(b) Write the DTDS: s t+1 =

Size: px
Start display at page:

Download "(b) Write the DTDS: s t+1 ="

Transcription

1 Math 155. Homework 4. Sections 1.9, Do the following problems from the Adler text: 1.11: 2 (note: c = e ατ ), 6, 15, : 26, : 32, 34 Also do the following problems. 1. Three seals splash into their salt water pool at Sea World, spilling 20 gallons of water. Their pool usually holds 350 gallons of water. If one replaces the 20 gallons of water with pure water without adding salt, the concentration of salt will decrease. (a) Fill in the four blank boxes below to model the situation above. Let s t represent the concentration of salt in the pool after the seals have splashed t times, measured in mol/gal. Step Volume Total Salt (mol) Salt Concentration (mol/gal) H 2 0 in pool before seals jump in 350 gal 350s t s t Water lost 20 gal 20s t s t H 2 0 in pool after seals jump in 330 gal s t Pure water replaced 20 gal 0 H 2 0 in pool after adding pure water (b) Write the DTDS: s t+1 = For problem 2, you will need a computer with the Wolfram Mathematica Player installed so that you can make use of Mathematica Demonstrations. Instructions for downloading the free Mathematica Player are at the course website under the Study Resources tab; colostate.edu/~shipman/math155/study-resources.html. The Mathematica Demonstrations, which plot iterations and cobweb diagrams of DTDS s as you actively change parameters, are also available at this site. The Mathematica Player is also installed on the computers on the first floor of the Morgan Library. To use the player in the Morgan Library, you just download any of the Mathematica Demonstrations, and then double click on the demonstration you have downloaded (no Mathematica Player icon appears in the library computers and Mathematica Player is not in the list of programs on those computers, but the player is installed!).

2 2. For this exercise, we will use the Wolfram Mathematica Player Demonstration for the Heart Model from the Study Resources page of the course website. Set the player for the parameters τ = 0.4, α = 0.9, u = 16, V c = 47 and initial condition V 0 = 3. (a) What is the long-term behavior of a heart under such conditions? (b) Now decrease τ to 0.3. What long-term behavior do you observe? (c) Now decrease τ to 0.2. What long-term behavior do you observe? (d) What is the biological interpretation of a decrease in τ? (e) Using the parameters τ = 0.2, α = 0.9, V c = 47, can you find a value for u that makes the heart healthy? (f) A pacemaker monitors the heart to see if the heart beat is too slow. If the heart is beating too slow the pacemaker sends a signal to tell the heart to beat (i.e. sends a signal like the SA node sends to the AV node). What parameter or parameters in our model would be affected by a pacemaker?

3 3. Let V t represent the voltage of the AV node in the Heart Model. { e V t+1 = ατ V t + u if V t e ατ V c e ατ V t if V t > e ατ V c Let e ατ = 1 5, u = 10, and V c = 2. (a) If V 0 = 6, calculate V 1. Will the heart beat? Why or why not? (b) Does this system have an equilibrium? If so, find it algebraically; if not, explain why not. (c) Graph the updating function and cobweb from an initial value of V 0 = 6 to determine if this heart is i) healthy, ii) has a 2:1 block, or iii) has the Wenckebach phenomenon.

4 4. Let V t represent the voltage at the AV node in the heart model { e V t+1 = ατ V t + u, if V t e ατ V c e ατ V t, if V t > e ατ V c (a) For each of the following two graphs of the updating function, cobweb starting from an initial value of V 0 = 10, and determine if the heart i) is healthy, ii) has a 2:1 block, or iii) has the Wenckebach phenomenon. (b) Now let e ατ = 0.25, u = 10, and V c = 14. i) Does the system have an equilibrium? Justify your answer, and find the equilibrium if there is one. ii) Recall that e ατ = 0.25 determines the decay in voltage at the AV node between signals from the SA node. If α = 0.75, calculate the time τ between signals. Round to three decimal places.

5 5. Suppose that the population f(t) of a fungus as a function of time is given by f(t) = 3t (a) Find a formula for the slope of the secant line to f(t) that passes through (2, 13) and (2 + t, f(2 + t)). (b) Find a formula for the average rate of change of the fungus population between times 2 and 2 + t as a function of t. (c) What is the average rate of change in the fungus population between times t = 2 and t = 2.2? (d) Find the limit as t 0 of your formula in (b). What is the instantaneous rate of change of the fungus population at time t = 2? (e) Graph f(t) and indicate a graphical interpretation of the instantaneous rate of change at time t = 2.

