Chemistry 112 Final Exam, Part II February 16, 2005

Size: px
Start display at page:

Download "Chemistry 112 Final Exam, Part II February 16, 2005"

Transcription

1 Name KEY. (35 points) Consider the reaction A + B + C + D + E + F Æ P, which has a rate law of the following form: d[p]/dt = k[a]a[b]b[c]c[d]d[e]e[f]f The data sets given or displayed below were obtained through various types of studies. a. (30) What are the exponents a, b, c, d, e and f? (The units of d[p]/dt are moles/liter hr and the concentrations are in terms of moles/liter.) b. (5) Consider a different reaction than that described above, but with : stoichiometry in all reactants and the product. If the order of the reaction with respect to reactant X and the overall order were both determined to be 2.5, what would be the units of the rate constant for this reaction? () When initial rate experiments were done, the following table of initial rates, corresponding to various starting concentrations of reactants, was generated. In each of these experiments, the initial concentrations of E and F were set at the same values for all experimental runs. (d[p]/dt) 0 [A] 0 [B] 0 [C] 0 [D] (2) When all the reactants, except B, were maintained at the same initial values, the data plotted on the graph on the left below was obtained (d[p]/dt) 0 /[E] [B] t(hr) (3) When all of the reactants, except E, were maintained in great excess the data plotted on the right hand graph above was measured. (4) When the reaction of F was studied in solution with all of the other reactants present in large excess, then the half life observed when [F] 0 = mole/liter was 0 seconds, while the half life found when [F] 0 = 0.5 mole/liter was 50 seconds.

2 Name KEY Solution: (a) From the Table, we see when that [A] 0 and [B] 0 are both doubled simultaneously (data sets and 2) and all other initial concentrations were maintained at constant values, the initial rate of reaction does not change. From this observation, we can state that a + b = 0. Now, looking at data sets 2 and 3, we see that decreasing [C] 0 by a factor of two while simultaneously holding all other initial concentrations constant results in a 6 fold increase in the initial rate of reaction. Letting R 32 = (d[p]/dt) 03 /(d[p]/dt) 02, we find R 32 = {[C] 03 /[C] 02 } c = 6 = (0.5) c. Taking the logs of both sides, log 6 =.204 = c log 0.5 = -0.30c. Therefore, c = -4. Examination of data sets and 4 allows d to be evaluated. For this case, in which all initial concentrations, except that of D, are held constant results in an equation stating that R 4 = {[D] 04 /[D] 0 } d = 5.66 = 2 d. Taking the logs of both sides, log 5.66 = = d log 2 = 0.3d. Thus, d = 2.5. Based on the work in the third conference, we know that the equation log (d[p]/dt) 0 = b log [B] 0 + constant describes the graph above on the left. The slope of the log-log plot of this equation will be equal to the exponent b. Picking two points on this graph, we can calculate the slope as m = (log 0.7 log.0)/(log 2- log ) = -0.54/0.3 = b = - /2. Since, from above, we know that a + b = 0, we can immediately determine that a = /2. Examination of the plot of /[E] vs. t, all other components present in great excess, immediately indicates that the reaction second order in [E]. The half-life data for F indicates that the half-life drops by a factor of two as the initial concentration halves in value. For zero order reactions, the half-life equation is t /2 = [A] 0 /2k. This equation indicates that the half-life will fall by a factor of two when the initial concentration drops by a factor of two. Hence the rate law for disappearance of F is zero order in [F] and f = 0. (b) Given that the reaction is 2.5 order overall, we can write d[x]/dt =-k[x] -2.5, where X represents the reactant X. To obtain the units of k, we form the ratio (d[x]/dt)/[x] This yield units of (moles/l t)/(moles -2.5 /l -2.5 ) = moles 3.5 /l 3.5 t).

