinear Combustion Equations

A Comparison between the Iteration Methods and Adomian Decomposition Method for Solving Nonlinear Combustion Equations Applied Mathematial Sienes, Vol. 7, 0, no. 5, 5-9 HIKARI Ltd, www.m-hikari.om http://dx.doi.org/0.988/ams.0.99 A Comparison between the Iteration Methods and Adomian Deomposition Method or Solving Nonlinear

More information

An iterative least-square method suitable for solving large sparse matrices

An iterative least-square method suitable for solving large sparse matrices An iteratie least-square method suitable for soling large sparse matries By I. M. Khabaza The purpose of this paper is to report on the results of numerial experiments with an iteratie least-square method

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 CIMM- Av.Velez Sarsfield 1561 C.P.5000 Córdoba, Argentina. aabril@intiemor.gov.ar Abstrat - A new interpretation to the kinetis of iron oxide

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

"Research Note" ANALYSIS AND OPTIMIZATION OF A FISSION CHAMBER DETECTOR USING MCNP4C AND SRIM MONTE CARLO CODES *

Research Note ANALYSIS AND OPTIMIZATION OF A FISSION CHAMBER DETECTOR USING MCNP4C AND SRIM MONTE CARLO CODES * Iranian Journal of Siene & Tehnology, Transation A, Vol. 33, o. A3 Printed in the Islami Republi of Iran, 9 Shiraz University "Researh ote" AALYSIS AD OPTIMIZATIO OF A FISSIO CHAMBER DETECTOR USIG MCP4C

More information

properties via a simple hydrolysis-based approach

properties via a simple hydrolysis-based approach Eletroni Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Soiety of Chemistry 01 Supporting Information Salable synthesis of hollow O nanoubes with unique optial

More information

STATISTICAL MECHANICS & THERMODYNAMICS

STATISTICAL MECHANICS & THERMODYNAMICS UVA PHYSICS DEPARTMENT PHD QUALIFYING EXAM PROBLEM FILE STATISTICAL MECHANICS & THERMODYNAMICS UPDATED: NOVEMBER 14, 212 1. a. Explain what is meant by the density of states, and give an expression for

More information

11.4 Molecular Orbital Description of the Hydrogen Molecule Electron Configurations of Homonuclear Diatomic Molecules

11.4 Molecular Orbital Description of the Hydrogen Molecule Electron Configurations of Homonuclear Diatomic Molecules Chap Moleular Eletroni Struture Table of Contents. The orn-oppenheimer pproximation -. The Hydrogen Moleule Ion.3 Calulation of the Energy of the Hydrogen Moleule Ion.4 Moleular Orbital Desription of the

More information

Concrete Technology 2/4. Aalto University School of Engineering Department of Civil and Structural Engineering Building Materials Technology

Concrete Technology 2/4. Aalto University School of Engineering Department of Civil and Structural Engineering Building Materials Technology /4 Aalto University Shool of Engineering Department of Civil and Strutural Engineering Building Materials Tehnology Hydration in a losed system Water is not transferred with the surroundings Variables

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state:

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state: CE304, Spring 2004 Leture 6 Volumetri roperties of ure Fluids, part 4 The generi ubi equation of state: There are many possible equations of state (and many have been proposed) that have the same general

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nulear and Partile Physis (5110) Marh 7, 009 Relativisti Kinematis 3/7/009 1 Relativisti Kinematis Review! Wherever you studied this before, look at it again, e.g. Tipler (Modern Physis), Hyperphysis

More information

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be Errata and hanges for Leture Note (I would like to thank Tomasz Sulka for the following hanges): Page 5 of LN: f f ' lim should be g g' f f ' lim lim g g ' Page 8 of LN: the following words (in RED) have

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena Page 1 of 10 Physial Laws, Absolutes, Relative Absolutes and Relativisti Time Phenomena Antonio Ruggeri modexp@iafria.om Sine in the field of knowledge we deal with absolutes, there are absolute laws that

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 5 Chemial Equilibrium 5. The Conept of Equilibrium Figure: 3. from Chemistry by MMurray & Fey Figure 3.(a) NO 4( g) NO( g) olorless brown we start with reatant, N O 4, so the solution is olorless

More information

Failure Assessment Diagram Analysis of Creep Crack Initiation in 316H Stainless Steel

Failure Assessment Diagram Analysis of Creep Crack Initiation in 316H Stainless Steel Failure Assessment Diagram Analysis of Creep Crak Initiation in 316H Stainless Steel C. M. Davies *, N. P. O Dowd, D. W. Dean, K. M. Nikbin, R. A. Ainsworth Department of Mehanial Engineering, Imperial

More information

RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK

RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mehanial and Nulear Engineering Kansas State University Manhatta, Kansas 55606 published as Report 290 ENGINEERING EXPERIMENT

More information

Final Exam: know your section, bring your ID!

