Abstract and Objectives

Size: px
Start display at page:

Download "Abstract and Objectives"

Transcription

1 inetics of Alcohol Dehydrogenase with competitive inhibition Steven Asplund, ictor. Tseng 2 Department of Bioengineering, University of Washington Abstract and Objectives Alcohol Dehydogenase (ADH) allows the ablation of ethanol toxicity by oxidizing it to ethanal. The action of the enzyme follows ichaelis- enten kinetics (). In this paper, we present a standard curve for the reduction of NAD+ by yeast ADH and ethanol, as well as the corresponding kinetics with 2,2,2-triflouroethanol as a competitive inhibitor. We will determine the ichaelis-enten constants for both reactions in order to characterize the degree of inhibition. Introduction A complete system involving ADH, NAD+, ethanol, and 2,2,2-triflouroethanol can be described by the state model in Figure. The binding of substrate and inhibitor are both reversible. Thus, it is easy to increase enzyme affinity for ethanol simply by increasing the concentration of ethanol. The intermediate complex (S:E) is tight binding of ethanol to a Zinc formation on ADH, permitting electron transfer to NADH. Using a Lineweaver-Burke linearization of the kinetics gives EtOH [I ] where. Thus, in the uninhibited I case,. Since triflouroethanol does not reduce NAD+, we can use the rate of production of NADH as an assay of enzyme affinity towards the substrate of inhibitor. Figure State-odel for the oxidation of ethanol to ethanal in the presence of a competitive inhibitor.

2 ethods Standard inetics Eight cuvettes were loaded with volumes of 3 pure ethanol, ph 7.0 BSA and phosphate buffer shown in Table. A.5m NAD+ solution was stored on ice to prevent decompositions and volumes were added prior to each experiment as shown. A U-700 PharmaSpec spectrophotometer was referenced the absorbance of cuvettes with NAD+ prior to adding ADH. Then, 0.06 ml of 0.02 mg/ml ADH was added and the reaction was allowed to occur while A 340nm was recorded every 5 s for 2 min in a light path of cm. This was repeated with 3 methanol for the first two volumes in the table. Table olumes of substrate, NAD+ and buffer added to cuvettes with no inhibitor. Inhibited inetics We repeated the above, but added 0.05 ml of 3 2,2,2-triflouroethanol. Additionally, we used 0.0 mg/ml ADH for 0.06 and 0.05 ml of ethanol. The volumes added are shown in Table 2. Table 2 olumes of substrate, NAD+ and buffer added to cuvettes with inhibitor. T Initial Reaction Rates The initial rates were determined by a linear fit of the discrete differential of absorbance against time. The linear fit was a 2 good approximation since R correlations were high (see results). elocity of absorbance was converted to velocity of NADH by using Beer s law. d[ NADH ] da () dt b dt We use the molar extinction of NADH at 340 nm as 6200 L / mol cm. The initial amount of ethanol and NAD+ was calculated by simple stoichiometric conversion of to mol by using the volume of the cuvette as v 2. 94mL. Plots of initial rate against concentration of ethanol were made, using the computed amount of substrate and the linear fit slope. This data was linearized by the Lineweaver- Burk method, for which the ichaelis-enten constants were determined. We assumed that the concentration of NAD+ was constant over the short period of the reaction. This effectively made the concentration of the enzyme infinite, so that competition between ethanol and the inhibitor could be observed. Reaction with Inhibitor The above was repeated with the data from 2,2,2-triflouroethanol. The inhibition factor,, was determined by comparison of with the uninhibited case. As expected, there was no change in, but such a change would give us the inhibition factor for any noncompetitive inhibition. Non-initial Rates

3 Results 7.00E E-05 Condition [NADH] 6.00E E E E-05 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7 Condition 8 [NADH] 3.00E E E-05.50E-05 Condition Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7 Condition E-05.00E-05.00E E Figure 2 Production on NADH over time without inhibitor Figure 3 Production of NADH over time with inhibitor. The data for condition 2 was omitted in linearization since there was some error when adding substrate. 5.00E E E E E-07 Reaction Rate (mol/l-s) 3.50E E E E-07.50E-07 Reaction Rate (mol/l-s) 2.00E-07.50E-07.00E-07.00E E E [Ethanol]I (mol/l) [Ethanol]o (mol/l) Figure 4 ichaelis-enten curve for reaction velocity as a function of substrate without inhibitor. Figure 5 ichaelis-enten curve for reaction velocity as a function of substrate with inhibitor.

