CEE 697K ENVIRONMENTAL REACTION KINETICS

Size: px
Start display at page:

Download "CEE 697K ENVIRONMENTAL REACTION KINETICS"

Transcription

1 Updated: 19 November Print version CEE 697K ENVIRONMENTAL REACTION KINETICS Lecture #19 Chloramines Cont: Primary Literature Enzyme Kinetics: basics Brezonik, pp Introduction

2 Conclusions 2 Overall the model calculations suggest that biodegradation is..not likely to play a major role in most water distribution systems the conditions needed for significant HAA removals in a distribution system (i.e., total biomass densities > 10 5 cells/cm 2 over long distances of pipe) are unlikely in the US water distribution systems where total chlorine residuals typically are high and thus inhibit the development of biofilm on pipe walls But this seems to contradict their introductory conclusion how to reconcile?

3 What could they have concluded? 3 Variability vs diurnal demand Q/Qavg u (ft/s) t (hr) C (ug/l)

4 Objective/hypothesis 4 Not really stated, but they did end the intro with: In this work, computer simulations were performed to predict the fate of three HAAs (MCAA, DCAA, and TCAA) along a distribution system and within a biologically active filter. Sensitivity analyses were performed to investigate the effects of physical parameters (e.g., fluid velocity) and biological parameters (e.g., biodegradation kinetics, biomass density) on HAA removal

5 What could they have said? 5 To determined if observed HAA loss could be attributed to biodegradation on pipe walls given known physical and microbial characteristics of distribution systems To estimate spatial and temporal variability of HAA concentrations based on a rational physical model of biodegradation in distribution systems

6 What could they have done? 6 Find some direct evidence for biodegradation of HAAs in distribution systems A product of the enzymatic reaction? Chlorohydroxyacetate? Evidence of abiotic reactions? Increase in MCAA?

7 What else? 7 Consider mass transfer resistance within biofilm

8 What should be done next? 8 Experimental Work In-situ controlled study of flow velocity vs DCAA loss in a pipe segment? Effect of biocide in above segment? Model Refinement Account for internal mass transfer resistance Combine with growth model for HAA degraders

9 B1: biologically fixed bacteria B2: adsorbed bacteria 9 SANCHO Model Input (H1, H2, B3) Internal Processes Output H2 H1 BDOC S CO 2 Cl 2 Free Bacteria B3 Cl 2 Mortality Cl 2 B2 Mortality B1 Fixed Bacteria

10 10

11 11

12 12

13 Effect of Zn on HAAs 13 Effect of Zinc on the Transformation of HAAs in Drinking Water Wei Wang and Lizhong Zhu Journal of Hazardous Materials 174:40-46.

14 Enzymatic Reactions 14 Many ways of illustrating the steps Substrate(s) bond to active site Product(s) form via transition state Product(s) are released

15 Basic Enzyme Kinetics Note that some references use k 2 for k -1, and k 3 for k 2 15 Irreversible Single intermediate E + S k 1 k ES 2 E + P k- 1 The overall rate is determined by the RLS, k 2 d[ d[ P] r dt dt But we don t know [E, so we can get it by the SS mass balance d[ E dt 0 k [ ES 2 ] k1[ E][ k 1[ E k2[ E Again, we only know [E o ] or [E tot ], not free [E], so: ([ E ] [ E )[ k [ E k [ ] 0 k o ES

16 Reactants, products and Intermediates 16 Simple Progression of components for simple single intermediate enzyme reaction Shaded block shows steady state intermediates Assumes [>>[E] t From Segel, 1975; Enzyme Kinetics

17 Basic Enzyme Kinetics II 17 And solving for [E, k1[ E[ + k 1[ E + k2[ E k1[ Eo][ [ E k 1 k1[ Eo][ [ + k + k 1 2 [ Eo][ [ ES ] k 1 + k [ + k 1 2

18 Michaelis-Menten 18 Irreversible Single intermediate r d[ P] r dt d[ P] k2[ Eo][ rmax[ k 1 k2 dt + [ K + [ + k 1 E + S k 2 [ E k 1 k ES 2 E + P k- 1 s [ Eo][ [ ES ] k 1 + k [ + k 1 2

