Dk & Df ALGEBRAIC MODEL v2.04 (NOTE: only change from v2.03 is correction of Cu conductivity used in surface roughness [Hurray model] calculation)

Size: px
Start display at page:

Download "Dk & Df ALGEBRAIC MODEL v2.04 (NOTE: only change from v2.03 is correction of Cu conductivity used in surface roughness [Hurray model] calculation)"

Transcription

1 Joel Goergen Beth (Donnay) Kochuparambil Cisco Systems Inc. 5 January, 03 Dk & Df AGEBRAIC MODE v.04 (NOTE: only change from v.03 is correction of Cu conductivity used in surface roughness [Hurray model] calculation)

2 et s take a look WHAT YOU WI SEE

3 OOK & FEE NOTE: The Change Parameter window is a visual basic macro. If you save the file to your computer, be sure to select the Maco-Enabled file type. Quick preview of select frequencies Click to change the input parameters Fitted equation(s): Dk(f) = c*f + c*f + b See the connector. & channel loss at specific frequencies

4 OOK & FEE NOTE: The Change Parameter window is a visual basic macro. If you are having issues opening this window, consider Microsoft button > Excel Options > Trust Center > Trust Center Settings > Macro Settings You have 3 input options; Feel free to return and select a different option if you change your mind.

5 OOK & FEE Select your ) configuration Enter material ) & parameters Must have all entries 3) filled in, then click OK

6 OOK & FEE User input config. in comparison with 0-base-KR Max Attenuation & I Tab gives a graphical display.

7 Behind the Scenes EQUATIONS AND REFERENCES OF MODE

8 FREQUENCY DEPENDENCE 6 input frequency points for Dk and Df Fit Dk and Df to second order equations Coefficients shown on sheet Graphical representation shown on sheet Note that frequency dependence fit is only approximated to 0G, therefore, loss approximations should only be considered to 0G Z 0 is calculated with Dk (or ε r ) at a given frequency; a similar technique is used in loss calculations

9 DK & DF SECOND ORDER EQUATIONS Second order approximation is created using the INEST function. This function essentially fits a nd order polynomial to the 6 frequency points given; resulting in D k = c *f + c *f + b Function as implemented in the spreadsheet: INEST(C8:C3,B8:B3^[,]) Y Values (Dk entered points) X Values (Freq. associated w/ entered points) Exponents of X; Creating a second order equation. See Excel HEP for more details on INEST function. Methodology verified against add trend line within plot.

10 CHARACTERISTIC IMPEDANCE [, EQU 4-5] ohms c b t b w Z r f r ' t) - for w/(b ion goodapproximat infiniteplatebetween two infinitegroundplanes,but - * assumingsemi ' f/cm) capacitance ( fringing trace thickness (mil) trace width (mil) platespacing (mil) constant (at a given frequency) relative dielectric f r c t w b log log ' b t b t b t b t c e e r f

11 ATTENUATION IN OSSY INES Attenuation per length [, EQN 9-54] : n R G C C R G nepers/len gth Using a low-loss approximation [, EQN 9-55] : (surface roughness ignored) 0 n 0 db e for ease of R Z But we don t typically discuss in nepers [, EQN 9-57] n 0 G Z notation: 0 db nepers/length Y 0log ndb 0 e 0log 0 n e

12 CONDUCTOR OSS (per inch) cond Y ndb R Z 0 Y R Z cond ndb 0 attenuation of amplitude due to conductor loss, in db/length converstion from nepers to db resistance per length of conductor characteristic impedance Skin effect, ground resistance, and stripline effect are accounted for in resistance [3, EQNs 4.3a-4.0] : R - R of signal trace & return path (w/skin effect) f f signalcu skin effect RgroundCu skin effect 6H w [, EQN 9-59] - AC surface resistance for microstrip (or side of a stripline trace) R acmicrostrip R signal R ground

13 CONDUCTOR OSS (per inch) R - Stripline approximation assumes parallel resistance of top and bottom microstrip approximations f * w * f * w 6H 6H R striplinesurface resistance ( /inch) w width of trace (inch) H height dielectric from ground to signal (inch) -7 H permeability of Cu m resistivity of Cu m f frequency (hertz) Conductor loss per inch as entered in the model: cond 0log 0 e f * w 6H Z0