4 6.00E E E E E+06.50E+07 / o 3.00E+06 /o.00e E+06.00E+06 y = 4085/[Ethanol] + 2E+06 R 2 = E+06 y = /[Ethanol] + 2E+06 R 2 = /[Ethanol] Figure 5 Lineweaver-Burke linearization without inhibitor /[Ethanol] Figure 6 Lineweaver-Burke linearization with inhibitor. The initial concentrations of ethanol and NAD+ are shown below in mol/l [Ethanol]i 3.06E E-0.84E-0.22E-0 9.8E E E-02.53E-02 [NAD+]i 4.59E E E E E E E E-04 From the uninhibited kinetics, we have 2 0 s L / mol and 4085 s. 6 7 This gives 5 0 mol / L s and 0.02mol / L. From the inhibited kinetics, we observe the same, indicating non-competitive behavior. We have ' s, thus ' 0.27 mol / L. Thus ' 3. 5, or 250% inhibition. In other words, it takes a 2.5 factor increase in substrate in the inhibited reaction to achieve the same half- velocity in the uninhibited reaction. Since 3. 5, we can determine I vi I 0 the binding affinity of inhibitor relative to ethanol: I 4.08mol / L.

5 Appendix 6.00E E-06 Condition A-6 Condition A-8 Figure 7 Production of NADH over time with inhibitor and 0.0 mg/ml ADH. 4.00E-06 [N A D H ] 3.00E E-06.00E References. A study of the kinetics and mechanism of yeast alcohol dehydrogenase with a variety of substrates F Dickinson, GP onger. Biochem. J. (973) 3,

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present? Chem 315 In class/homework problems 1. a) For a Michaelis-Menten reaction, k 1 = 7 x 10 7 M -1 sec -1, k -1 = 1 x 10 3 sec -1, k 2 = 2 x 10 4 sec -1. What are the values of K s and K M? K s = k -1 / k

More information

Lab training Enzyme Kinetics & Photometry

Lab training Enzyme Kinetics & Photometry Lab training Enzyme Kinetics & Photometry Qing Cheng Qing.Cheng@ki.se Biochemistry Division, MBB, KI Lab lecture Introduction on enzyme and kinetics Order of a reaction, first order kinetics Michaelis-Menten

More information

Substrate Specificity of Alcohol Dehydrogenase

Substrate Specificity of Alcohol Dehydrogenase 0 Substrate Specificity of Alcohol Dehydrogenase Roshan Roshan Chikarmane and Jonathan White Department of Chemistry University of Oregon Eugene, OR 97403 April 26, 2014 Abstract: The substrate specificity

More information

Experiment 4 - BIOC 221 W2019. The Subject for the should be: BIOCHEM 221 EXP4

Experiment 4 - BIOC 221 W2019. The Subject for the  should be: BIOCHEM 221 EXP4 EXCEL SHEET INSTRUCTIONS 1. a) On the web page there is a file called YOURNAME_Bioc221Exp4W2019.xlsx. Fill in the information colored RED with your own information. (Please do not readjust where the cells

More information

Previous Class. Today. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements

Previous Class. Today. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements Previous Class Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements Today Practical Methods for Kinetics and Equilibria Spectrophotometry Radioactive Procedures Spectrofluorimetry