19 Michaelis Menten Kinetics 19 Classical substrate plot 100 rmax 80 Reaction Rate r max K s r d[ P] rmax[ dt K [ s Substrate Concentration

20 Substrate and growth 20 If we consider Y r d[ P] dt d[ dt 1 Y dx dt U We can define a microorganism-specific substrate utilization rate, U dx dt And the maximum rates are then 1 X d[ dt k[ K [ s + U and r X YX µ µ Y U max k µ Y max 1 d[ X ] µ max[ X dt K + s [

21 Linearizations 21 Lineweaver-Burke Double reciprocal plot Wikipedia version Voet & Voet version

22 22 das

23 3 types 23 Lineweaver Burk Hanes Eadie-Hofstee

24 Compare predictions 24 ad

25 Multi-step k 1 E + S k ES 2 EP 2 2E + P k- 2 1 P 1 k 3 25 Double intermediate Also gives: r d[ P] rmax[ dt K [ s + But now: r max k2k3[ E k + k 2 o 3 ] k K s + ( ) 3 k 1 + k2 ( k ) 2 k 3 k 1 Note what happens when: k 3 >> k 2

26 26 To next lecture

27 Enzymatic Reactions 27 Many ways of illustrating the steps Substrate(s) bond to active site Product(s) form via transition state Product(s) are released

28 Basic Enzyme Kinetics Note that some references use k 2 for k -1, and k 3 for k 2 28 Irreversible Single intermediate E + S k 1 k ES 2 E + P k- 1 The overall rate is determined by the RLS, k 2 d[ d[ P] r dt dt But we don t know [E, so we can get it by the SS mass balance d[ E dt 0 k [ ES 2 ] k1[ E][ k 1[ E k2[ E Again, we only know [E o ] or [E tot ], not free [E], so: ([ E ] [ E )[ k [ E k [ ] 0 k o ES

29 Reactants, products and Intermediates 29 Simple Progression of components for simple single intermediate enzyme reaction Shaded block shows steady state intermediates Assumes [>>[E] t From Segel, 1975; Enzyme Kinetics

30 Basic Enzyme Kinetics II 30 And solving for [E, k1[ E[ + k 1[ E + k2[ E k1[ Eo][ [ E k 1 k1[ Eo][ [ + k + k 1 2 [ Eo][ [ ES ] k 1 + k [ + k 1 2

31 Michaelis-Menten 31 Irreversible Single intermediate r d[ P] r dt d[ P] k2[ Eo][ rmax[ k 1 k2 dt + [ K + [ + k 1 E + S k 2 [ E k 1 k ES 2 E + P k- 1 s [ Eo][ [ ES ] k 1 + k [ + k 1 2

32 Michaelis Menten Kinetics 32 Classical substrate plot 100 rmax 80 Reaction Rate r max K s r d[ P] rmax[ dt K [ s Substrate Concentration

33 Substrate and growth 33 If we consider Y r d[ P] dt d[ dt 1 Y dx dt U We can define a microorganism-specific substrate utilization rate, U dx dt And the maximum rates are then 1 X d[ dt k[ K [ s + U and r X YX µ µ Y U max k µ Y max 1 d[ X ] µ max[ X dt K + s [

34 Linearizations 34 Lineweaver-Burke Double reciprocal plot Wikipedia version Voet & Voet version

35 35 das

36 3 types 36 Lineweaver Burk Hanes Eadie-Hofstee

37 Compare predictions 37 ad

38 Multi-step k 1 E + S k ES 2 EP 2 2E + P k- 2 1 P 1 k 3 38 Double intermediate Also gives: r d[ P] rmax[ dt K [ s + But now: r max k2k3[ E k + k 2 o 3 ] k K s + ( ) 3 k 1 + k2 ( k ) 2 k 3 k 1 Note what happens when: k 3 >> k 2

39 39 To next lecture

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Enzyme Kinetics: How they do it

Enzyme Kinetics: How they do it Enzyme Kinetics: How they do it (R1) Formation of Enzyme-Substrate complex: (R2) Formation of Product (i.e. reaction): E + S ES ES -> E + P (R3) Desorption (decoupling/unbinding) of product is usually

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS R. Merrill 1. Sketch the appropriate plots on the following axes. Assume that simple Michaelis- Menten kinetics apply. 2. The enzyme-catalyzed hydrolysis of