3 Name KEY 2. (35 points) Consider the reaction sequence immediately below, which occurs in solution: A B k k - k 2 B C M + B C + M This reaction can be shown to have the steady state rate law that follows: d[c] dt = k 3 k k [A] 2 k + k + - k3 2 [M] + k k 3 [A][M] k + k + - k3 2 [M] When k - >> (k 2 + k 3 [M]), then this rate law simplifies to the form d[c] dt = k 2 k [A] k - + k k 3 [A][M] k The dependences of the ratio of rate constants k to k - (k /k - ) and the rate constant ratios of k 2 and k 3 to temperature, namely k 2 /T and k 3 /T, on /T are illustrated in Figures a., b. and c. respectively on the next page. (a) (4) Is the above reaction a catalyzed reaction? Why or why not? (b) (4) What are the values of H 2 and S 3 for reaction 2 and reaction 3 respectively? Note the equation for the least squares fit above the graph of log k 3 /T vs. /T. (c) () What is the value of H - H -? (d) (7) Consider an analogous reaction, involving closely related reactant D, intermediate E and product F, for which the same mechanism as described above holds and for which the same form of rate law as described in equation () is true. In this case, it was found that H - H - = -30 kj, H 2 = 70 kj, H 3 = 35 kj, S - S - = 25 J/K, S 2 = J/K and S 3 = -25 J/K. At what temperature will the rate of the reaction along the first order pathway in equation () above (in which D, E and F have replaced A, B and C) have the same rate as the reaction along the pathway involving M when [M] = M? Solution: (a) This is a catalyzed reaction. The species M enters into step 3, but is not consumed in the reaction. (b) The slope of graph b. can be calculated as being Thus, H 3 = Rm = J, The y-intercept of graph c is = (log 2x + S 3/2.3R); thus S 3 = -20 J/K. (c) The slope of the line in graph a. is 67; since H - H - = -2303Rm, H - H - = -20,400 J. (d) Since the reaction rate along the two pathways is equal, we can write k 2 k [A]/k - = k 3 k [A][M]/k -. Canceling out terms that appear on both sides, we find k 2 = k 3 [M] or k 3 [M]/k 2 =, which can be set equal to the ratio given below. (Since [M] =, it does not appear in the equation.) - ()

4 Name KEY k 3 k 2 = 2x T S 3-3 e R e HT R S 2-2 2x T e R e HT R Taking the natural logs of both sides, we obtain ln = 0 = ( S 3 - S 2)/R {( H 3- H 2)/RT}. Since R appears in both terms on the right, it can be cancelled out. Substituting in for the values given in the statement of the problem, the expression can then be written as 35 +(35000/T) = 0. Solving for T, we find that a temperature of 00 K would be required for the two reaction rates to be equal.

5 University of California, School of Pharmacy Chemistry 2 Final Examination, Problem 2. Graphs displaying how (a) k /k -, (b) k 2 /T and (c) k 3 /T vary with /T. a k /k /T, K - b. 00 c. y = x k 2 /T 0 log (k 3 /T) /T, K - /T, K -

6 Name KEY 3. (35 points) Consider the pair of reactions shown below: Z A Z B k Z A + Z B A + B D () Z A Z C k 2 Z A + Z C A + C E (2) When the rate constant for each reaction was studied individually as a function of I /2, the pair of graphs shown below resulted. Separate experiments indicated that Z B was negative. (You may assume that the ionic reactants and products make a negligible contribution to the ionic strength of the reaction solution.) In answering the questions below, do not make any extrapolations outside of the graph shown below. a. (8) What are the values of the products Z A Z B and Z A Z C? b. (9) What are the values of Z A, Z B and Z C? c. (7) What is the value that the ratio k 2 /k would have at an ionic strength of zero? d. (7) What ionic strength would be required to make k 500 times larger than k 2 if the ratio of k 20 /k was 0.? e. (4) What concentration of magnesium sulfate is needed to make I =? 5 4 log k 3 log k log k I /2 Solution: a. According to the Bronsted-Bjerrum (BB) equation (log k = log k 0 +.8Z x Z y I /2 ), we can obtain the product of the charges entering the transition state of a bimolecular reaction by measuring the slope of a plot of log k vs. I /2. This is given for both reactions by the graph above. The slope of the plot of log k vs. I /2 can be determined to be 3., which leads to Z A Z B = 3, while the slope of the graph of log k 2 vs. I /2 is.02, which yields Z A Z C = -. b. By examining the two products above, we must conclude that Z A has a magnitude of and Z B a magnitude of 3. (If Z A were to have a magnitude of 3, then Z C would have to