More information

Lab 3: Protein Determination and Enzyme Assay of Crab and Onion Samples

Lab 3: Protein Determination and Enzyme Assay of Crab and Onion Samples Lab 3: Protein Determination and Enzyme Assay of Crab and Onion Samples Khandi Coffman, Satoshi Sagami, Tramanh Do, Michaela Smith and Melissa Kindhart Lab 3: Protein Determination and Enzyme Assay of

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Kinetics of ADH-Catalyzed Metabolism of Ethanol

Kinetics of ADH-Catalyzed Metabolism of Ethanol Kinetics of ADH-Catalyzed Metabolism of Ethanol Abstract: We will study the oxidation of ethanol in vitro (in laboratory glassware), with the help of the enzyme Alcohol Dehydrogenase (ADH). The same reaction

More information

Alcohol dehydrogenase Assay Kit

Alcohol dehydrogenase Assay Kit Alcohol dehydrogenase Assay Kit Catalog Number KA3785 100 assays Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 General

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1.

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1. 1. (35 points) Compound A reacts to form compounds B, C and D via parallel unimolecular pathways, as shown immediately below. A k 1 B (1) A k 2 C (2) A k 3 The plot on the graph shown below displays the

More information

Pig Muscle Lactate Dehydrogenase with Oxidized Nicotinamide-Adenine

Pig Muscle Lactate Dehydrogenase with Oxidized Nicotinamide-Adenine Biochem. J. (1973) 135, 81-85 Printed in Great Britain 81 The Kinetics of the Interconversion of Intermediates of the Reaction of Pig Muscle Dehydrogenase with Oxidized Nicotinamide-Adenine Dinucleotide

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Chapter 14. Enzyme Kinetics

Chapter 14. Enzyme Kinetics Chapter 4. Enzyme inetics Chemical kinetics Elementary reactions A P (Oerall stoichiometry) (ntermediates) Rate equations aa bb zz P Rate k[a] a [B] b [Z] z k: rate constant The order of the reaction (ab

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester Bioengineering Laboratory I Enzyme Assays Part II: Determination of Kinetic Parameters 2016-2017 Fall Semester 1. Theoretical background There are several mathematical models to determine the kinetic constants

More information

Chapter 8 Problems Page 1 of 6 11/1/2007

Chapter 8 Problems Page 1 of 6 11/1/2007 Chapter 8 Problems Page of 6 //2007 8. he decarboxylation of a beta-eto acid alyzed by an enzyme can be measured by the rate of formation of CO 2. From the initial rates in the table determine the ichaelis-

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment

PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment Figure 1. PowerWaveX Select Microplate Spectrophotometer Introduction With today's requirements for high throughput,

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

Techniques in Molecular Genetics Spectroscopy and Enzyme Assays

Techniques in Molecular Genetics Spectroscopy and Enzyme Assays Techniques in Molecular Genetics Spectroscopy and Enzyme Assays H.E. Schellhorn Spectroscopy Chromophore Molar Extinction Coefficient Absorbance Transmittance Spectroscopy Many biological materials have

More information

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay; Elementary reactions 1/21 stoichiometry = mechanism (Cl. + H 2 HCl + H. ) monomolecular reactions (decay: N 2 O 4 some isomerisations) 2 NO 2 ; radioactive decay; bimolecular reactions (collision; most

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Reaction Kinetics COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Reaction kinetics is the study of how fast chemical reactions take place, what

More information

THE INFLUENCE OF SOME CATIONS OVER THE ALCOHOL DEHYDROGENASE ACTIVITY

THE INFLUENCE OF SOME CATIONS OVER THE ALCOHOL DEHYDROGENASE ACTIVITY Analele Universităţii din Oradea, Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimentară Vol. XII/B, 2013 THE INFLUENCE OF SOME CATIONS OVER THE ALCOHOL DEHYDROGENASE ACTIVITY Alina

More information

Lab 2A: Sub-Cellular Fractionation

Lab 2A: Sub-Cellular Fractionation Lab 2A: Sub-Cellular Fractionation A response is required for each item marked: (# ). Your grade for the lab 2 report (2A and 2B combined) will be the fraction of correct responses on a 50 point scale[(#

