2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?

Size: px
Start display at page:

Download "2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?"

Transcription

1 Chem 315 In class/homework problems 1. a) For a Michaelis-Menten reaction, k 1 = 7 x 10 7 M -1 sec -1, k -1 = 1 x 10 3 sec -1, k 2 = 2 x 10 4 sec -1. What are the values of K s and K M? K s = k -1 / k 1 = 1 x 10 3 sec -1 / 7 x 10 7 M -1 sec -1 = 1.4 x 10-5 M K m = Michaelis-Menten constant =( k -1 + k 2 )/ k 1 = (1 x 10 3 sec x 10 4 sec -1 ) / 7 x 10 7 M -1 sec -1 K m =3.0 x 10-4 M b) Does substrate binding approach equilibrium or does it behave more like a steady state system? Once the ES complex forms, the substrate may be either converted to product (k 2 ) or released as S (k -1 ). Formation of product is governed by a first order rate constant, k 2, this constant is 20 times larger than the first order rate constant for the dissociation of ES (k -1 ). Thus, the enzyme behaves like a steady state system. Only in the case where k 2 is rate limiting will the substrate binding approach a true equilibrium. 2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present? To determine the amount of enzyme present you would need to reach saturation. At the early stages of saturation, the concentration of substrate would approximate the concentration of enzyme. At V max the following expression can be used V max = k 2 [E T ], showing that the maximum velocity is proportional to the concentration of enzyme. 3. Liver alcohol dehydrogenase (ADH) is relatively nonspecific and will oxidize ethanol or other alcohols, including methanol. Methanol oxidation, yields formaldehyde, which is toxic, causing blindness in addition to other deleterious effects. Because it has a sweet taste, many animals will drink windshield washer fluid (50% methanol). If the oxidation of methanol to formaldehyde is blocked, it can be excreted through the kidneys without serious harm to the animal. Ethanol is a competitive inhibitor of ADH. (The K M values of alcohol dehydrogenase for ethanol and methanol are 1mM and 10 mm, respectively) Can wine (12% ethanol by volume) effectively be used to lower the activity of the animals ADH towards methanol? Explain. Both methanol and ethanol quickly distribute throughout the entire body as they are structurally similar and both will interact with the enzyme. K m can be used as an estimate of the enzymesubstrate fit. In other words, since K m is a ratio of ES disassociation to ES association, a large value of K M is indicative of a more weakly associate ES complex. Since the K m values of canine ADH for ethanol and methanol are 1mM and 10mM, respectively, ethanol forms a tighter ES complex. The K I for ethanol in its role as a competitive inhibitor of methanol oxidation by ADH is the same as its K M. Since wine is only 12% ethanol by volume, the volume of ethanol would have to be much higher than the volume of pure grain alcohol. However, in sufficient quantity, ethanol could competitively inhibit methanol. (For 50mL of windshield washer fluid, 750 ml of wine would be

2 required; this number can be calculated using the molar mass, density and relative constants of each alcohol. 4. A researcher was studying the kinetic properties of β-galactosidase using an assay in which o-nitrophenol-b-galactoside (ONPG), a colorless substrate, is converted to galactose and o- nitrophenolate, a brightly colored, yellow compound. Upon addition of 0.25mM substrate to a fixed amount of enzyme, o-nitrophenolate (ONP) production was monitored as a function of time by spectrophotometry at λ = 410 nm. The follow data were obtained: Time (s) A 410 nm a) Convert A 410 nm to concentration of o-nitrophenolate, [ONP], using E=3.76mM -1 cm -1 as the extinction coefficient. The relationship between absorbance and concentration is linear as shown by the Beer-Lambert law: A = EbC where A = absorbance, E=molar absorptivity (constant for a particular compound under defined conditions and a specific wavelength; 410 in this case), b is the path length (instrument constant; usually 1 cm) and C is the molar concentration. Solving for C = A/Eb =A/1.0 cm 3.76mM -1 cm -1 Time (s) A410 nm [ONP]