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 KINETICS OF ENZYME CATALYSED REACTIONS (CONTD.) So in the last lecture we

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v: Eadie Hofstee diagram In Enzymology, an Eadie Hofstee diagram (also Woolf Eadie Augustinsson Hofstee or Eadie Augustinsson plot) is a graphical representation of enzyme kinetics in which reaction velocity

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Reversible reactions

Reversible reactions Reversible reactions A reversible enzymic reaction (e.g. the conversion of glucose to fructose, catalysed by glucose isomerase) may be represented by the following scheme where the reaction goes through

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Chemistry 112 Final Exam, Part II February 16, 2005

Chemistry 112 Final Exam, Part II February 16, 2005 Name KEY. (35 points) Consider the reaction A + B + C + D + E + F Æ P, which has a rate law of the following form: d[p]/dt = k[a]a[b]b[c]c[d]d[e]e[f]f The data sets given or displayed below were obtained

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

SECTION II: KINETICS AND BIOREACTOR DESIGN: JAVIER CALZADA FUNES

SECTION II: KINETICS AND BIOREACTOR DESIGN: JAVIER CALZADA FUNES SECTION II: KINETICS AND BIOREACTOR DESIGN: LESSON 9.1. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry - Brief review on enzymatic reaction kinetics JAVIER CALZADA FUNES Biotechnology

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances. Biochemistry 461, Section I May 6, 1997 Exam #3 Prof. Jason D. Kahn Your Printed Name: Your SS#: Your Signature: You have 80 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded

More information

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002 Enzyme Kinetics Jonathan Gent and Douglas Saucedo May 24, 2002 Abstract This paper consists of a mathematical derivation of the Michaelis-Menten equation, which models the rate of reaction of certain enzymatic

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION

CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION TERO EERIKÄINEN ROOM D416d tero.eerikainen@aalto.fi COURSE LECTURES AND EXERCISES Week Day Date Time Place Lectures/Execises 37 Mo 12.9.2016 10:15-11:45

More information

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst)

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst) Catalysis Catalysis provides an additional mechanism by which reactants can be converted to products. The alternative mechanism has a lower activation energy than the reaction in the absence of a catalyst.

More information

Report on. Starch Hydrolysis. Submitted to. Dr. Stephanie Loveland Chemical and Biological Engineering Department.

Report on. Starch Hydrolysis. Submitted to. Dr. Stephanie Loveland Chemical and Biological Engineering Department. Report on Starch Hydrolysis Submitted to Dr. Stephanie Loveland Chemical and Biological Engineering Department November 28, 2016 By Aimee Pierce Iowa State University ABSTRACT Enzyme catalysts are important

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

Overview of MM kinetics

Overview of MM kinetics Overview of MM kinetics Prepared by Robert L Sinsabaugh and Marcy P Osgood in 2007. Includes assumptions and deriviation of original MM model. Includes limitations and implications of MM application to

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

Lab training Enzyme Kinetics & Photometry

Lab training Enzyme Kinetics & Photometry Lab training Enzyme Kinetics & Photometry Qing Cheng Qing.Cheng@ki.se Biochemistry Division, MBB, KI Lab lecture Introduction on enzyme and kinetics Order of a reaction, first order kinetics Michaelis-Menten

More information

2 Dilution of Proteins Due to Cell Growth

2 Dilution of Proteins Due to Cell Growth Problem Set 1 1 Transcription and Translation Consider the following set of reactions describing the process of maing a protein out of a gene: G β g G + M M α m M β m M + X X + S 1+ 1 X S 2+ X S X S 2

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 KINETICS OF ENZYME CATALYSED REACTIONS Having understood the chemical and

More information

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing Effect of Temperature Increasing the temperature increases the energy in the system Two effects kinetic denaturing Kinetic effect Increased motion of molecules Increased collisions between enzyme/substrate

More information

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents Enzyme Kinetics Differential Equations Series Instructor s Guide Table of Contents Introduction.... 2 When to Use this Video.... 2 Learning Objectives.... 2 Motivation.... 2 Student Experience.... 2 Key