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Kinetics and Dissociation Constants of Liver Alcohol Dehydrogenase with 3-Acetyl Pyridine NAD+ and NADH

Kinetics and Dissociation Constants of Liver Alcohol Dehydrogenase with 3-Acetyl Pyridine NAD+ and NADH European J. Biochem. 2 (19G7) 32-36 Kinetics and Dissociation Constants of Liver Alcohol Dehydrogenase with 3-Acetyl Pyridine NAD+ and NADH J. D. SHORE and H. THEORELL Biochemistry Department, Nobel Medical

More information

Enzymes and kinetics. Eva Samcová and Petr Tůma

Enzymes and kinetics. Eva Samcová and Petr Tůma Enzymes and kinetics Eva Samcová and Petr Tůma Termodynamics and kinetics Equilibrium state ΔG 0 = -RT lnk eq ΔG < 0 products predominate ΔG > 0 reactants predominate Rate of a chemical reaction Potential

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

EXAM 3 CHEMISTRY 224 April 8, Write your name and Purdue ID number on the answer sheet

EXAM 3 CHEMISTRY 224 April 8, Write your name and Purdue ID number on the answer sheet 1. Read the following instructions carefully EXA 3 CHEISTRY 224 April 8, 2010 2. Write your name and Purdue ID number on the answer sheet 3. Write your Graduate Instructor s name on the line for Instructor

More information

Lab 3: Soluble Enzyme Kinetics

Lab 3: Soluble Enzyme Kinetics Taylor, A. Winter 2012 Lab 3: Soluble Enzyme Kinetics Introduction This lab will reinforce concepts addressed in BIOEN 335, Biotransport II. In particular, we will focus on enzyme kinetics. You have learned

More information

A microscale enzyme experiment based on bacterial gelatinase

A microscale enzyme experiment based on bacterial gelatinase Acta Manilana 63 (215), pp. 97 12 Printed in the Philippines ISSN: 65 137 A microscale enzyme experiment based on bacterial gelatinase Cristina G. Silvestre 1 & Maria Cristina R. Ramos 1,2 * 1 Department

More information

Lab 2A: Sub-Cellular Fractionation

Lab 2A: Sub-Cellular Fractionation Lab 2A: Sub-Cellular Fractionation A response is required for each item marked: (# ). Your grade for the lab 2 report (2A and 2B combined) will be the fraction of correct responses on a 50 point scale[(#

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

Experiment 7 EXCEL SHEET INSTRUCTIONS

Experiment 7 EXCEL SHEET INSTRUCTIONS EXCEL SHEET INSTRUCTIONS 1. a) On the web page there is a file called YOURNAME_Bioc221Exp7W2018.xlsx. Fill in the information colored RED with your own information. (Please do not readjust where the cells

More information

ADH Activity Assay Kit

ADH Activity Assay Kit ADH Activity Assay Kit Catalog Number KA3713 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

ETHANOL

ETHANOL www.megazyme.com ETHANOL ASSAY PROCEDURE K-ETOH 08/16 (60 Manual Assays per Kit) or (600 Auto-Analyser Assays per Kit) or (600 Microplate Assays per Kit) Megazyme International Ireland 2016 INTRODUCTION:

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline

KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline Text Problems: # 15, 27, 31, 32, 47, 48 (calc. A too), 50(a,b), 52(a,b), 60, 72, 75 + Supplementary Questions (attached) Text Sample

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes Chapter 6 Overview Enzymes Catalysis most important function of proteins n Enzymes protein catalysts Globular protein Increase rate of metabolic processes Enzymes kinetics info on reaction rates & measure

More information

Colorimetric GAPDH Assay Cat. No. 8148, 100 tests

Colorimetric GAPDH Assay Cat. No. 8148, 100 tests Colorimetric GAPDH Assay Cat. No. 8148, 1 tests Introduction Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) is a tetrameric enzyme that catalyzes glycolysis and thus serves to break down glucose for