Final Exam: know your section, bring your ID! Chapter 15: Equilibrium Part 1 Read: BLB 15.1 3 HW: BLB 15:13,14, 21 Supplemental 15:1 4 Know: Chemial Equilibrium Catalysts Equilibrium Constant Equilibrium onstant expression Homogeneous/Heterogeneous

More information

Diffusion and compensating subsidence as limiting cases of a single flux parameterization. David Randall

Diffusion and compensating subsidence as limiting cases of a single flux parameterization. David Randall ! Revised September 014 9:49 AM! 1 Diffusion and ompensating subsidene as limiting ases of a single flux parameterization David Randall The tendeny of the average of a onservative variable h due to a vertial

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

Applied chemical process. Engineering thinking. Process technology development. Basic terms, balance sheet

Applied chemical process. Engineering thinking. Process technology development. Basic terms, balance sheet pplied hemial proess Basi terms, balane sheet Engineering thinking desription of the industrial apparatus + desription of the hemial and physial operation in the proess preise formulation of the problem

More information

Introduction to Exergoeconomic and Exergoenvironmental Analyses

Introduction to Exergoeconomic and Exergoenvironmental Analyses Tehnishe Universität Berlin Introdution to Exergoeonomi and Exergoenvironmental Analyses George Tsatsaronis The Summer Course on Exergy and its Appliation for Better Environment Oshawa, Canada April, 30

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(10): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(10): Research Article Available online www.jopr.om Journal of Chemial and Pharmaeutial Researh, 014, 6(10:441-449 Researh Artile ISSN : 0975-7384 CODEN(USA : JCPRC5 Modeling and simulation of a wetted-wall olumn for SO absorption

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE MAJOR STREET AT A TWSC INTERSECTION

IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE MAJOR STREET AT A TWSC INTERSECTION 09-1289 Citation: Brilon, W. (2009): Impedane Effets of Left Turners from the Major Street at A TWSC Intersetion. Transportation Researh Reord Nr. 2130, pp. 2-8 IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE

More information

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions)

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions) .0 Fall 05, Problem Set 6 (Normal Version Solutions) Due: November, :59PM on Stellar November 4, 05 Complete all the assigned problems, and do make sure to show your intermediate work. Please upload your

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

POROUS CARBON PARTICLE COMBUSTION IN AIR

POROUS CARBON PARTICLE COMBUSTION IN AIR MCS 7 Chia Laguna, Cagliari, Sardinia, taly, 11-15, 11 POOUS CABON PATCLE COMBUSTON N A V. M. Gremyahkin grema@ipmnet.ru nstitute for Problems in Mehanis, AS, Mosow, ussia Abstrat Theoretial investigation

More information

u x u t Internal Waves

u x u t Internal Waves Internal Waves We now examine internal waves for the ase in whih there are two distint layers and in whih the lower layer is at rest. This is an approximation of the ase in whih the upper layer is muh

More information

Mean Activity Coefficients of Peroxodisulfates in Saturated Solutions of the Conversion System 2NH 4. H 2 O at 20 C and 30 C

Mean Activity Coefficients of Peroxodisulfates in Saturated Solutions of the Conversion System 2NH 4. H 2 O at 20 C and 30 C Mean Ativity Coeffiients of Peroxodisulfates in Saturated Solutions of the Conversion System NH 4 Na S O 8 H O at 0 C and 0 C Jan Balej Heřmanova 5, 170 00 Prague 7, Czeh Republi balejan@seznam.z Abstrat:

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

MOLECULAR ORBITAL THEORY- PART I

MOLECULAR ORBITAL THEORY- PART I 5.6 Physial Chemistry Leture #24-25 MOLECULAR ORBITAL THEORY- PART I At this point, we have nearly ompleted our rash-ourse introdution to quantum mehanis and we re finally ready to deal with moleules.

More information

CDS 101/110: Lecture 2.1 System Modeling. Model-Based Analysis of Feedback Systems

CDS 101/110: Lecture 2.1 System Modeling. Model-Based Analysis of Feedback Systems CDS 11/11: Leture 21 System Modeling Rihard M Murray 5 Otober 215 Goals:! Define a model and its use in answering questions about a system! Introdue the onepts of state, dynamis, inputs and outputs! Review

More information

EE 321 Project Spring 2018

EE 321 Project Spring 2018 EE 21 Projet Spring 2018 This ourse projet is intended to be an individual effort projet. The student is required to omplete the work individually, without help from anyone else. (The student may, however,

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Battery Sizing for Grid Conneted PV Systems with Fixed Minimum Charging/Disharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstrat In this paper, we study a battery sizing problem for grid-onneted

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information