14 DIEECTRIC OSS (per inch) diel Yn dbg Z0 Y G Z cond ndb 0 attenuation of converstion from nepers to db shunt conductance per length from dielectric characteristic impedance As developed by Bogatin... G Z 0 tan( ) C cc r amplitude due to dielectric loss,in db/length Dielectric loss per inch as entered in the model: [, EQN 9-60] [, EQN 9-9,EQN 9-60] G equation [, EQN 9-67] Z0 equation is used to cancel the capacitance value, the Z0 value for a given frequency is NOT used c speed of light m/s converstion m in. is needed 0log e f diel 0 D f *39.37 r

15 k SURFACE ROUGHNESS (multiplier) Through the snowball method (Huray Model [4, CHAP 6] ), surface roughness is approximated as a collection of smaller spheres. *Note image shows non-uniform snowballs model approximates using uniform spheres. Applied to trace: Surface roughness multiplier as entered in the model: snowball 3 j i Ni 4a i Aflat ai ai total diel ksnowball cond(smooth) ai radius of spheres (m) Ni number of snowballs of size ai per Aflat Aflat total area containing stacked snowballs skin depth (m)... recall: f

16 CONNECTOR OSS & CHANNE OSS Attempting to base on 5G technology connectors Used connector models from multiple vendors to draw this max* connector loss used in model: I conn 6 9*0 * f.*0 * f.6*0 f * Max loss when ignoring majority of ID. Idea was to create equation that production connectors can beat. Note that this creates additional error in comparing model to measured, however, model should error in pessimistic direction. Connector implementation likely to be changed in future versions. Equation gives loss @4G A OVERA CHANNE OSS EQUATION: (simple enough, right?) total a CA_ total * CA Iconn abp _ total * BP Iconn CB _ total * CB

17 REFERENCES [] E. Bogatin. Signal Integrity Simplified. Pearson Education, Inc., 004. ISBN [] S. B. Cohn. Problems in Strop Transmission ines. IRE Trans. Microwave Theory and Techniques, Vol. MTT-3, March, 955, pp 9-6. [3] S. H. Hall, G.W.Hall, J. A. McCall. High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices. John Wiley & Sons, Inc., 000. ISBN [4] P. G. Huray. The Foundations of Signal Integrity. John Wiley & Sons, Inc., 00. ISBN

18 TRACKING THE CHANGES Version Change.0 9/6/0 Initial release second order Dk & Df approximation, track user input channel along with Meg-6 & Improved FR-4 for given length/width/thickness, 3 materials compared to KR limit line..0 /5/0 surface resistance updated to include return path resistance and stripline approximation, Huray model for surface roughness added, worst-case connector added, partitioning option added (backplane w/ daughter cards), KR limit comparison made to attenuation max (instead of I).0 (a) /9/0 correction of error found in final multiplication/addition (A total ).03 //0 correction of error found in surface roughness multiplier (K snowball ) for line cards (matched equation given in the explanation slides), GUI clarified for Backplane w/ connectors, same material.

Update of DkDf Algebraic Model

Update of DkDf Algebraic Model Update of DkDf Algebraic Model IEEE March 2012 Plenary - Waikoloa Village, HI Beth Kochuparambil - Cisco Systems, Inc. Joel Goergen - Cisco Systems, Inc. Background Model first shown in Kochuparambil_01_1111

More information

Which one is better? Comparing Options to Describe Frequency Dependent Losses

Which one is better? Comparing Options to Describe Frequency Dependent Losses DesignCon 2013 Which one is better? Comparing Options to Describe Frequency Dependent Losses Dr. Eric Bogatin, Bogatin Enterprises eric@bethesignal.com Dr. Don DeGroot, CCN & Andrews University don@ccnlabs.com

More information

A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies

A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies Progress In Electromagnetics Research M, Vol. 48, 1 8, 2016 A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies Binke Huang * and

More information

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design In RF circuits RF energy has to be transported

More information

Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses

Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses DesignCon 2016 Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses Svetlana C. Sejas-García Chudy Nwachukwu Isola 1 Abstract Digital signaling requires interconnects

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information

Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz

Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Yuriy Shlepnev Simberian Inc. Abstract: Meaningful interconnect design and compliance

More information

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix Accounting for High Frequency Transmission Line Loss Effects in HFSS Andrew Byers Tektronix Transmission Line Refresher γ = α + j β = (R + jωl) * (G + jωc) Zo = Zr + j Zi = (R + jωl) / (G + jωc) Transmission