6 6. Evaluate the following limits. 1. lim x 2 x 2. lim x 0 sin(x) 1 3. lim x 0 x 3 4. lim x 1 1 (x 1) 2 5. lim x x x 2 6. lim x x x 2 7. lim x 0 + ln(x) 2(x + x) 2 2 x 8. lim x 0 x 9. lim x 2 x 2 + x 6 x 2

Instructions: This quiz is closed books and closed notes. You may use calculators. Work that is erased or crossed out will not be graded.

Instructions: This quiz is closed books and closed notes. You may use calculators. Work that is erased or crossed out will not be graded. Math 155-004, Quiz 1 January 27, 2008 Instructions: This quiz is closed books and closed notes. You may use calculators. Work that is erased or crossed out will not be graded. 1. (5 pts) Suppose that a

More information

Math 155 Notes on Lectures

Math 155 Notes on Lectures Math 155 Notes on Lectures Day 1 Preliminaries: Go over course policies. Note the exam dates and times (Thursday evenings) and state that no make-up exams are given, with a few exceptions if an alternate

More information

Math 155. Calculus for Biological Scientists Spring, 2018, February 6th-7th Section 1.9: The Lung Model

Math 155. Calculus for Biological Scientists Spring, 2018, February 6th-7th Section 1.9: The Lung Model Math 155. Calculus for Biological Scientists Spring, 2018, February 6th-7th Section 1.9: The Lung Model Mixture Problems Example 1 We want to make 300 g of a salt solution containing 6 % salt. We will

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

Math Problem Set #3 Solution 19 February 2001

Math Problem Set #3 Solution 19 February 2001 Math 203-04 Problem Set #3 Solution 19 February 2001 Exercises: 1. B & D, Section 2.3, problem #3. In your answer, give both exact values and decimal approximations for the amount of salt in the tank at

More information

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University Math 1210 Calculus 1 section 2.1 and 2.2 Julian Chan Department of Mathematics Weber State University 2013 Objectives Objectives: to tangent lines to limits What is velocity and how to obtain it from the

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

I II III IV V VI VII VIII IX Total

I II III IV V VI VII VIII IX Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121 - DEC 2017 Section 002, 003 (Main Campus Sections) Instructor: A. Ableson,

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

171S1.1 Graphs, Functions, Models August 23, 2012

171S1.1 Graphs, Functions, Models August 23, 2012 MAT 171 D10 8:00 9:15 MAT 171 D11 9:30 10:45 Aug 21 7:11 AM Aug 21 7:14 AM MAT 171 D14 2:00 3:15 MAT 171 D15 3:30 4:45 Aug 21 7:14 AM Aug 21 7:14 AM 1 MAT 171 Dr. Claude Moore, CFCC CHAPTER 1: Graphs,

More information

Exploring the Derivative (2.7, 2.8) Prelab: Review Figure 1 (p. 141), Figure 6 (p. 143), Example 7 (p. 147) and Equation 2 (p.

Exploring the Derivative (2.7, 2.8) Prelab: Review Figure 1 (p. 141), Figure 6 (p. 143), Example 7 (p. 147) and Equation 2 (p. Exploring the Derivative (2.7, 2.8) Prelab: Review Figure (p. 4), Figure 6 (p. 43), Example 7 (p. 47) and Equation 2 (p. 52) I. Introduction: We begin by exploring a tangent line geometrically. Suppose

More information

Fixed-Point Iteration

Fixed-Point Iteration Fixed-Point Iteration MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Motivation Several root-finding algorithms operate by repeatedly evaluating a function until its

More information

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications.

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. Section 8.7 Taylor and MacLaurin Series (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. MATH 126 (Section 8.7) Taylor and MacLaurin Series The University of Kansas

More information

Math 155 Prerequisite Review Handout

Math 155 Prerequisite Review Handout Math 155 Prerequisite Review Handout August 23, 2010 Contents 1 Basic Mathematical Operations 2 1.1 Examples...................................... 2 1.2 Exercises.......................................

More information

Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing.

Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing. Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing. Determine the average rate of change for the function between

More information

Math 131 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 5.5, 6.1, 6.5, and 6.7)

Math 131 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 5.5, 6.1, 6.5, and 6.7) Math 131 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 5.5, 6.1, 6.5, and 6.7) Note: This collection of questions is intended to be a brief overview of the exam material

More information

5-6. Quadratic Equations. Zero-Product Property VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING. Problem 1. Solving a Quadratic Equation by Factoring

5-6. Quadratic Equations. Zero-Product Property VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING. Problem 1. Solving a Quadratic Equation by Factoring 5-6 Quadratic Equations TEKS FOCUS TEKS (4)(F) Solve quadratic and square root equations. TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate,

More information

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim Name: Section: Names of collaborators: Main Points: 1. Definition of derivative as limit of difference quotients 2. Interpretation of derivative as slope of graph 3. Interpretation of derivative as instantaneous

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

I II III IV V VI VII VIII IX Total

I II III IV V VI VII VIII IX Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON DEC 2015 MATH 121 Instructors: A. Ableson, S. Greenhalgh, D. Rorabaugh INSTRUCTIONS:

More information

2.7: Derivatives and Rates of Change

2.7: Derivatives and Rates of Change 2.7: Derivatives and Rates of Change Recall from section 2.1, that the tangent line to a curve at a point x = a has a slope that can be found by finding the slopes of secant lines through the curve at

More information

Calcul différentiel et intégral pour les sciences de la vie I MAT1730 Test 1 Professeur: Benoit Dionne

Calcul différentiel et intégral pour les sciences de la vie I MAT1730 Test 1 Professeur: Benoit Dionne Question 1 Calcul différentiel et intégral pour les sciences de la vie I MAT1730 Test 1 Professeur: Benoit Dionne Find the derivative of the following function : f(x) = x3 ln(x) 3x + 7e. x We have f(x)

More information

10-6 Changing Dimensions. IWBAT find the volume and surface area of similar three-dimensional figures.

10-6 Changing Dimensions. IWBAT find the volume and surface area of similar three-dimensional figures. IWBAT find the volume and surface area of similar three-dimensional figures. Recall that similar figures have proportional side lengths. The surface areas of similar three-dimensional figures are also

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

16.2 Solving Exponential Equations

16.2 Solving Exponential Equations Locker LESSON 16.2 Solving Exponential Equations Texas Math Standards The student is expected to: A2.5.D Solve exponential equations of the form y = ab x where a is a nonzero real number and b is greater

More information

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS Math 150 Name: QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% Show all work, simplify as appropriate, and use good form and procedure

More information

MAT137 Calculus! Lecture 9

MAT137 Calculus! Lecture 9 MAT137 Calculus! Lecture 9 Today we will study: Limits at infinity. L Hôpital s Rule. Mean Value Theorem. (11.5,11.6, 4.1) PS3 is due this Friday June 16. Next class: Applications of the Mean Value Theorem.

More information

4 Limit and Continuity of Functions

4 Limit and Continuity of Functions Module 2 : Limits and Continuity of Functions Lecture 4 : Limit at a point Objectives In this section you will learn the following The sequential concept of limit of a function The definition of the limit

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc.

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc. CRN: NAME: INSTRUCTIONS: This exam is a closed book exam. You may not use your text, homework, or other aids except for a 3 5-inch notecard. You may use an allowable calculator, TI-83 or TI-84 to perform

More information

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

THE SECANT METHOD. q(x) = a 0 + a 1 x. with THE SECANT METHOD Newton s method was based on using the line tangent to the curve of y = f (x), with the point of tangency (x 0, f (x 0 )). When x 0 α, the graph of the tangent line is approximately the

More information

Assignment 5 Bounding Complexities KEY

Assignment 5 Bounding Complexities KEY Assignment 5 Bounding Complexities KEY Print this sheet and fill in your answers. Please staple the sheets together. Turn in at the beginning of class on Friday, September 16. There are links in the examples

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Five people were asked approximately how many hours of TV they watched per week. Their responses were as follows.

Five people were asked approximately how many hours of TV they watched per week. Their responses were as follows. Exit icket Sample Solutions Five people were asked approximately how many hours of V they watched per week. heir responses were as follows. 1. Find the mean number of hours of V watched for these five

More information

6 th Grade Math Unit 2 Ratio Relationships pg. 1 Lesson Notes and Resources Available on Teacher s Website. 5.1 Ratios (online textbook pgs.