More information

Topic 4 Correlation and Regression. Transformed Variables

Topic 4 Correlation and Regression. Transformed Variables Topic 4 Correlation and Regression Transformed Variables 1 / 13 Outline Worldwide Oil Production Lineweaver-Burke double reciprocal plot 2 / 13 Worldwide Oil Production Example. The modern history of petroleum

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 23 STEADY STATE ANALYSIS OF MASS TRANSFER & BIOCHEMICAL REACTION IN IME REACTORS

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

NONLINEAR REGRESSION MODELS IN BIOLOGY

NONLINEAR REGRESSION MODELS IN BIOLOGY NONLINEAR REGRESSION MODELS IN BIOLOGY Joseph A. Steinborn Department of Preventive Medicine University of California, Los Angeles MATHEMATICAL MODELS IN BIOLOGY Biological processes can be considered

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

Chem Lecture 4 Enzymes Part 2

Chem Lecture 4 Enzymes Part 2 Chem 452 - Lecture 4 Enzymes Part 2 Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour? Thermodynamics I think that enzymes are molecules

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.it.edu 5.60 Therodynaics & Kinetics Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 1 Enzye Catalysis Readings: SAB,

More information

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J)

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J) Problem Set 2 1 Competitive and uncompetitive inhibition (12 points) a. Reversible enzyme inhibitors can bind enzymes reversibly, and slowing down or halting enzymatic reactions. If an inhibitor occupies

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Review for Final Exam. 1ChE Reactive Process Engineering

Review for Final Exam. 1ChE Reactive Process Engineering Review for Final Exam 1ChE 400 - Reactive Process Engineering 2ChE 400 - Reactive Process Engineering Stoichiometry Coefficients Numbers Multiple reactions Reaction rate definitions Rate laws, reaction

More information

Lecture 11: Enzyme Kinetics, Part I

Lecture 11: Enzyme Kinetics, Part I Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 11: Enzyme Kinetics, Part I 13 February 2018 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Back to

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay; Elementary reactions 1/21 stoichiometry = mechanism (Cl. + H 2 HCl + H. ) monomolecular reactions (decay: N 2 O 4 some isomerisations) 2 NO 2 ; radioactive decay; bimolecular reactions (collision; most

More information

is the Michaelis constant. It represents the apparent dissociation constant of ES to E and S.

is the Michaelis constant. It represents the apparent dissociation constant of ES to E and S. Lecture 35 Chapt 28, Sections 1-4 Bimolecular reactions in the gas phase Anouncements: Exam tomorrow 2:00 is the primary time. vdw 237 I have gotten several suggestions for lecture ideas, thanks and keep

More information

Lecture 12: Burst Substrates and the V vs [S] Experiment

Lecture 12: Burst Substrates and the V vs [S] Experiment Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 12: Burst Substrates and the V vs [S] Experiment 14 February 2019 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

More information

Elementary Reactions

Elementary Reactions Updated: 3 September 2013 Print version Lecture #5 Kinetics and Thermodynamics: Fundamentals of Kinetics and Analysis of Kinetic Data (Benjamin, 1.6) (Stumm & Morgan, Chapt.2 ) (pp.16-20; 69-81) David

More information

Diffusion influence on Michaelis Menten kinetics

Diffusion influence on Michaelis Menten kinetics JOURNAL OF CHEMICAL PHYSICS VOLUME 5, NUMBER 3 5 JULY 200 Diffusion influence on Michaelis Menten kinetics Hyojoon Kim, Mino Yang, Myung-Un Choi, and Kook Joe Shin a) School of Chemistry, Seoul National

More information

Enzymes and kinetics. Eva Samcová and Petr Tůma

Enzymes and kinetics. Eva Samcová and Petr Tůma Enzymes and kinetics Eva Samcová and Petr Tůma Termodynamics and kinetics Equilibrium state ΔG 0 = -RT lnk eq ΔG < 0 products predominate ΔG > 0 reactants predominate Rate of a chemical reaction Potential

More information

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester Bioengineering Laboratory I Enzyme Assays Part II: Determination of Kinetic Parameters 2016-2017 Fall Semester 1. Theoretical background There are several mathematical models to determine the kinetic constants

More information

Complex Reaction Mechanisms Chapter 36

Complex Reaction Mechanisms Chapter 36 Reaction Mechanisms: Complex Reaction Mechanisms Chapter 36 Reaction mechanism is a collection o elementary (one step) reactions that would add up to result in the overall reaction. Generally elementary