7 Name KEY take a non-integer value of magnitude /3.) Now, it is known that Z B is negative in sign; therefore Z B = -3. Since Z A Z B = 3, Z A =. Since Z A Z C = -, Z C = +. c. Subtracting the BB equation describing k from that describing k 2, we obtain the following: log (k 2 /k ) = log (k 20 /k ) +.08Z A (Z C -Z B )I /2. Picking values of k 2 and k off of the graph at a particular I /2, we can calculate the value of log (k 20 /k ) at that I /2. For example, picking points at I /2 = 0., we find log k 2 =.90 and log k = 2.6. Since log (k 2 /k ) = log k 2 log k, we find 0.7 = log (k 20 /k ) +.08(-)(4)(0.) = log (k 20 /k ) or log (k 20 /k ) = This yields (k 20 /k ) = 0.5. d. Using the equation from above, namely log (k 2 /k ) = log (k 20 /k ) +.08Z A (Z C -Z B )I /2, we substitute in values as follows: log = = (-)(4)I /2. Solving, we find I /2 = -.69/ = Therefore, we find I = e. I = = 0.5{[Mg +2 ](2) 2 + [SO 4-2 ](-2) 2 }. However, in MgSO 4, the concentration of magnesium and sulfate ions is the same. Thus, we can write that = 0.5(8[Mg +2 ]). Solving for [Mg +2 ], we find that [Mg +2 ] = 0.25 M. This is also the concentration of MgSO 4 required.

8 Name KEY 4. (40 points) The following two graphs represent plots of data obtained from enzyme kinetic studies of two proteins, Pro (on the left) and Pro2 (on the right). These two proteins, each of which was isolated in different laboratory, metabolize an antiparasitic drug used in the treatment of a mosquito-borne disease. The least squares fit of the data in each case is given above the corresponding graph. (Note, that in all of the studies represented below, the units of [S] is mm and v 0 is in terms of µm/sec.) 2.5 y = 0.096x y = -3.09x [S]/v 0.5 v [S] v 0 /[S] When the kinetics of degradation of the drug by a third protein Pro3, discovered by yet a third group, was studied, the data shown in the graph below was obtained (data indicated by /v 0 ). The kinetics of drug degradation by this third protein was also studied in the presence of two different inhibitors, I and I ; in each study, the inhibitor concentration was mm. The resulting data is shown by the plots labeled /v 0 and /v 0. For each study, the least squares fit of the data is above the graph..5 y = 0.302x (/v 0 ) y = 0.754x (/v 0 ') y = 0.999x (/v 0 ") /v /[S] /v 0 /v 0 ' /v 0 "

9 Name KEY a. (2) Do the enzyme kinetic data suggest that the three enzymes are likely to be the same protein, that two are likely the same protein and one is different or that the three enzymes correspond to three different proteins? Identify any proteins that are the same. Back up your answer with quantitative data and discussion of the reason(s) for your conclusions. b. (5) In the case of the third protein, on which the effect of inhibitors was studied, what kind of inhibition does I exert? What about I? c. (5) Evaluate the value of K I for the third protein. d. (5) Evaluate the value of K I for the third protein. e. (4) Studies with an uncompetitive inhibitor of this protein, namely I 3, indicated that the initial rate of reaction was three times as fast when [S] = mm and inhibitor was absent as when [S] = mm and [I 3 ] = mm. What is the value of K I for I 3? Solution: (a) If the K M and V max values describing the reaction of two enzymes with the same substrate S are quite close to one another, than it is likely that they are the same enzyme. If not, then they are likely to be different enzymes. We therefore analyze the graphical representations of the data for the three enzymes to obtain values of K M and V max. The plot in the top graph on the left is a Hanes plot. For this type of plot, m = /V max = and b = K M /V max. From this information, we find V max =.4 µm sec and K M = 3.27 mm. The top plot on the right is an Eadie-Hofstee plot. In this case, b = V max =.9 µm/sec and m = -K M = The bottom plot is a Lineweaver-Burk plot, for which b = /V max = or V max =.. Similarly, m = K M /V max = or K M = Examination of the K M indicates that there is about a 3% spread in values for the three enzymes, while there is about a 7% spread for the V max values. It is thus quite likely that the three enzymes are one and the same. The variation in V max and K M values likely comes about because of differing weighting of data points. (Indeed, the same set of data was used in constructing each of the three plots.) (b) I corresponds to a competitive inhibitor, while I is a noncompetitive inhibitor. (c) For competitive inhibition, m = (K M /V max ){ + (/K I )}. = 0.302( + /K I ) = Solving for K I, we find a value of 6.67 mm. (d) For noncompetitive inhibition, b = = (/Vmax){ + (/K I )} = /.9){ + (/K I )}. Solving for K I, we find a value of 4.86 mm. (e) For uncompetitive inhibition, we can write the following expression; v o /v o (inhibition) = [K M + [S]{ + ([I]/K I3 )}]/(K M + [S]) = 3 Substituting in values of [S] = [I] = mm and the values of K M and V max characteristic of the enzyme and solving for K I3, we obtain K I3 = 3.83 mm.