More information

NAD/NADH Microplate Assay Kit User Manual

NAD/NADH Microplate Assay Kit User Manual NAD/NADH Microplate Assay Kit User Manual Catalog # CAK1008 Detection and Quantification of NAD/NADH Content in Urine, Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other biological

More information

Energy Transformation, Cellular Energy & Enzymes (Outline)

Energy Transformation, Cellular Energy & Enzymes (Outline) Energy Transformation, Cellular Energy & Enzymes (Outline) Energy conversions and recycling of matter in the ecosystem. Forms of energy: potential and kinetic energy The two laws of thermodynamic and definitions

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis 10 Old Barn Road Lake Placid, NY 12946 Technical Support: T: 800 548-7853 F: 518 523-4513 email: techserv@upstate.com Sales Department: T: 800 233-3991 F: 781 890-7738 Licensing

More information

Chemistry 112 Final Exam, Part II February 16, 2005

Chemistry 112 Final Exam, Part II February 16, 2005 Name KEY. (35 points) Consider the reaction A + B + C + D + E + F Æ P, which has a rate law of the following form: d[p]/dt = k[a]a[b]b[c]c[d]d[e]e[f]f The data sets given or displayed below were obtained

More information

A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase

A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase BioSystems 54 (1999) 71 76 www.elsevier.com/locate/biosystems A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase Marian Kuczek * Institute of Biology and En

More information

To be, or not be (a chemical equilibrium), that is the question:

To be, or not be (a chemical equilibrium), that is the question: To be, or not be (a chemical equilibrium), that is the question: Enzymes are catalysts and cannot deviate from the laws of thermodynamics. nce the Gibbs free energy change ( G) for the overall reaction

More information

Inhibition of Human Erythrocyte Lactate Dehydrogenase by High Concentrations of Pyruvate

Inhibition of Human Erythrocyte Lactate Dehydrogenase by High Concentrations of Pyruvate and Eur. J. Biochem. 78, 569-574 (1977) Inhibition of Human Erythrocyte Lactate Dehydrogenase by High Concentrations of Pyruvate Evidence for the Competitive Substrate Inhibition Chi-Sun WANG Lipoprotein

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Enzymatic Assay of TRYPTOPHANASE (EC )

Enzymatic Assay of TRYPTOPHANASE (EC ) Enzymatic Assay of TRYPTOPHANASE PRINCIPLE: PRP + L-Tryptophan + H 2 O Tryptophanase > Indole + Pyruvate + NH 3 Abbreviation: PRP = Pyridoxal 5-Phosphate CONDITIONS: T = 37 C, ph 8.3, A 540nm, Light path

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

Supporting Information

Supporting Information Supporting Information Enzyme Mediated Increase in Methanol Production from Photoelectrochemical Cells and CO 2 Ke Ma a, Omer Yehezkeli a, Eunsol Park b, Jennifer N. Cha*,a,c. a Department of Chemical

More information

Figure S1: Extracellular nicotinic acid, but not tryptophan, is sufficient to maintain

Figure S1: Extracellular nicotinic acid, but not tryptophan, is sufficient to maintain SUPPLEMENTAL INFORMATION Supplemental Figure Legends Figure S1: Extracellular nicotinic acid, but not tryptophan, is sufficient to maintain mitochondrial NAD +. A) Extracellular tryptophan, even at 5 µm,

More information

ENZYMES. by: Dr. Hadi Mozafari

ENZYMES. by: Dr. Hadi Mozafari ENZYMES by: Dr. Hadi Mozafari 1 Specifications Often are Polymers Have a protein structures Enzymes are the biochemical reactions Katalyzers Enzymes are Simple & Complex compounds 2 Enzymatic Reactions

More information

Towards the use of Alcohol dehydrogenases as biocatalysts for stereoselective isotope labeling of aromatic alcohols.