More information

Microstrip Propagation Times Slower Than We Think

Microstrip Propagation Times Slower Than We Think Most of us have been using incorrect values for the propagation speed of our microstrip traces! The correction factor for ε r we have been using all this time is based on an incorrect premise. This article

More information

Transmission Line Basics

Transmission Line Basics Transmission Line Basics Prof. Tzong-Lin Wu NTUEE 1 Outlines Transmission Lines in Planar structure. Key Parameters for Transmission Lines. Transmission Line Equations. Analysis Approach for Z and T d

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics Effective Conductivity Concept for Modeling Conductor Surface Roughness Institute of Microwaves and Photonics Friedrich-Alexander-University Erlangen-Nuremberg gerald.gold@fau.de klaus.helmreich@fau.de

More information

Lab 1: Numerical Solution of Laplace s Equation

Lab 1: Numerical Solution of Laplace s Equation Lab 1: Numerical Solution of Laplace s Equation ELEC 3105 last modified August 27, 2012 1 Before You Start This lab and all relevant files can be found at the course website. You will need to obtain an

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

Basics on High Frequency Circuit Analysis

Basics on High Frequency Circuit Analysis Basics on High Frequency Circuit Anaysis Dr. José Ernesto Rayas Sánchez Most of the figures of this presentation were taken from Agient Technoogies Educator s Corner: 999 RF Design and Measurement Seminar,

More information

DesignCon A Causal Huray Model for Surface Roughness. J. Eric Bracken, ANSYS Inc.

DesignCon A Causal Huray Model for Surface Roughness. J. Eric Bracken, ANSYS Inc. DesignCon 2012 A Causal Huray Model for Surface Roughness J. Eric Bracken, ANSYS Inc. Abstract The recently proposed Huray model is very accurate for modeling surface roughness. It can be used to modify

More information

Differential Impedance finally made simple

Differential Impedance finally made simple Slide - Differential Impedance finally made simple Eric Bogatin President Bogatin Enterprises 93-393-305 eric@bogent.com Slide -2 Overview What s impedance Differential Impedance: a simple perspective

More information

O P E R A T I N G M A N U A L

O P E R A T I N G M A N U A L OPERATING MANUAL WeatherJack OPERATING MANUAL 1-800-645-1061 The baud rate is 2400 ( 8 bits, 1 stop bit, no parity. Flow control = none) To make sure the unit is on line, send an X. the machine will respond

More information

This section reviews the basic theory of accuracy enhancement for one-port networks.

This section reviews the basic theory of accuracy enhancement for one-port networks. Vector measurements require both magnitude and phase data. Some typical examples are the complex reflection coefficient, the magnitude and phase of the transfer function, and the group delay. The seminar

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Microwave Engineering 3e Author - D. Pozar

Microwave Engineering 3e Author - D. Pozar Microwave Engineering 3e Author - D. Pozar Sections 3.6 3.8 Presented by Alex Higgins 1 Outline Section 3.6 Surface Waves on a Grounded Dielectric Slab Section 3.7 Stripline Section 3.8 Microstrip An Investigation

More information

Copper Roughness and Si9000e. 1 Copyright Polar Instruments 2017 polarinstruments.com

Copper Roughness and Si9000e. 1 Copyright Polar Instruments 2017 polarinstruments.com 1 Copyright Polar Instruments 2017 polarinstruments.com Copper Roughness and how to account for it Martyn Gaudion October 2017 (Rev 1) Presented for Altium PCB2020 Copyright Polar Instruments 2017 polarinstruments.com

More information

Calculating Bond Enthalpies of the Hydrides

Calculating Bond Enthalpies of the Hydrides Proposed Exercise for the General Chemistry Section of the Teaching with Cache Workbook: Calculating Bond Enthalpies of the Hydrides Contributed by James Foresman, Rachel Fogle, and Jeremy Beck, York College

More information

A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics

A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics Vladimir Dmitriev-Zdorov, Mentor Graphics, A Siemens Business Bert Simonovich, Lamsim Enterprises Inc. Igor Kochikov,

More information

SCSI Connector and Cable Modeling from TDR Measurements

SCSI Connector and Cable Modeling from TDR Measurements SCSI Connector and Cable Modeling from TDR Measurements Dima Smolyansky TDA Systems, Inc. http://www.tdasystems.com Presented at SCSI Signal Modeling Study Group Rochester, MN, December 1, 1999 Outline

