Basic concepts in Linear Algebra and Optimization

Size: px
Start display at page:

Download "Basic concepts in Linear Algebra and Optimization"

Transcription

1 Basic concepts in Linear Algebra and Optimization Yinbin Ma GEOPHYS 211

2 Outline Basic Concepts on Linear Algbra vector space norm linear mapping, range, null space matrix multiplication terative Methods for Linear Optimization normal equation steepest descent conjugate gradient Unconstrainted Nonlinear Optimization Optimality condition Methods based on a local quadratic model Line search methods

3 Outline Basic Concepts on Linear Algbra vector space norm linear mapping, range, null space matrix multiplication terative Methods for Linear Optimization normal equation steepest descent conjugate gradient Unconstrainted Nonlinear Optimization Optimality condition Methods based on a local quadratic model Line search methods

4 Outline Basic Concepts on Linear Algbra vector space norm linear mapping, range, null space matrix multiplication terative Methods for Linear Optimization normal equation steepest descent conjugate gradient Unconstrainted Nonlinear Optimization Optimality condition Methods based on a local quadratic model Line search methods

5 Basic concepts - vector space A vector space is any set V for which two operations are defined: 1) Vector addition: any vector x 1 and x 2 in set V can be added to another vector x = x 1 + x 2 and x is also in set V. 2) Scalar Multiplication: Any vector x in V can be multiplied ("scaled") by a real number c 2 R to produce a second vector cx which is also in V. n this class, we only discuss the case where V R n,meaningeachvector x is the space is a n-dimensional column vector.

6 Basic concepts - norm The model space and data space we mentioned in class are normed vector spaces. A norm is a function k k : R n! R that map a vector to a real number. A norm must satisfy the following: 1) kxk 0andkxk = 0i x = 0 2) kx + yk apple kxk + kyk 3) kaxk = a kxk where x and y are vectors in vector space V and a 2 R.

7 Basic concepts - norm We will see the following norm in this course: 1) L 2 norm: for a vector x, thel 2 norm is defined as: kxk 2 s nâ i=1 2) L 1 norm: for a vector x,the L 2 norm is defined as: kxk 1 n  i=1 x 2 i x i 3) L norm: for a vector x,the L norm is defined as: The norm for a matrix is induced as: kxk max i=1,,n x i A a = sup x6=0 Ax a x a

8 Basic concepts - linear mapping, range and null space We say a a map x! Ax is linear if for any x,y 2 R n,andanya 2 R, A(x + y)=ax + Ay A(ax)=aAx t can be proved that each linear mapping from R n to R m can be expressed by the multiplication of a m n matrix. The range of linear operator A 2 R m n,isthespacespannedbythe columns of A, range(a)={y such that y = Ax,x 2 R n } The null space of linear operator A 2 R m n is the space, null(a)={x such that Ax = 0} t is obvious that range(a) is perpendicular to null(a T ).(exercise)

9 Basic concepts - four ways matrix multiplication For the matrix-matrix product B = AC.fA is l m and C is m n, then B is l n. matrix multiplication method 1: b ij = m  k=1 a ik c kj Here b ij, a ik,andc kj are entries of B, A, C.

10 Basic concepts - four ways matrix multiplication For the matrix-matrix product B = AC.fA is l m and C is m n, then B is l n. matrix multiplication method 2: B =[b 1 b 2 b n ] Here b i is the i th column of matrix B. Then, B =[Ac 1 Ac 2 Ac n ] b i = Ac i Each column of B is in the range (we will talk about it later) of A. Thus, the range of B is the subset of the range of A.

11 Basic concepts - four ways matrix multiplication For the matrix-matrix product B = AC.fA is l m and C is m n, then B is l n. matrix multiplication method 3: 2 B = 6 4 Here b i is the i th row of matrix B. Then, This form is not commenly used. 2 B = 6 4 b T i b T 1 b T 2 b T l =ã T i C ã T 1 C ã T 2 C ã T l C

12 Basic concepts - four ways matrix multiplication For the matrix-matrix product B = AC.fA is l m and C is m n, then B is l n. matrix multiplication method 4: B = Â i,j=1,,m Where, a i is the i th column of matrix A, and c j T is the j th row of matrix C. Each term a i c j T is a rank-one matrix. a i c T j

13 Outline Basic Concepts on Linear Algbra vector space norm linear mapping, range, null space matrix multiplication terative Methods for Linear Optimization normal equation steepest descent conjugate gradient Unconstrainted Nonlinear Optimization Optimality condition Search direction Line search

14 Linear Optimization- normal equation We solve a linear system having n unknowns and with m > n equations. We want to find a vector m 2 R n that satisfies, where d 2 R m and F 2 R m n. Reformulate the problem: Fm = d define residual r = d Fm find m that minimizekrk 2 = kfm dk 2 t can be proved that, we can minimize the residual norm when F r = 0. This is equivalent to a n n system, F Fm = F d which is the normal equation. We can solve norm equation using direction methods such at LU, QR, SVD, Cholesky decomposition, etc.