3 b) Plot [ONP] versus time c) Determine the initial velocity of the reaction

4 The initial velocity can be calculated from the slope of a line drawn through the initial points (when [S] is not near saturation). The velocity or rate is by definition change in concentration/change in time or delta y/delta x, the definition of a slope. The slope of the line is mm/s. Answers will vary somewhat depending on the points chosen. d) Explain why the curve is nearly linear initially and later approaches a plateau The enzyme is converting substrate to product (S+E --> ES ---> P); the plot shows the progression of the reaction with time. The initial points are linear because the enzyme is obeying Michaelis- Menten kinetics (i.e., steady state assumption). At later times the concentration of product becomes significant (remember, in M-M kinetics one assumes [P]=0), as the [S] is depleted. As the [P] approaches the initial [S] (all S converted to P), M-M kinetics conditions are no longer appropriate and the curve levels. e) Describe how K M and V max for β-galactosidase can be determined with additional experimentation. To determine K M and V max a Lineweaver-Burke plot should be constructed. This would require running several trials where [S] is varied and the initial velocity is measured. A linear regression analysis of the plot of 1/v vs 1/[S] would yield the required data. 5. The following kinetic data were obtained for an enzyme in the absence of inhibitor (1) and the presence of two different inhibitors (2) and (3) at 5 mm concentration. Assume [E t ] is the same for each experiment. a) Determine V max and K M for the enzyme. b) Determine the type of inhibition and the K I for each inhibitor. [S] (1) (2) (3) mm v(µmol/m L sec) v(µmol/ml sec) v(µmol/ml sec) In order to analyze the data a double reciprocal plot should be constructed. Therefore, you need to calculate 1/vand 1/[S] 1/ v = K M /V max * 1/[S] + 1/V max

5 y = m x + b The y intercept is equal to 1/V max and the x intercept is equal to - 1/K m pay attention to units when comparing data 1/[S] M-1 v1 umol/sml 1/v1 sml/mol v2 umol/sml 1/v2 sml/mol v3 umol/sml 1/v3 sml/mol s m L/ u m ol Linear regressions: uninhibited y = x inhibitor 1 (2) y = x inhibitor 2 (3) y = x Condition Vmax (µmol/mlsec) Km (mm) No inhibitor mm inhibitor (2) mm inhibitor (3) For the first inhibitor (2) the V max value is experiences relatively little change (within experimental error). Graphically, the lack of change is more apparent. This is real data that carries with it real error. [S] (1) (2) (3) mm v(umol/m L sec) v(umol/m L sec) v(umol/m L sec)

6 Inhibitor 2 increases the apparent K M of the enzyme without affecting V max. This is characteristic of a competitive inhibitor. In this case K I is calculated as follows: K M(2) = K M (1 + [I]/K I ) or 10.7 mm = 3.2mM (1 + 5mM/K I ) Solving for K I = 4.04 mm 6. The following graphical patterns obtained from kinetic experiments have several possible interpretations depending on the nature of the experiment ant the variables being plotted. Give at least two possibilities for each.

7 In the top graph, the results may be due to a competitive inhibitor. The line with the steeper slope is from enzyme kinetic measurements in the presence of an inhibitor, whereas the other line is enzyme kinetic data without inhibitor. In competitive inhibition, V max, the reciprocal of the 1/v intercept, is independent of the presence of inhibitor. In other words the y intercept is unchanging with the addition of inhibitor, this is indicative of competitive inhibition. The second graph is most likely pure, noncompetitive inhibition. In noncompetitive inhibition, the inhibitor binds the enzyme and the enzyme substrate complex with equal affinity. The binding of I to E has no effect on the binding of S to E. Thus K M is unaffected because the inhibitor-free enzyme is capable of normal catalysis. In effect, the inhibitor lowers the active enzyme concentration.

8 The bottom graph is most likely an example of mixed noncompetitive inhibition in which the inhibitor I binds to both E and ES but not equally. IN this case, I binds ES with higher affinity than to S. V max is decreased but K M is increased. 7. The presence of inhibitor decreases Vmax; however, it also decreases KM. This seems to suggest that in the presence of an inhibitor, the remaining active enzyme's performance is improved since it saturates at a lower substrate concentration. Explain this paradox. This is an example of mixed competitive inhibition. In this type of inhibition, the inhibitor binds to both E and ES. Decrease in V mzx for an inhibitor is expected as the inhibitor interferes with the natural conversion of ES to P. However, the effect on K M is not as intuitive. Remember, K M can be thought of as a measure of the disassociation of ES (K M = (k 2 + k -1 )/ k1). The inhibitor may not inhibit each of these reactions (reactions governed by the constants that compose K M ) equally and can increase K M (inhibition of ES formation by preferential EI binding) or decrease K M (decreasing k 2 by binding of ES to I which will stop conversion of ES--->P) The following two equilibrium constants apply for a mixed competitive inhibition: K I = [E][I]/[EI] for binding of I to E and K I ' = [ES][I]/[ESI] for binding of I to ES K I is not necessarily equal to K I '. In this example, K M is decreased so the affect on k 2 is most pronounced. In other words, I binds to ES with greater affinity than to E. Therefore, addition of I should affect the E+S ---> ES equilibrium by shifting it to the right since as ES is bound to I, ESI is produced causing depletion of ES. By Le Chatlier's principle, this will cause a corresponding increase the [ES]. As [ES] is increased (with more ESI production, higher [I]), then more ES will be available to be converted to P and the rate of product production increases. This explanation is not something that you may immediately see. Read and study it for a while and it should slowly filter in.