More information

Broadband material model identification with GMS-parameters

Broadband material model identification with GMS-parameters Broadband material model identification with GMS-parameters Yuriy Olegovich Shlepnev Simberian Inc. shlepnev@simberian.com 2015 EPEPS Conference, October 27, 2015 2015 Simberian Inc. Outline Introduction

More information

Contents. 13. Graphs of Trigonometric Functions 2 Example Example

Contents. 13. Graphs of Trigonometric Functions 2 Example Example Contents 13. Graphs of Trigonometric Functions 2 Example 13.19............................... 2 Example 13.22............................... 5 1 Peterson, Technical Mathematics, 3rd edition 2 Example 13.19

More information

Transmission Line Basics II - Class 6

Transmission Line Basics II - Class 6 Transmission Line Basics II - Class 6 Prerequisite Reading assignment: CH2 Acknowledgements: Intel Bus Boot Camp: Michael Leddige Agenda 2 The Transmission Line Concept Transmission line equivalent circuits

More information

The Coupled Pendulum Experiment

The Coupled Pendulum Experiment The Coupled Pendulum Experiment In this lab you will briefly study the motion of a simple pendulum, after which you will couple two pendulums and study the properties of this system. 1. Introduction to

More information

Electromagnetic Forces on Parallel Current-

Electromagnetic Forces on Parallel Current- Page 1 of 5 Tutorial Models : Electromagnetic Forces on Parallel Current-Carrying Wires Electromagnetic Forces on Parallel Current- Carrying Wires Introduction One ampere is defined as the constant current

More information

Nonideal Conductor Models

Nonideal Conductor Models Nonideal Conductor Models 吳瑞北 Rm. 340, Department of Electrical Engineering E-mail: rbwu@ew.ee.ntu.edu.tw url: cc.ee.ntu.edu.tw/~rbwu S. H. Hall et al., High-Speed Digital Designs, Chap.5 1 What will You

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

Modeling of Signal and Power Integrity in System on Package Applications

Modeling of Signal and Power Integrity in System on Package Applications Modeling of Signal and Power Integrity in System on Package Applications Madhavan Swaminathan and A. Ege Engin Packaging Research Center, School of Electrical and Computer Engineering, Georgia Institute

More information

LED Lighting Facts: Manufacturer Guide

LED Lighting Facts: Manufacturer Guide LED Lighting Facts: Manufacturer Guide 2018 1 P a g e L E D L i g h t i n g F a c t s : M a n u f a c t u r e r G u i d e TABLE OF CONTENTS Section 1) Accessing your account and managing your products...

More information

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE 1. Objective Determining temperature coefficient of metal and activation energy of self-conductance of semiconductor sample. 2. Equipment needed Metal and semiconductor

More information

LED Lighting Facts: Product Submission Guide

LED Lighting Facts: Product Submission Guide LED Lighting Facts: Product Submission Guide NOVEMBER 2017 1 P a g e L E D L i g h t i n g F a c t s : M a n u f a c t u r e r P r o d u c t S u b m i s s i o n G u i d e TABLE OF CONTENTS Section 1) Accessing

More information

Roughness Characterization for Interconnect Analysis

Roughness Characterization for Interconnect Analysis Roughness Characterization for Interconnect Analysis Y. Shlepnev, Simberian Inc. C. Nwachukwu, Isola Group USA 1 Property rights disclosure Copyright 2011 by Simberian Inc., All rights reserved. THIS DOCUMENT

More information

Transmission-Reflection Method to Estimate Permittivity of Polymer

Transmission-Reflection Method to Estimate Permittivity of Polymer Transmission-Reflection Method to Estimate Permittivity of Polymer Chanchal Yadav Department of Physics & Electronics, Rajdhani College, University of Delhi, Delhi, India Abstract In transmission-reflection

More information

High Speed Interconnect Design and Characterization

High Speed Interconnect Design and Characterization High Speed Interconnect Design and Characterization Jay Diepenbrock April, 2014 4/17/2014 IEEE 1 Outline Signal Integrity - what, why, and how? Electrical characteristics of interconnect structures basic

More information

An area chart emphasizes the trend of each value over time. An area chart also shows the relationship of parts to a whole.