15 Linear Optimization-steepest descent method For the unconstraint linear optimization problem: min J(m)=kFm dk 2 2 To find the minimum of objective function J(m) iteratively using steepest descent method, at the current point m k, we update the model by moving along the nagative direction of gradient, m k+1 = m k a J(m k ) J(m k )=F (Fm k d) The gradient can be evaluated exactly, and we have analytical formula for the optimal a.

16 Linear Optimization-conjugate gradient method For the unconstraint linear optimization problem: min J(m)=kFm dk 2 2 Starting from m 0, we have a series of search direction m i,i = 1,2,,k, and updated model iteratively,m i = m i 1 a i 1 m i 1, i = 1,,k. For the next search direction m k in the space span{ m 0,, m k 1, J(m k )}, k 1 m k = Â i=0 c i m i + c k J(m k ) The magic is that for linear problem c 0 = c 1 = = c k up with Conjugate gradient method, m k = c k 1 m k 1 + c k J(m k ) a k = min J(m k + a k m k ) m k+1 = m k + a k m k 2 = 0. We ended We are searching within the space span{ m 0,, m k 1, J(m k )} in CG method, though looks like we are doing a plane search.

17 Outline Basic Concepts on Linear Algbra vector space norm linear mapping, range, null space matrix multiplication terative Methods for Linear Optimization normal equation steepest descent conjugate gradient Unconstrainted Nonlinear Optimization Optimality condition Search direction Line search

18 Unconstrainted Nonlinear Optimization-Optimality condition For the unconstraint nonlinear optimization problem: minimize m J(m) where J(m) is a real-valued function. How should we determine if m is a local minimizer? Theorem (First order necessary conditions for a local minimum) J(m )=0 Theorem (Second order necessary conditions for a local minimum) s 2 J(m )s 0, 8s 2 R n

19 Unconstrainted Nonlinear Optimization-Search direction For the unconstraint nonlinear optimization problem: minimize m J(m) Given a model point m k, we want to find a search direction real number, such that J(m k + a k m k ) < J(m k ). How do we choose the search direction m k? 1) Gradient based method, m k,anda J(m k + a k m k ) J(m k ) a k J(m k ) T m k + O(k m k k 2 2 ) Thus, m k = J(m k ) is a search direction. We can also use similar technique in CG method, m k = c 1 J(m k )+c 2 m k 1 where c 1,c 2 2 R.

20 Unconstrainted Nonlinear Optimization-Search direction For the unconstraint nonlinear optimization problem: minimize m J(m) Given a model point m k, we want to find a search direction real number, such that J(m k + a k m k ) < J(m k ). How do we choose the search direction m k? 1) Methods based on a local quadratic model, J(m k + a k m k ) J(m k ) a k J(m k ) T m k + a 2 k We solve the approximated problem, minimize y(p k ) J(m k ) T p k p k 2 J(m k )p k p k = a k m k m k,anda 1 2 mt k 2 J(m k ) m k The approximated problem is a linear system and can be solved exactly. Then, update the model, m k+1 = m k + p k

21 Unconstrainted Nonlinear Optimization-Line search For the unconstraint nonlinear optimization problem: minimize m J(m) Given a model point m k, we want to find a search direction m k,anda real number, such that J(m k + a k m k ) < J(m k ). How do we choose a k for a given search direction m k? Can we choose arbitrary a k such that J(m k + a k m k ) < J(m k )? The answer is no. For example, J(m)=m 2, m 2 R 1.Wecanfinda sequence, such that Then, m 0 = 2, m k = m k a k = (k+1) k m k =( 1) k (1 + 2 k ) 1 J(m k )= (1 + 2 k ) 2! 1

22 Unconstrainted Nonlinear Optimization-Line search For the unconstraint nonlinear optimization problem: minimize m J(m) Given a model point m k, we want to find a search direction m k,anda real number, such that J(m k + a k m k ) < J(m k ). How do we choose a k for a given search direction m k? A popular set of conditions that guarentee convergence named Wolfe condition: J(m k + a k m k ) apple J(m k )+c 1 a k J(m k ) T m k J(m k + a k m k ) T m k c 2 a k J(m k ) T m k where 0 < c 1 < c 2 < 1.