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Lab training Enzyme Kinetics & Photometry

Lab training Enzyme Kinetics & Photometry Lab training Enzyme Kinetics & Photometry Qing Cheng Qing.Cheng@ki.se Biochemistry Division, MBB, KI Lab lecture Introduction on enzyme and kinetics Order of a reaction, first order kinetics Michaelis-Menten

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

Abstract and Objectives

Abstract and Objectives inetics of Alcohol Dehydrogenase with competitive inhibition Steven Asplund, ictor. Tseng 2 Department of Bioengineering, University of Washington Abstract and Objectives Alcohol Dehydogenase (ADH) allows

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester Bioengineering Laboratory I Enzyme Assays Part II: Determination of Kinetic Parameters 2016-2017 Fall Semester 1. Theoretical background There are several mathematical models to determine the kinetic constants

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay; Elementary reactions 1/21 stoichiometry = mechanism (Cl. + H 2 HCl + H. ) monomolecular reactions (decay: N 2 O 4 some isomerisations) 2 NO 2 ; radioactive decay; bimolecular reactions (collision; most

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Chem Lecture 4 Enzymes Part 2

Chem Lecture 4 Enzymes Part 2 Chem 452 - Lecture 4 Enzymes Part 2 Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour? Thermodynamics I think that enzymes are molecules

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

Ali Yaghi. Gumana Ghashan. Mamoun Ahram

Ali Yaghi. Gumana Ghashan. Mamoun Ahram 21 Ali Yaghi Gumana Ghashan Mamoun Ahram Kinetics The study of Kinetics deals with the rates of chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. For the reaction (A

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

-Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots.

-Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots. Biological Sciences 11 Spring 2000 Experiment 2: -Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots. Part To do... More information A (1) Review lecture notes

More information

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R.

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 90 minutes. Total marks = 30. This quiz represents

More information

SIMPLE MODEL Direct Binding Analysis

SIMPLE MODEL Direct Binding Analysis Neurochemistry, 56:120:575 Dr. Patrick J. McIlroy Supplementary Notes SIMPLE MODEL Direct Binding Analysis The interaction of a (radio)ligand, L, with its receptor, R, to form a non-covalent complex, RL,

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Discussion Exercise 5: Analyzing Graphical Data

Discussion Exercise 5: Analyzing Graphical Data Discussion Exercise 5: Analyzing Graphical Data Skill 1: Use axis labels to describe a phenomenon as a function of a variable Some value y may be described as a function of some variable x and used to

More information

Killing bacteria by inhibiting their enzymes. BIOCHEMISTRY LAB

Killing bacteria by inhibiting their enzymes. BIOCHEMISTRY LAB BIOCHEMISTRY LAB CHE554 Enzyme Kinetics Motivation: Enzymes mediate almost all the chemistry in cells, and thus in life. They are the best catalysts known and have applications in every field as tools

More information

Techniques in Molecular Genetics Spectroscopy and Enzyme Assays

Techniques in Molecular Genetics Spectroscopy and Enzyme Assays Techniques in Molecular Genetics Spectroscopy and Enzyme Assays H.E. Schellhorn Spectroscopy Chromophore Molar Extinction Coefficient Absorbance Transmittance Spectroscopy Many biological materials have

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1.