6 th Grade Math Unit 2 Ratio Relationships pg. 1 Lesson Notes and Resources Available on Teacher s Website. 5.1 Ratios (online textbook pgs. 6 th Grade Math Unit 2 Ratio Relationships pg. 1 5.1 Ratios (online textbook pgs. 190-195) A) Write the ratio for the following situation in three different ways. For every 5 seats, there are 4 fans. C)

More information

AP Calculus Chapter 2 Practice Test

AP Calculus Chapter 2 Practice Test AP Calculus Chapter 2 Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Assume that a watermelon dropped from

More information

Determining Average and Instantaneous Rates of Change

Determining Average and Instantaneous Rates of Change MHF 4UI Unit 9 Day 1 Determining Average and Instantaneous Rates of Change From Data: During the 1997 World Championships in Athens, Greece, Maurice Greene and Donovan Bailey ran a 100 m race. The graph

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

Exam 1 MATH 142 Summer 18 Version A. Name (printed):

Exam 1 MATH 142 Summer 18 Version A. Name (printed): Exam 1 MATH 142 Summer 18 Version A Name (printed): On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Name (signature): Section: Instructions: You must

More information

May 2 nd May 6 th. Unit 10: Rational & Irrational Numbers

May 2 nd May 6 th. Unit 10: Rational & Irrational Numbers Math 8: Week 33 Math Packet May 2 nd May 6 th Unit 10: Rational & Irrational Numbers Jump Start Directions: Fill out all the BINGO boards on pages 1-2 with the following perfect square numbers: 2, 4, 9,

More information

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the

More information

Example. 171S Introduction to Graphing. January 06, Introduction to Graphing. Cartesian Coordinate System

Example. 171S Introduction to Graphing. January 06, Introduction to Graphing. Cartesian Coordinate System MAT 171 Dr. Claude Moore, CFCC CHAPTER 1: Graphs, Functions, and Models 1.1 Introduction to Graphing 1.2 Functions and Graphs 1.3 Linear Functions, Slope, and Applications 1.4 Equations of Lines and Modeling

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

MAT 145: Test #2 (Part II: 31 points)

MAT 145: Test #2 (Part II: 31 points) MAT 145: Test #2 (Part II: 31 points) Part 2: Calculator OK! Name _ Calculator Used Score Use f (x) = 4x for questions 16 through 18. Express all solutions using exact values. Show appropriate x + 3 evidence

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

WebAssign Velocity (Section 2.1) (Homework)

WebAssign Velocity (Section 2.1) (Homework) 1 of 7 2/3/2012 3:57 PM WebAssign Velocity (Section 2.1) (Homework) Current Score : / 32 Due : Tuesday, February 7 2012 02:22 PM EST Doug Salane Calculus I (MAT 241-02), section 02, Spring 2012 Instructor:

More information

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables.

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables. 8.5.8 Lesson Date: Graphs of Non-Linear Functions Student Objectives I can examine the average rate of change for non-linear functions and learn that they do not have a constant rate of change. I can determine

More information

Section 3.2 Working with Derivatives

Section 3.2 Working with Derivatives Section 3.2 Working with Derivatives Problem (a) If f 0 (2) exists, then (i) lim f(x) must exist, but lim f(x) 6= f(2) (ii) lim f(x) =f(2). (iii) lim f(x) =f 0 (2) (iv) lim f(x) need not exist. The correct

More information

This Week. Professor Christopher Hoffman Math 124

This Week. Professor Christopher Hoffman Math 124 This Week Sections 2.1-2.3,2.5,2.6 First homework due Tuesday night at 11:30 p.m. Average and instantaneous velocity worksheet Tuesday available at http://www.math.washington.edu/ m124/ (under week 2)

More information

Friday 23 June 2017 Morning

Friday 23 June 2017 Morning Oxford Cambridge and RSA Friday 23 June 2017 Morning A2 GCE MATHEMATICS (MEI) 4754/01B Applications of Advanced Mathematics (C4) Paper B: Comprehension QUESTION PAPER *7350982488* Candidates answer on

More information

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1 Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

More information

MATH 1242 FINAL EXAM Spring,

MATH 1242 FINAL EXAM Spring, MATH 242 FINAL EXAM Spring, 200 Part I (MULTIPLE CHOICE, NO CALCULATORS).. Find 2 4x3 dx. (a) 28 (b) 5 (c) 0 (d) 36 (e) 7 2. Find 2 cos t dt. (a) 2 sin t + C (b) 2 sin t + C (c) 2 cos t + C (d) 2 cos t

More information

Review Assignment II

Review Assignment II MATH 11012 Intuitive Calculus KSU Name:. Review Assignment II 1. Let C(x) be the cost, in dollars, of manufacturing x widgets. Fill in the table with a mathematical expression and appropriate units corresponding