Towards the use of Alcohol dehydrogenases as biocatalysts for stereoselective isotope labeling of aromatic alcohols. Towards the use of Alcohol dehydrogenases as biocatalysts for stereoselective isotope labeling of aromatic alcohols. Irena Serveta Degree project C in chemistry Department of chemistry BMC Supervisor:

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Enzymatic Assay of GUANYLATE KINASE (EC )

Enzymatic Assay of GUANYLATE KINASE (EC ) PRINCIPLE: GMP + ATP Guanylate Kinase > GDP + ADP ADP + PEP Pyruvate Kinase > ATP + Pyruvate GDP + PEP Pyruvate Kinase > GTP + Pyruvate 2 Pyruvate + 2 ß-NADH Lactic Dehydrogenase > 2 Lactate + 2 ß-NAD

More information

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C.

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C. Experiment 8 EFFECT OF TEMPERATURE ON ENZYME ACTIVITY Temperature affects the stability of an enzyme as well as the binding of substrate and its transformation to product. Line B of Fig. 8-l shows the

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Enzymatic Assay of CALCINEURIN

Enzymatic Assay of CALCINEURIN PRINCIPLE: The assay for Calcineurin is based on its ability to bind to Calmodulin. Calmodulin which is bound to Calcineurin is no longer available to activate Phosphodiesterase 3':5'-Cyclic Nucleotide.

More information

LAB. FACTORS INFLUENCING ENZYME ACTIVITY

LAB. FACTORS INFLUENCING ENZYME ACTIVITY AP Biology Date LAB. FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

SECTION 9: Kinetics. Chapter 12 in Chang Text

SECTION 9: Kinetics. Chapter 12 in Chang Text SECTION 9: Kinetics Chapter 12 in Chang Text Outline for Section 9 Part I 9.1. Kinetics in Pharmaceutical Science 9.2. Rates of Reactions 9.3. Reaction Order: Zero-Order, 1 st Order 9.1. Chemical Kinetics

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Investigation on the Kinetic Mechanism of Octopine Dehydrogenase

Investigation on the Kinetic Mechanism of Octopine Dehydrogenase Eur. J. Biochem. 84, 441-448 (1978) nvestigation on the Kinetic Mechanism of Octopine Dehydrogenase A Regulatory Behavior Marie-Odile MONNEUSE-DOUBLET, Anna OLOMUCK, and Jean BUC Laboratoire de Biochimie

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place

MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place MITOCHONDRIAL LAB We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place We make about 95% of our ATP in the mitochondria We will isolate mitochondria, and

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

1.2 Systematic Name: D-Amino acid: oxygen reductase (deaminating)

1.2 Systematic Name: D-Amino acid: oxygen reductase (deaminating) Document Title D-Amino Acid Oxidase Page 1 of 5 Originating Department QA Approval Departments QA, QC Approval Date 30 th August 2016 Effective Date 7 th October 2016 1.0 PRODUCT DETAILS 1.1 Enzyme Name:

More information

Citric acid Enzymatic method

Citric acid Enzymatic method Method OIV-MA-AS313-09 Type II method Enzymatic method 1. Principle is converted into oxaloacetate and acetate in a reaction catalyzed by citratelyase (CL): Citrate CL oxaloacetate + acetate In the presence

More information

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this Chapter 6 Carvings from ancient Egypt show barley being crushed and mixed with water (left) and then put into closed vessels (centre) where airless conditions are suitable for the production of alcohol

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Malachite Green Phosphate Detection Kit Catalog Number: DY996

Malachite Green Phosphate Detection Kit Catalog Number: DY996 Malachite Green Phosphate Detection Kit Catalog Number: DY996 This Malachite Green Phosphate Detection Kit employs a simple, sensitive, reproducible, and non-radioactive method for measuring inorganic

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

To increase the concentration of product formed in a PFR, what should we do?