An area chart emphasizes the trend of each value over time. An area chart also shows the relationship of parts to a whole. Excel 2003 Creating a Chart Introduction Page 1 By the end of this lesson, learners should be able to: Identify the parts of a chart Identify different types of charts Create an Embedded Chart Create a

More information

Time Domain Reflectometry Theory

Time Domain Reflectometry Theory Time Domain Reflectometry Theory Application Note 304-2 For Use with Agilent 8600B Infiniium DCA Introduction The most general approach to evaluating the time domain response of any electromagnetic system

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

Si8000 User Guide. Polar Instruments Ltd. Si8000 Controlled Impedance Field Solver

Si8000 User Guide. Polar Instruments Ltd. Si8000 Controlled Impedance Field Solver Si8000 Controlled Impedance Field Solver Si8000 User Guide Polar Instruments Ltd Polar Instruments Ltd. Garenne Park St. Sampson Guernsey Channel Islands GY2 4AF ENGLAND Fax: +44 (0)1481 252476 email:

More information

v WMS Tutorials GIS Module Importing, displaying, and converting shapefiles Required Components Time minutes

v WMS Tutorials GIS Module Importing, displaying, and converting shapefiles Required Components Time minutes v. 11.0 WMS 11.0 Tutorial Importing, displaying, and converting shapefiles Objectives This tutorial demonstrates how to import GIS data, visualize it, and convert it into WMS coverage data that could be

More information

ST-Links. SpatialKit. Version 3.0.x. For ArcMap. ArcMap Extension for Directly Connecting to Spatial Databases. ST-Links Corporation.

ST-Links. SpatialKit. Version 3.0.x. For ArcMap. ArcMap Extension for Directly Connecting to Spatial Databases. ST-Links Corporation. ST-Links SpatialKit For ArcMap Version 3.0.x ArcMap Extension for Directly Connecting to Spatial Databases ST-Links Corporation www.st-links.com 2012 Contents Introduction... 3 Installation... 3 Database

More information

DSP First Lab 11: PeZ - The z, n, and ωdomains

DSP First Lab 11: PeZ - The z, n, and ωdomains DSP First Lab : PeZ - The, n, and ωdomains The lab report/verification will be done by filling in the last page of this handout which addresses a list of observations to be made when using the PeZ GUI.

More information

Roughness Characterization for Interconnect Analysis

Roughness Characterization for Interconnect Analysis Roughness Characterization for Interconnect Analysis Yuriy Shlepnev #, Chudy Nwachukwu * # Simberian Inc. * Isola Abstract A novel method for practical prediction of interconnect conductor surface roughness

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Simple circuits - 3 hr

Simple circuits - 3 hr Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

More information

N. Sarikaya Department of Aircraft Electrical and Electronics Civil Aviation School Erciyes University Kayseri 38039, Turkey

N. Sarikaya Department of Aircraft Electrical and Electronics Civil Aviation School Erciyes University Kayseri 38039, Turkey Progress In Electromagnetics Research B, Vol. 6, 225 237, 2008 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE COMPUTATION OF THE CHARACTERISTIC IMPEDANCE AND THE EFFECTIVE PERMITTIVITY OF THE MICRO-COPLANAR

More information

HSC Chemistry 7.0 User's Guide

HSC Chemistry 7.0 User's Guide HSC Chemistry 7.0 47-1 HSC Chemistry 7.0 User's Guide Sim Flowsheet Module Experimental Mode Pertti Lamberg Outotec Research Oy Information Service P.O. Box 69 FIN - 28101 PORI, FINLAND Fax: +358-20 -

More information

Modeling copper cables and PCBs

Modeling copper cables and PCBs Chapter 2 Modeling copper cables and PCBs 2.1. Introduction A proper channel model is a good basis for a correct understanding of any transmission system. The goal of this chapter is to identify an accurate

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

Appendix B Microsoft Office Specialist exam objectives maps

Appendix B Microsoft Office Specialist exam objectives maps B 1 Appendix B Microsoft Office Specialist exam objectives maps This appendix covers these additional topics: A Excel 2003 Specialist exam objectives with references to corresponding material in Course

More information

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM Progress In Electromagnetics Research, Vol. 118, 321 334, 2011 DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

More information

SFT3000S Measurement of Sn-Cu Coating

SFT3000S Measurement of Sn-Cu Coating SFT N0.19 SEP.2001 SFT3000S Measurement of Sn-Cu Coating 1. Overview Recently, Sn-Cu solder has been used in replacement of lead type solders. This application brief introduces several points you should