23 Reference Numerical Linear Algebra, by Lloyd N. Trefethen, David Bau. Numerical Optimization, by Jorge Nocedal, Stephen Wright. Lecture notes from Prof. Walter Murray,

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

Draft. Lecture 01 Introduction & Matrix-Vector Multiplication. MATH 562 Numerical Analysis II. Songting Luo

Draft. Lecture 01 Introduction & Matrix-Vector Multiplication. MATH 562 Numerical Analysis II. Songting Luo Lecture 01 Introduction & Matrix-Vector Multiplication Songting Luo Department of Mathematics Iowa State University MATH 562 Numerical Analysis II Songting Luo ( Department of Mathematics Iowa State University[0.5in]

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Jason E. Hicken Aerospace Design Lab Department of Aeronautics & Astronautics Stanford University 14 July 2011 Lecture Objectives describe when CG can be used to solve Ax

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition AM 205: lecture 8 Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition QR Factorization A matrix A R m n, m n, can be factorized

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Projectors and QR Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 14 Outline 1 Projectors 2 QR Factorization

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter V: Least Squares Problems Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2011 fasshauer@iit.edu MATH

More information

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M.

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M. Introduction to nonlinear LS estimation R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, 2ed., 2004. After Chapter 5 and Appendix 6. We will use x

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 9 1 / 23 Overview

More information

Review of Matrices and Block Structures

Review of Matrices and Block Structures CHAPTER 2 Review of Matrices and Block Structures Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations

More information

Introduction to Numerical Linear Algebra II

Introduction to Numerical Linear Algebra II Introduction to Numerical Linear Algebra II Petros Drineas These slides were prepared by Ilse Ipsen for the 2015 Gene Golub SIAM Summer School on RandNLA 1 / 49 Overview We will cover this material in

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

MAT 610: Numerical Linear Algebra. James V. Lambers

MAT 610: Numerical Linear Algebra. James V. Lambers MAT 610: Numerical Linear Algebra James V Lambers January 16, 2017 2 Contents 1 Matrix Multiplication Problems 7 11 Introduction 7 111 Systems of Linear Equations 7 112 The Eigenvalue Problem 8 12 Basic

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz C&O367: Nonlinear Optimization (Winter 013) Assignment 4 H. Wolkowicz Posted Mon, Feb. 8 Due: Thursday, Feb. 8 10:00AM (before class), 1 Matrices 1.1 Positive Definite Matrices 1. Let A S n, i.e., let

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Solving linear equations with Gaussian Elimination (I)

Solving linear equations with Gaussian Elimination (I) Term Projects Solving linear equations with Gaussian Elimination The QR Algorithm for Symmetric Eigenvalue Problem The QR Algorithm for The SVD Quasi-Newton Methods Solving linear equations with Gaussian

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares MATH 167: APPLIED LINEAR ALGEBRA Least-Squares October 30, 2014 Least Squares We do a series of experiments, collecting data. We wish to see patterns!! We expect the output b to be a linear function of

More information

CAAM 335: Matrix Analysis

CAAM 335: Matrix Analysis 1 CAAM 335: Matrix Analysis Solutions to Problem Set 4, September 22, 2008 Due: Monday September 29, 2008 Problem 1 (10+10=20 points) (1) Let M be a subspace of R n. Prove that the complement of M in R

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

1 Non-negative Matrix Factorization (NMF)

1 Non-negative Matrix Factorization (NMF) 2018-06-21 1 Non-negative Matrix Factorization NMF) In the last lecture, we considered low rank approximations to data matrices. We started with the optimal rank k approximation to A R m n via the SVD,

More information

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 Felix Kwok February 27, 2004 Written Problems 1. (Heath E3.10) Let B be an n n matrix, and assume that B is both

More information

The Newton-Raphson Algorithm

The Newton-Raphson Algorithm The Newton-Raphson Algorithm David Allen University of Kentucky January 31, 2013 1 The Newton-Raphson Algorithm The Newton-Raphson algorithm, also called Newton s method, is a method for finding the minimum

More information

5.5 Quadratic programming

5.5 Quadratic programming 5.5 Quadratic programming Minimize a quadratic function subject to linear constraints: 1 min x t Qx + c t x 2 s.t. a t i x b i i I (P a t i x = b i i E x R n, where Q is an n n matrix, I and E are the

More information

Lecture 6, Sci. Comp. for DPhil Students

Lecture 6, Sci. Comp. for DPhil Students Lecture 6, Sci. Comp. for DPhil Students Nick Trefethen, Thursday 1.11.18 Today II.3 QR factorization II.4 Computation of the QR factorization II.5 Linear least-squares Handouts Quiz 4 Householder s 4-page

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

4.6 Iterative Solvers for Linear Systems

4.6 Iterative Solvers for Linear Systems 4.6 Iterative Solvers for Linear Systems Why use iterative methods? Virtually all direct methods for solving Ax = b require O(n 3 ) floating point operations. In practical applications the matrix A often