To increase the concentration of product formed in a PFR, what should we do? To produce more moles of product per time in a flow reactor system, what can we do? a) Use less catalyst b) Make the reactor bigger c) Make the flow rate through the reactor smaller To increase the concentration

More information

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 131 Learning Objective This laboratory introduces you to steady-state kinetic analysis, a fundamental

More information

Alcohol Dehydrogenase Detection Kit

Alcohol Dehydrogenase Detection Kit ab102533 Alcohol Dehydrogenase Detection Kit Instructions for Use For the rapid, sensitive and accurate measurement of Alcohol Dehydrogenase activity in various samples This product is for research use

More information

Ketone Body Assay Kit

Ketone Body Assay Kit Ketone Body Assay Kit Catalog Number KA1630 100 assays Version: 04 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 Principle of the Assay...

More information

Enzymatic Assay of GLYCOGEN SYNTHASE (EC )

Enzymatic Assay of GLYCOGEN SYNTHASE (EC ) PRINCIPLE: UDPG + (Glycogen) n Glycogen Synthase > UDP + (Glycogen) n+1 UDP + PEP PK > UTP + Pyruvate Pyruvate + ß-NADH LDH > Lactate + ß-NAD Abbreviations: UDPG = Uridine 5'-Diphosphoglucose UDP = Uridine

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

-Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots.

-Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots. Biological Sciences 11 Spring 2000 Experiment 2: -Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots. Part To do... More information A (1) Review lecture notes

More information

Overview of MM kinetics

Overview of MM kinetics Overview of MM kinetics Prepared by Robert L Sinsabaugh and Marcy P Osgood in 2007. Includes assumptions and deriviation of original MM model. Includes limitations and implications of MM application to

More information

Impact of High Pyruvate Concentration on Kinetics of Rabbit Muscle Lactate Dehydrogenase

Impact of High Pyruvate Concentration on Kinetics of Rabbit Muscle Lactate Dehydrogenase DOI 1.17/s121-11-9287-y Impact of High Pyruvate Concentration on Kinetics of Rabbit Muscle Lactate Dehydrogenase Matthew Warren Eggert & Mark E. Byrne & Robert P. Chambers Received: 11 February 211 / Accepted:

More information

Chapter 6~ An Introduction to Metabolism

Chapter 6~ An Introduction to Metabolism Chapter 6~ An Introduction to Metabolism Metabolism/Bioenergetics Metabolism: The totality of an organism s chemical processes; managing the material and energy resources of the cell Catabolic pathways:

More information

Enzymatic Assay of CARBOXYPEPTIDASE P (EC )

Enzymatic Assay of CARBOXYPEPTIDASE P (EC ) PRINCIPLE: N-CBZ-Glu-Tyrosine + H2O Carboxypeptidase P > N-CBZ-L-Glutamic Acid + L-Tyrosine Abbreviation used: N-CBZ = N-Carbobenzoxy CONDITIONS: T = 30 C, ph = 3.7, A 570nm, Light path = 1 cm METHOD:

More information

RUBISCO > 2 moles of 3-phosphoglycerate Mg +2

RUBISCO > 2 moles of 3-phosphoglycerate Mg +2 PRINCIPLE: RuDP + CO 2 RUBISCO > 2 moles of 3-phosphoglycerate Mg +2 3-Phosphoglycerate + ATP PGK > Glycerate 1,3-Diphosphate + ADP Glycerate 1,3-Diphosphate + ß-NADH GAPDH > Glyceraldehyde 3-Phosphate

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

Patrick, An Introduction to Medicinal Chemistry 5e Chapter 7 Enzymes as drug targets. 1) The structures of isoleucine and valine are as follows.

Patrick, An Introduction to Medicinal Chemistry 5e Chapter 7 Enzymes as drug targets. 1) The structures of isoleucine and valine are as follows. Answers to end-of-chapter questions 1) The structures of isoleucine and valine are as follows. 2 C 2 2 C 2 3 C C 3 3 C C 3 Isoleucine Valine Isoleucine has a larger side chain than valine, and so there

More information