More information

Lesson 3: Working With Linear Relations Day 3 Unit 1 Linear Relations

Lesson 3: Working With Linear Relations Day 3 Unit 1 Linear Relations (A) Lesson Context BIG PICTURE of this UNIT: CONTEXT of this LESSON: mastery with algebraic manipulations/calculations involving linear relations proficiency in working with graphic and numeric representations

More information

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE LEARNING OBJECTIVES In this section, you will: Solve equations in one variable algebraically. Solve a rational equation. Find a linear equation. Given

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Section Derivatives and Rates of Change

Section Derivatives and Rates of Change Section. - Derivatives and Rates of Change Recall : The average rate of change can be viewed as the slope of the secant line between two points on a curve. In Section.1, we numerically estimated the slope

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 5: Recap of Error Propagation and Gaussian Statistics Graphs and linear fitting Experimental analysis Typically make repeat

More information

16.2 Solving Exponential Equations

16.2 Solving Exponential Equations Name Class Date 16.2 Solving Exponential Equations Essential Question: What are some ways you can solve an equation of the form ab x = c, where a and c are nonzero real numbers and b is greater than 0

More information

Getting to the Roots of Quadratics

Getting to the Roots of Quadratics NAME BACKGROUND Graphically: The real roots of a function are the x-coordinates of the points at which the graph of the function intercepts/crosses the x-axis. For a quadratic function, whose graph is

More information

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124 Procedural Skills Learning Objectives 1. Given a function and a point, sketch the corresponding tangent line. 2. Use the tangent line to estimate the value of the derivative at a point. 3. Recognize keywords

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Chapter 1. Expressions, Equations, and Functions

Chapter 1. Expressions, Equations, and Functions Chapter 1 Expressions, Equations, and Functions 1.1 Evaluate Expressions I can evaluate algebraic expressions and use exponents. CC.9-12.N.Q.1 Vocabulary: Variable a letter used to represent one or more

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Natural Numbers: Also called the counting numbers The set of natural numbers is represented by the symbol,.

Natural Numbers: Also called the counting numbers The set of natural numbers is represented by the symbol,. Name Period Date: Topic: Real Numbers and Their Graphs Standard: 9-12.A.1.3 Objective: Essential Question: What is the significance of a point on a number line? Determine the relative position on the number

More information

2.1 Tangent Lines and Rates of Change

2.1 Tangent Lines and Rates of Change .1 Tangent Lines and Rates of Change Learning Objectives A student will be able to: Demonstrate an understanding of the slope of the tangent line to the graph. Demonstrate an understanding of the instantaneous

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

Part A: Short Answer Questions

Part A: Short Answer Questions Math 111 Practice Exam Your Grade: Fall 2015 Total Marks: 160 Instructor: Telyn Kusalik Time: 180 minutes Name: Part A: Short Answer Questions Answer each question in the blank provided. 1. If a city grows

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

I II III IV V VI VII VIII IX Total

I II III IV V VI VII VIII IX Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121 - DEC 2017 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

Describing the Relationship between Two Variables

Describing the Relationship between Two Variables 1 Describing the Relationship between Two Variables Key Definitions Scatter : A graph made to show the relationship between two different variables (each pair of x s and y s) measured from the same equation.

More information

AP Calculus BC Multiple-Choice Answer Key!

AP Calculus BC Multiple-Choice Answer Key! Multiple-Choice Answer Key!!!!! "#$$%&'! "#$$%&'!!,#-! ()*+%$,#-! ()*+%$!!!!!! "!!!!! "!! 5!! 6! 7!! 8! 7! 9!!! 5:!!!!! 5! (!!!! 5! "! 5!!! 5!! 8! (!! 56! "! :!!! 59!!!!! 5! 7!!!! 5!!!!! 55! "! 6! "!!

More information

Math 51, Homework-2 Solutions

Math 51, Homework-2 Solutions SSEA Summer 27 Math 5, Homework-2 Solutions Write the parametric equation of the plane that contains the following point and line: 3 2, 4 2 + t 3 t R 5 4 By substituting t = and t =, we get two points

More information

Chapter 3: Derivatives

Chapter 3: Derivatives Name: Date: Period: AP Calc AB Mr. Mellina Chapter 3: Derivatives Sections: v 2.4 Rates of Change & Tangent Lines v 3.1 Derivative of a Function v 3.2 Differentiability v 3.3 Rules for Differentiation

More information

(MATH 1203, 1204, 1204R)