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1. 1. (35 points) Compound A reacts to form compounds B, C and D via parallel unimolecular pathways, as shown immediately below. A k 1 B (1) A k 2 C (2) A k 3 The plot on the graph shown below displays the

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

Previous Class. Today. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements

Previous Class. Today. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements Previous Class Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements Today Practical Methods for Kinetics and Equilibria Spectrophotometry Radioactive Procedures Spectrofluorimetry

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment

PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment Figure 1. PowerWaveX Select Microplate Spectrophotometer Introduction With today's requirements for high throughput,

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Kinetics of ADH-Catalyzed Metabolism of Ethanol

Kinetics of ADH-Catalyzed Metabolism of Ethanol Kinetics of ADH-Catalyzed Metabolism of Ethanol Abstract: We will study the oxidation of ethanol in vitro (in laboratory glassware), with the help of the enzyme Alcohol Dehydrogenase (ADH). The same reaction

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 131 Learning Objective This laboratory introduces you to steady-state kinetic analysis, a fundamental

More information

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst)

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst) Catalysis Catalysis provides an additional mechanism by which reactants can be converted to products. The alternative mechanism has a lower activation energy than the reaction in the absence of a catalyst.

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 KINETICS OF ENZYME CATALYSED REACTIONS (CONTD.) So in the last lecture we

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Bioreactor Engineering Laboratory

Bioreactor Engineering Laboratory Bioreactor Engineering Laboratory Determination of kinetics parameters of enzymatic hydrolysis of lactose catalyzed by β-galactosidase. Supervisor: Karolina Labus, PhD 1. THEROETICAL PART Enzymes are macromolecular,

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Proteins Act As Catalysts

Proteins Act As Catalysts Proteins Act As Catalysts Properties of Enzymes Catalyst - speeds up attainment of reaction equilibrium Enzymatic reactions -10 3 to 10 17 faster than the corresponding uncatalyzed reactions Substrates

More information

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 216-225 Updated on: 2/4/07 at 9:00 pm Key Concepts Kinetics is the study of reaction rates. Study of enzyme kinetics

More information

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins:

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins: Membrane Proteins: 1. Integral proteins: proteins that insert into/span the membrane bilayer; or covalently linked to membrane lipids. (Interact with the hydrophobic part of the membrane) 2. Peripheral

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

Chemistry 112 Final Exam, Part II February 16, 2005

Chemistry 112 Final Exam, Part II February 16, 2005 Name KEY. (35 points) Consider the reaction A + B + C + D + E + F Æ P, which has a rate law of the following form: d[p]/dt = k[a]a[b]b[c]c[d]d[e]e[f]f The data sets given or displayed below were obtained

More information

PAPER No. : 16, Bio-organic and bio-physical chemistry MODULE No. :21, Bisubstrate Reactions

PAPER No. : 16, Bio-organic and bio-physical chemistry MODULE No. :21, Bisubstrate Reactions Subject Paper No and Title Module No and Title Module Tag 16- Bio-Organic & Bio-Physical M-21 Bisubstrate Reactions CHE_P16_M21 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Bisubstrate reactions

More information

KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline

KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline Text Problems: # 15, 27, 31, 32, 47, 48 (calc. A too), 50(a,b), 52(a,b), 60, 72, 75 + Supplementary Questions (attached) Text Sample

More information

Tala Saleh. Mohammad Omari. Dr. Ma moun

Tala Saleh. Mohammad Omari. Dr. Ma moun 20 0 Tala Saleh Mohammad Omari Razi Kittaneh Dr. Ma moun Quick recap The rate of Chemical Reactions Rises linearly as the substrate concentration [S] increases. The rate of Enzymatic Reactions Rises rapidly

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

Nonlinear pharmacokinetics

Nonlinear pharmacokinetics 5 Nonlinear pharmacokinetics 5 Introduction 33 5 Capacity-limited metabolism 35 53 Estimation of Michaelis Menten parameters(v max andk m ) 37 55 Time to reach a given fraction of steady state 56 Example:

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

Lecture 11: Enzyme Kinetics, Part I

Lecture 11: Enzyme Kinetics, Part I Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 11: Enzyme Kinetics, Part I 13 February 2018 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Back to

More information

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v: Eadie Hofstee diagram In Enzymology, an Eadie Hofstee diagram (also Woolf Eadie Augustinsson Hofstee or Eadie Augustinsson plot) is a graphical representation of enzyme kinetics in which reaction velocity

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Enzyme Kinetics: How they do it

Enzyme Kinetics: How they do it Enzyme Kinetics: How they do it (R1) Formation of Enzyme-Substrate complex: (R2) Formation of Product (i.e. reaction): E + S ES ES -> E + P (R3) Desorption (decoupling/unbinding) of product is usually