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number 10.34: Numerical Methods Applied to Chemical Engineering Lecture 2: More basics of linear algebra Matrix norms, Condition number 1 Recap Numerical error Operations Properties Scalars, vectors, and matrices

More information

Some minimization problems

Some minimization problems Week 13: Wednesday, Nov 14 Some minimization problems Last time, we sketched the following two-step strategy for approximating the solution to linear systems via Krylov subspaces: 1. Build a sequence of

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

There are six more problems on the next two pages

There are six more problems on the next two pages Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Numerical linear algebra

Numerical linear algebra Numerical linear algebra Purdue University CS 51500 Fall 2017 David Gleich David F. Gleich Call me Prof Gleich Dr. Gleich Please not Hey matrix guy! Huda Nassar Call me Huda Ms. Huda Please not Matrix

More information

Lecture 11. Fast Linear Solvers: Iterative Methods. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 11. Fast Linear Solvers: Iterative Methods. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 11 Fast Linear Solvers: Iterative Methods J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) Math/CS 375 1 / 23 Summary: Complexity of Linear Solves

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016 Linear Algebra Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Large-Scale ML, Fall 2016 Shan-Hung Wu (CS, NTHU) Linear Algebra Large-Scale ML, Fall

More information

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C =

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C = CHAPTER I BASIC NOTIONS (a) 8666 and 8833 (b) a =6,a =4 will work in the first case, but there are no possible such weightings to produce the second case, since Student and Student 3 have to end up with

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Inner Product and Orthogonality

Inner Product and Orthogonality Inner Product and Orthogonality P. Sam Johnson October 3, 2014 P. Sam Johnson (NITK) Inner Product and Orthogonality October 3, 2014 1 / 37 Overview In the Euclidean space R 2 and R 3 there are two concepts,

More information

Perspective Projection of an Ellipse

Perspective Projection of an Ellipse Perspective Projection of an Ellipse David Eberly, Geometric ools, Redmond WA 98052 https://www.geometrictools.com/ his work is licensed under the Creative Commons Attribution 4.0 International License.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n.

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n. 0 Subspaces (Now, we are ready to start the course....) Definitions: A linear combination of the vectors v, v,..., v m is any vector of the form c v + c v +... + c m v m, where c,..., c m R. A subset V

More information

Introduction to Scientific Computing

Introduction to Scientific Computing (Lecture 5: Linear system of equations / Matrix Splitting) Bojana Rosić, Thilo Moshagen Institute of Scientific Computing Motivation Let us resolve the problem scheme by using Kirchhoff s laws: the algebraic

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

MATH 22A: LINEAR ALGEBRA Chapter 4

MATH 22A: LINEAR ALGEBRA Chapter 4 MATH 22A: LINEAR ALGEBRA Chapter 4 Jesús De Loera, UC Davis November 30, 2012 Orthogonality and Least Squares Approximation QUESTION: Suppose Ax = b has no solution!! Then what to do? Can we find an Approximate

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Matrix-Product-States/ Tensor-Trains

Matrix-Product-States/ Tensor-Trains / Tensor-Trains November 22, 2016 / Tensor-Trains 1 Matrices What Can We Do With Matrices? Tensors What Can We Do With Tensors? Diagrammatic Notation 2 Singular-Value-Decomposition 3 Curse of Dimensionality

More information

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality Worksheet for Lecture (due December 4) Name: Section 6 Inner product, length, and orthogonality u Definition Let u = u n product or dot product to be and v = v v n be vectors in R n We define their inner

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. =

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. = SECTION 3.3. PROBLEM. The null space of a matrix A is: N(A) {X : AX }. Here are the calculations of AX for X a,b,c,d, and e. Aa [ ][ ] 3 3 [ ][ ] Ac 3 3 [ ] 3 3 [ ] 4+4 6+6 Ae [ ], Ab [ ][ ] 3 3 3 [ ]

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices Chapter 7 Iterative methods for large sparse linear systems In this chapter we revisit the problem of solving linear systems of equations, but now in the context of large sparse systems. The price to pay

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018)

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018) UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, 2018 Homework Set #4 (Due: Wednesday, February 21, 2018) 1. Almost orthonormal basis. Let u 1,u 2,...,u n form an orthonormal basis for

More information

17 Solution of Nonlinear Systems

17 Solution of Nonlinear Systems 17 Solution of Nonlinear Systems We now discuss the solution of systems of nonlinear equations. An important ingredient will be the multivariate Taylor theorem. Theorem 17.1 Let D = {x 1, x 2,..., x m

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Lecture 8: QR Decomposition

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl http://dickinson.website version: 12/02/18 Monday 5th February 2018 Peter J.C. Dickinson

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Matrix invertibility Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Corollary: Let A be an R C matrix. Then A is invertible if and only if R = C and the columns of A are linearly

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information