(MATH 1203, 1204, 1204R) College Algebra (MATH 1203, 1204, 1204R) Departmental Review Problems For all questions that ask for an approximate answer, round to two decimal places (unless otherwise specified). The most closely related

More information

1abcdef, 9, 10, 17, 20, 21, (in just do parts a, b and find domains)

1abcdef, 9, 10, 17, 20, 21, (in just do parts a, b and find domains) Sample Homework from Dr. Steve Merrin Math 1210 Calculus I Text: Calculus by James Stewart, 8th edition Chapter 1 sec 1.1 Some algebra review 3, 7, 8, 25, 27, 29-35, 38, 41, 43, 44, 63 Students should

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

Exam 1 KEY MATH 142 Summer 18 Version A. Name (printed):

Exam 1 KEY MATH 142 Summer 18 Version A. Name (printed): Exam 1 KEY MATH 1 Summer 18 Version A Name (printed): On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Name (signature): Section: Instructions: You must

More information

Modeling Periodic Phenomenon with Sinusoidal Functions Lesson 33

Modeling Periodic Phenomenon with Sinusoidal Functions Lesson 33 (A) Lesson Objectives a. Work with the equation f x A Bx C D sin in the context of word problems using the TI-84 and graphic approaches to answering application questions. b. Use the graphing calculator

More information

Calculus concepts and applications

Calculus concepts and applications Calculus concepts and applications This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

2.4 Rates of Change and Tangent Lines Pages 87-93

2.4 Rates of Change and Tangent Lines Pages 87-93 2.4 Rates of Change and Tangent Lines Pages 87-93 Average rate of change the amount of change divided by the time it takes. EXAMPLE 1 Finding Average Rate of Change Page 87 Find the average rate of change

More information

Unit 3 Functions HW #1 Mrs. Dailey

Unit 3 Functions HW #1 Mrs. Dailey HW#1 Name Algebra II Unit Functions HW #1 Mrs. Dailey 1) In each of the following, the variable pair given are proportional to one another. Find the missing value. (a) b = 8 when a = 16 b =? when a = 18

More information

Math 112 Group Activity: The Vertical Speed of a Shell

Math 112 Group Activity: The Vertical Speed of a Shell Name: Section: Math 112 Group Activity: The Vertical Speed of a Shell A shell is fired straight up by a mortar. The graph below shows its altitude as a function of time. 400 300 altitude (in feet) 200

More information

Math 1: Calculus with Algebra Midterm 2 Thursday, October 29. Circle your section number: 1 Freund 2 DeFord

Math 1: Calculus with Algebra Midterm 2 Thursday, October 29. Circle your section number: 1 Freund 2 DeFord Math 1: Calculus with Algebra Midterm 2 Thursday, October 29 Name: Circle your section number: 1 Freund 2 DeFord Please read the following instructions before starting the exam: This exam is closed book,

More information

Solving Linear Quadratic Systems Algebraically Algebra 1

Solving Linear Quadratic Systems Algebraically Algebra 1 Name: Solving Linear Quadratic Systems Algebraically Algebra 1 Date: In this lesson we will begin to work with solving linear-quadratic systems of equations. Recall that to x, y that satisfy all equations

More information

WebAssign Lesson 1-1 Basic Hw (Homework)

WebAssign Lesson 1-1 Basic Hw (Homework) WebAssign Lesson 1-1 Basic Hw (Homework) Current Score : / 39 Due : Saturday, February 8 2014 06:30 AM MST Shari Dorsey Sp 14 Math 170, section 001, Spring 2014 Instructor: Doug Bullock 1. /16 points A

More information

Section 2.5. Evaluating Limits Algebraically

Section 2.5. Evaluating Limits Algebraically Section 2.5 Evaluating Limits Algebraically (1) Determinate and Indeterminate Forms (2) Limit Calculation Techniques (A) Direct Substitution (B) Simplification (C) Conjugation (D) The Squeeze Theorem (3)

More information

Chapter 3 Page 1 of 23. Lecture Guide. Math College Algebra Chapter 3. to accompany. College Algebra by Julie Miller

Chapter 3 Page 1 of 23. Lecture Guide. Math College Algebra Chapter 3. to accompany. College Algebra by Julie Miller Chapter 3 Page 1 of 23 Lecture Guide Math 105 - College Algebra Chapter 3 to accompany College Algebra by Julie Miller Corresponding Lecture Videos can be found at Prepared by Stephen Toner & Nichole DuBal

More information