More information

Substrate Specificity of Alcohol Dehydrogenase

Substrate Specificity of Alcohol Dehydrogenase 0 Substrate Specificity of Alcohol Dehydrogenase Roshan Roshan Chikarmane and Jonathan White Department of Chemistry University of Oregon Eugene, OR 97403 April 26, 2014 Abstract: The substrate specificity

More information

Deriving the Michaelis-Menten Equation

Deriving the Michaelis-Menten Equation Page 1 of 5 Deriving the Michaelis-Menten Equation This page is originally authored by Gale Rhodes ( Jan 2000) and is still under continuous update. The page has been modified with permission by Claude

More information

Overview of MM kinetics

Overview of MM kinetics Overview of MM kinetics Prepared by Robert L Sinsabaugh and Marcy P Osgood in 2007. Includes assumptions and deriviation of original MM model. Includes limitations and implications of MM application to

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing Effect of Temperature Increasing the temperature increases the energy in the system Two effects kinetic denaturing Kinetic effect Increased motion of molecules Increased collisions between enzyme/substrate

More information

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes Chapter 6 Overview Enzymes Catalysis most important function of proteins n Enzymes protein catalysts Globular protein Increase rate of metabolic processes Enzymes kinetics info on reaction rates & measure

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Biochem. J. (1967) 103, 251 251 The Use of the Logarithmic Transformation in the Calculation of the Transport Parameters of a System that Obeys Michaelis-Menten Kinetics BY H. E. BARBER,* B. L. WELCH AND

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

BCH 3023 Fall 2008 Exam 2, Form C Name: ANSWER KEY

BCH 3023 Fall 2008 Exam 2, Form C Name: ANSWER KEY Name: ANSWER KEY In class, we discussed one method to linearize the Michaelis-Menton equation. There are other methods to do this, one being an Eadie-Hofstee plot. Given the Eadie-Hofstee plot below, answer

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 KINETICS OF ENZYME CATALYSED REACTIONS Having understood the chemical and

More information

Lecture 12: Burst Substrates and the V vs [S] Experiment

Lecture 12: Burst Substrates and the V vs [S] Experiment Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 12: Burst Substrates and the V vs [S] Experiment 14 February 2019 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM Name Do not open this exam until told to do so. The exam consists of 6 pages, including this one. Count them to insure that they are all there. Constants: R = 8.31

More information

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances. Biochemistry 461, Section I May 6, 1997 Exam #3 Prof. Jason D. Kahn Your Printed Name: Your SS#: Your Signature: You have 80 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Ligand Binding A. Binding to a Single Site:

Ligand Binding A. Binding to a Single Site: A. Binding to a Single Site: The uilibrium constant (also known as association constant or affinity constant) for the binding of a ligand to a protein is described by the following uation (note: A ): [

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

5. Kinetics of Allosteric Enzymes. Sigmoidal Kinetics. Cooperativity Binding Constant

5. Kinetics of Allosteric Enzymes. Sigmoidal Kinetics. Cooperativity Binding Constant 5. Kinetics of Allosteric Enzymes Sigmoidal Kinetics Cooperativity Binding Constant Kinetics of Allosteric Enzymes Contents Definitions Allosteric enzymes Cooperativity Homoallostery Heteroallostery Biphasic

More information

Lecture 4 STEADY STATE KINETICS

Lecture 4 STEADY STATE KINETICS Lecture 4 STEADY STATE KINETICS The equations of enzyme kinetics are the conceptual tools that allow us to interpret quantitative measures of enzyme activity. The object of this lecture is to thoroughly

More information

v = k, [ES] Name(s): Chemistry 255

v = k, [ES] Name(s): Chemistry 255 Chemistry 255 Name(s): Exercise 3: Michaelis-Menten kinetics (Due Weds, 11/2) The study of enzyme kinetics is key to understanding the mechanism of how an enzyme performs its function. In 1913, Leonor

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

[C] [D] K eq = [A] [B]

[C] [D] K eq = [A] [B] Enzyme Kinetics: Properties of -Galactosidase Preparation for Laboratory: Web Tutorial 4, Beta Galactosidase - submit answers to questions Additonal background: Freeman, Proteins pp 51-54 and Box 3.3 pp56-57,

More information

ENZYMES. by: Dr. Hadi Mozafari

ENZYMES. by: Dr. Hadi Mozafari ENZYMES by: Dr. Hadi Mozafari 1 Specifications Often are Polymers Have a protein structures Enzymes are the biochemical reactions Katalyzers Enzymes are Simple & Complex compounds 2 Enzymatic Reactions

More information