More information

CE 329, Fall 2015 Assignment 16, Practice Exam

CE 329, Fall 2015 Assignment 16, Practice Exam CE 39, Fall 15 Assignment 16, Practice Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

Kinetics of Microbial Growth

Kinetics of Microbial Growth Kinetics of Microbial Growth Unlimited growth Assuming t d 0.33 h, in 48 h, one cell would become 2.33 X 10 43 cells If a cell weighs 10-12 g, then the total would be 2.23 X 10 31 g This would be 4000

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version EE 370 Environmental Engineering Principles Lecture #9 Material Balances I Reading: Mihelcic & Zimmerman, hapter 4 Davis & Masten, hapter 4 David Reckhow EE 370

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Enzymes II: kinetics الفريق الطبي األكاديمي. Done By: - AHMAD ALSAHELE. Corrected By:-Bushra saleem

Enzymes II: kinetics الفريق الطبي األكاديمي. Done By: - AHMAD ALSAHELE. Corrected By:-Bushra saleem Enzymes II: kinetics الفريق الطبي األكاديمي Done By: - AHMAD ALSAHELE Corrected By:-Bushra saleem لكية الطب البرشي البلقاء التطبيقية / املركز و من أحياها 6166 6102/ و من أحياها Specific aims: 1. Know what

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

1. Introduction to Chemical Kinetics

1. Introduction to Chemical Kinetics 1. Introduction to Chemical Kinetics objectives of chemical kinetics 1) Determine empirical rate laws H 2 + I 2 2HI How does the concentration of H 2, I 2, and HI change with time? 2) Determine the mechanism

More information

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 131 Learning Objective This laboratory introduces you to steady-state kinetic analysis, a fundamental

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

Enzymes & Enzyme Kinetics 1 الفريق الطبي األكاديمي

Enzymes & Enzyme Kinetics 1 الفريق الطبي األكاديمي Enzymes & Enzyme Kinetics 1 الفريق الطبي األكاديمي Lectuer one : Done by Shady Soghayr Corrected by Gharam Al-Khalaileh Lectuer two : Will Done by Rand Khlaifat & hanan jamal كلية الطب البشري البلقاء التطبيقية

More information

Lecture 4 STEADY STATE KINETICS

Lecture 4 STEADY STATE KINETICS Lecture 4 STEADY STATE KINETICS The equations of enzyme kinetics are the conceptual tools that allow us to interpret quantitative measures of enzyme activity. The object of this lecture is to thoroughly

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present? Chem 315 In class/homework problems 1. a) For a Michaelis-Menten reaction, k 1 = 7 x 10 7 M -1 sec -1, k -1 = 1 x 10 3 sec -1, k 2 = 2 x 10 4 sec -1. What are the values of K s and K M? K s = k -1 / k

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 21 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #14 Drinking Water Treatment: Chlorination Reading: Chapter 7, pp.233-238, 259-262 David Reckhow CEE 371 L#14 1 Forms

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Bioprocess Engineering

Bioprocess Engineering 1 Bioprocess Engineering Chap. 3 Enzymes I. Introduction 1. Enzymes are usually proteins of high MW (15000

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Kinetics of Soil L-Glutaminase Enzyme

Kinetics of Soil L-Glutaminase Enzyme International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 978-985 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.610.118

More information

Simple kinetics of enzyme action

Simple kinetics of enzyme action Simple kinetics of enzyme action It is established that enzymes form a bound complex to their reactants (i.e. substrates) during the course of their catalysis and prior to the release of products. This

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

Learning Outcomes. k 1

Learning Outcomes. k 1 Module 1DHS - Data Handling Skills Unit: Applied Maths Lecturer: Dr. Simon Hubbard (H13), Email: Simon.Hubbard@umist.ac.uk Title: Equilibria & Michaelis-Menten This lecture and problem class will introduce

More information

Kinetics of enzymatic reactions

Kinetics of enzymatic reactions Kinetics of enzymatic reactions My brilliant colleagues : hope you find this lecture easy and this sheet helpful. You should be focused while you studying this topic. Kinetics: Kinetics science is the

More information

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Objectives In this Lecture you will learn to do the following Define what is an elementary reaction.

More information

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information