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1.

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1. 1. (35 points) Compound A reacts to form compounds B, C and D via parallel unimolecular pathways, as shown immediately below. A k 1 B (1) A k 2 C (2) A k 3 The plot on the graph shown below displays the

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Chemistry 112 Final Exam, Part II February 12, 1999 NAME

Chemistry 112 Final Exam, Part II February 12, 1999 NAME NAME UNIVERSITY OF CALIFORNIA School of Pharmacy Chemistry 2, Final Examination Part II: Open Book Directions: Work the following four problems; note that they are equally weighted in point value. You

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

The Rate Expression. The rate, velocity, or speed of a reaction

The Rate Expression. The rate, velocity, or speed of a reaction The Rate Expression The rate, velocity, or speed of a reaction Reaction rate is the change in the concentration of a reactant or a product with time. A B rate = - da rate = db da = decrease in concentration

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v: Eadie Hofstee diagram In Enzymology, an Eadie Hofstee diagram (also Woolf Eadie Augustinsson Hofstee or Eadie Augustinsson plot) is a graphical representation of enzyme kinetics in which reaction velocity

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction.

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction. Chapter 7 Problems Page of 6 //007 7. Hydrolysis of ethyl acetate is as follows: EtAc + OH - Ac - + EtOH. At 5 ºC, the disappearance of OH - is used to determine the extent of the reaction, leading to

More information

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS R. Merrill 1. Sketch the appropriate plots on the following axes. Assume that simple Michaelis- Menten kinetics apply. 2. The enzyme-catalyzed hydrolysis of

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

Overview of MM kinetics

Overview of MM kinetics Overview of MM kinetics Prepared by Robert L Sinsabaugh and Marcy P Osgood in 2007. Includes assumptions and deriviation of original MM model. Includes limitations and implications of MM application to

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 KINETICS OF ENZYME CATALYSED REACTIONS (CONTD.) So in the last lecture we

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B.

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B. Kinetic data gives insight into reaction mechanisms kinetic analysis will describe a relationship between concentrations of all chemical species before the rate determining step in a given reaction and

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Δx Δt. Any average rate can be determined between measurements at 2 points in time.

Δx Δt. Any average rate can be determined between measurements at 2 points in time. Chapter 13 Chemical Kinetics Some reaction are faster than others! Chem 210 Jasperse Ch. 13 Handouts 1 Three factors (in addition to the nature of the reacting chemicals themselves ) 1. Concentrations

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Chemistry 112 Midterm January 30, 2006

Chemistry 112 Midterm January 30, 2006 1. (35 points) The reaction of A and B to form products is thought to go according to the following mechanism: A + 2B 2C + D k -1 2C 2C 2C + M k 2 k 3 k 4 G H J + M (a) (5) Identify the products in this

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt Chem 344--Physical Chemistry for Biochemists II --F'12 I. Introduction see syllabus II. Experimental Chemical kinetics (Atkins, Ch.6) How fast is reaction? Rate of formation of product or loss of reactant

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents Enzyme Kinetics Differential Equations Series Instructor s Guide Table of Contents Introduction.... 2 When to Use this Video.... 2 Learning Objectives.... 2 Motivation.... 2 Student Experience.... 2 Key

More information

1. Consider the reaction X + Y ==> Z. Which rate law corresponds to a zero order reaction?

1. Consider the reaction X + Y ==> Z. Which rate law corresponds to a zero order reaction? AP Chemistry Kinetics Review Sheet (CQ) 1. Consider the reaction X + Y ==> Z. Which rate law corresponds to a zero order reaction? 2. Consider the reaction X + Y ==> Z. Which rate law corresponds to a

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002 Enzyme Kinetics Jonathan Gent and Douglas Saucedo May 24, 2002 Abstract This paper consists of a mathematical derivation of the Michaelis-Menten equation, which models the rate of reaction of certain enzymatic

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

SIMPLE MODEL Direct Binding Analysis

SIMPLE MODEL Direct Binding Analysis Neurochemistry, 56:120:575 Dr. Patrick J. McIlroy Supplementary Notes SIMPLE MODEL Direct Binding Analysis The interaction of a (radio)ligand, L, with its receptor, R, to form a non-covalent complex, RL,

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R.