More information

Some Remarks on Shielding. Herbert Kapitza (FLA) (using slides from a talk by Mike Thuot) DESY,

Some Remarks on Shielding. Herbert Kapitza (FLA) (using slides from a talk by Mike Thuot) DESY, Some Remarks on Shielding Herbert Kapitza (FLA) (using slides from a talk by Mike Thuot) DESY, 09.10.2006 A shield may be used to confine the radiated field from a noise source. Shields are metallic partitions

More information

Ansoft HFSS 3D Boundary Manager Sources

Ansoft HFSS 3D Boundary Manager Sources Lumped Gap Defining s Voltage and Current When you select Source, you may choose from the following source types: Incident wave Voltage drop Current Magnetic bias These sources are available only for driven

More information

Creating Empirical Calibrations

Creating Empirical Calibrations 030.0023.01.0 Spreadsheet Manual Save Date: December 1, 2010 Table of Contents 1. Overview... 3 2. Enable S1 Calibration Macro... 4 3. Getting Ready... 4 4. Measuring the New Sample... 5 5. Adding New

More information

You w i ll f ol l ow these st eps : Before opening files, the S c e n e panel is active.

You w i ll f ol l ow these st eps : Before opening files, the S c e n e panel is active. You w i ll f ol l ow these st eps : A. O pen a n i m a g e s t a c k. B. Tr a c e t h e d e n d r i t e w i t h t h e user-guided m ode. C. D e t e c t t h e s p i n e s a u t o m a t i c a l l y. D. C

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis. Yuriy Shlepnev, Simberian Inc.

112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis. Yuriy Shlepnev, Simberian Inc. 112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com Package and PCB scales in symbol time for 112 Gbps PAM4 Package:

More information

Signal Processing First Lab 11: PeZ - The z, n, and ˆω Domains

Signal Processing First Lab 11: PeZ - The z, n, and ˆω Domains Signal Processing First Lab : PeZ - The z, n, and ˆω Domains The lab report/verification will be done by filling in the last page of this handout which addresses a list of observations to be made when

More information

Chapter 11: WinTDR Algorithms

Chapter 11: WinTDR Algorithms Chapter 11: WinTDR Algorithms This chapter discusses the algorithms WinTDR uses to analyze waveforms including: Bulk Dielectric Constant; Soil Water Content; Electrical Conductivity; Calibrations for probe

More information

Falling Bodies (last

Falling Bodies (last Dr. Larry Bortner Purpose Falling Bodies (last edited ) To investigate the motion of a body under constant acceleration, specifically the motion of a mass falling freely to Earth. To verify the parabolic

More information

Building Inflation Tables and CER Libraries

Building Inflation Tables and CER Libraries Building Inflation Tables and CER Libraries January 2007 Presented by James K. Johnson Tecolote Research, Inc. Copyright Tecolote Research, Inc. September 2006 Abstract Building Inflation Tables and CER

More information

Esterification in a PFR with Aspen Plus V8.0

Esterification in a PFR with Aspen Plus V8.0 Esterification in a PFR with Aspen Plus V8.0 1. Lesson Objectives Use Aspen Plus to determine whether a given reaction is technically feasible using a plug flow reactor. 2. Prerequisites Aspen Plus V8.0

More information

Five Myths about the PDN

Five Myths about the PDN Slide -1 A copy of the slides is available on www.bethesignal.com: search VL-180 or PPT-180 Five Myths about the PDN Eric Bogatin, eric@bethesignal.com Signal Integrity Evangelist Bogatin Enterprises www.bethesignal.com

More information

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

More information

DesignCon Evaluation of Relative Humidity and Temperature Effects on Scattering Parameters in Transmission Systems 1

DesignCon Evaluation of Relative Humidity and Temperature Effects on Scattering Parameters in Transmission Systems 1 DesignCon 21 Evaluation of Relative Humidity and Temperature Effects on Scattering Parameters in Transmission Systems 1 Ji Li, Penn State Harrisburg jxl994@psu.edu, (717)-948-6278 Mark Minns, Penn State

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

Experiment 06 - Extraction of Transmission Line Parameters

Experiment 06 - Extraction of Transmission Line Parameters ECE 451 Automated Microwave Measurements Laboratory Experiment 06 - Extraction of Transmission Line Parameters 1 Introduction With the increase in both speed and complexity of mordern circuits, modeling