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 90 minutes. Total marks = 30. This quiz represents

More information

Bioprocess Engineering

Bioprocess Engineering 1 Bioprocess Engineering Chap. 3 Enzymes I. Introduction 1. Enzymes are usually proteins of high MW (15000

More information

Nonlinear pharmacokinetics

Nonlinear pharmacokinetics 5 Nonlinear pharmacokinetics 5 Introduction 33 5 Capacity-limited metabolism 35 53 Estimation of Michaelis Menten parameters(v max andk m ) 37 55 Time to reach a given fraction of steady state 56 Example:

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

AP Questions: Kinetics

AP Questions: Kinetics AP Questions: Kinetics 1972 2 A + 2 B C + D The following data about the reaction above were obtained from three experiments: Rate of Formation of [A] [B] C (mole. liter -1 min -1 ) 1 0.60 0.15 6.3 10-3

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Enzymes are macromolecules (proteins) that act as a catalyst

Enzymes are macromolecules (proteins) that act as a catalyst Chapter 8.4 Enzymes Enzymes speed up metabolic reactions by lowering energy barriers Even though a reaction is spontaneous (exergonic) it may be incredibly slow Enzymes cause hydrolysis to occur at a faster

More information

1. Introduction to Chemical Kinetics

1. Introduction to Chemical Kinetics 1. Introduction to Chemical Kinetics objectives of chemical kinetics 1) Determine empirical rate laws H 2 + I 2 2HI How does the concentration of H 2, I 2, and HI change with time? 2) Determine the mechanism

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

BCH 3023 Fall 2008 Exam 2, Form C Name: ANSWER KEY

BCH 3023 Fall 2008 Exam 2, Form C Name: ANSWER KEY Name: ANSWER KEY In class, we discussed one method to linearize the Michaelis-Menton equation. There are other methods to do this, one being an Eadie-Hofstee plot. Given the Eadie-Hofstee plot below, answer

More information

Kinetics Teacher Answer Key Section I

Kinetics Teacher Answer Key Section I Kinetics Teacher Answer Key Section I Q1. Sketch the graph on the axes provided, labeling all parts as described in the Level I Generic Graph Questions. See Appendix A. Q2. Referring to your copy of the

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION PURPOSE: To determine the Rate Law and the Activation Energy for a reaction from experimental data. PRINCIPLES: The Rate Law is a mathematical expression that predicts the rate of a reaction from the concentration

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Chapter 6 Active Reading Guide An Introduction to Metabolism

Chapter 6 Active Reading Guide An Introduction to Metabolism Name: AP Biology Mr. Croft Section 1 1. Define metabolism. Chapter 6 Active Reading Guide An Introduction to Metabolism 2. There are two types of reactions in metabolic pathways: anabolic and catabolic.

More information

Energy Transformation, Cellular Energy & Enzymes (Outline)

Energy Transformation, Cellular Energy & Enzymes (Outline) Energy Transformation, Cellular Energy & Enzymes (Outline) Energy conversions and recycling of matter in the ecosystem. Forms of energy: potential and kinetic energy The two laws of thermodynamic and definitions

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay; Elementary reactions 1/21 stoichiometry = mechanism (Cl. + H 2 HCl + H. ) monomolecular reactions (decay: N 2 O 4 some isomerisations) 2 NO 2 ; radioactive decay; bimolecular reactions (collision; most

More information

CEE 697K ENVIRONMENTAL REACTION KINETICS

CEE 697K ENVIRONMENTAL REACTION KINETICS Updated: 19 November 2013 1 Print version CEE 697K ENVIRONMENTAL REACTION KINETICS Lecture #19 Chloramines Cont: Primary Literature Enzyme Kinetics: basics Brezonik, pp. 419-450 Introduction Conclusions

More information

BIBC 102, Metabolic Biochemistry Problem Set 1 Fall 2002

BIBC 102, Metabolic Biochemistry Problem Set 1 Fall 2002 Enzymology problems 1)The sweet taste of fresh corn is due to the high level of sugar in the kernal. Storebought corn that has been sitting around for a few days is not as sweet because about 50% of the

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d).

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). Homework #4 Chapter 5 Chemical Kinetics 8. Arrhenius Equation Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). 4. a) d) b) c) e) 5. Rate has units

More information

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances. Biochemistry 461, Section I May 6, 1997 Exam #3 Prof. Jason D. Kahn Your Printed Name: Your SS#: Your Signature: You have 80 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information