More information

Center for Electromagnetic Compatibility, Missouri University of Science & Technology (MS&T) 4000 Enterprise Dr., HyPoint, Rolla, MO, 65401, USA 1

Center for Electromagnetic Compatibility, Missouri University of Science & Technology (MS&T) 4000 Enterprise Dr., HyPoint, Rolla, MO, 65401, USA 1 PCB Conductor Surface Roughness as a Layer with Effective Material Parameters Marina Y. Koledintseva #1, Alexander G. Razmadze #, Aleksandr Y. Gafarov #3, Soumya De #4, James L. Drewniak #5, and Scott

More information

Hermetic connectors are used throughout

Hermetic connectors are used throughout Measurement of the Anisotropic Dielectric Constant of a Glass Bead in a Coaxial Test Fixture By Bruce Bullard Atmel Corporation Hermetic connectors are used throughout the microwave industry, in applications

More information

Solar Time, Angles, and Irradiance Calculator: User Manual

Solar Time, Angles, and Irradiance Calculator: User Manual Solar Time, Angles, and Irradiance Calculator: User Manual Circular 674 Thomas Jenkins and Gabriel Bolivar-Mendoza 1 Cooperative Extension Service Engineering New Mexico Resource Network College of Agricultural,

More information

Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz

Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz JANUARY 28-31, 2014 SANTA CLARA CONVENTION CENTER Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Dr. Yuriy Shlepnev Simberian

More information

WEATHER AND CLIMATE COMPLETING THE WEATHER OBSERVATION PROJECT CAMERON DOUGLAS CRAIG

WEATHER AND CLIMATE COMPLETING THE WEATHER OBSERVATION PROJECT CAMERON DOUGLAS CRAIG WEATHER AND CLIMATE COMPLETING THE WEATHER OBSERVATION PROJECT CAMERON DOUGLAS CRAIG Introduction The Weather Observation Project is an important component of this course that gets you to look at real

More information

1. Starting of a project and entering of basic initial data.

1. Starting of a project and entering of basic initial data. PROGRAM VISIMIX TURBULENT SV. Example 1. Contents. 1. Starting of a project and entering of basic initial data. 1.1. Opening a Project. 1.2. Entering dimensions of the tank. 1.3. Entering baffles. 1.4.

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

OECD QSAR Toolbox v.4.1. Tutorial illustrating new options for grouping with metabolism

OECD QSAR Toolbox v.4.1. Tutorial illustrating new options for grouping with metabolism OECD QSAR Toolbox v.4.1 Tutorial illustrating new options for grouping with metabolism Outlook Background Objectives Specific Aims The exercise Workflow 2 Background Grouping with metabolism is a procedure

More information

GMII Electrical Specification Options. cisco Systems, Inc.

GMII Electrical Specification Options. cisco Systems, Inc. DC Specifications GMII Electrical Specification Options Mandatory - Communication between the transmitter and receiver can not occur at any bit rate without DC specifications. AC Specifications OPTION

More information

How Interconnects Work: Modeling Conductor Loss and Dispersion

How Interconnects Work: Modeling Conductor Loss and Dispersion How Interconnects Work: Modeling Conductor Loss and Dispersion Yuriy Shlepnev SIMBERIAN Inc., www.simberian.com Abstract: Models of transmission lines and transitions accurate over 5-6 frequency decades

More information

Measuring the time constant for an RC-Circuit

Measuring the time constant for an RC-Circuit Physics 8.02T 1 Fall 2001 Measuring the time constant for an RC-Circuit Introduction: Capacitors Capacitors are circuit elements that store electric charge Q according to Q = CV where V is the voltage

More information

Lab 1. EXCEL plus some basic concepts such as scientific notation, order of magnitude, logarithms, and unit conversions

Lab 1. EXCEL plus some basic concepts such as scientific notation, order of magnitude, logarithms, and unit conversions COMPUTER LAB 1 EARTH SYSTEMS SCIENCE I PG250 Fall 2010 Hunter College Lab 1. EXCEL plus some basic concepts such as scientific notation, order of magnitude, logarithms, and unit conversions Low Impact

More information

Microsoft Excel Directions

Microsoft Excel Directions Microsoft Excel Directions 1. Working in groups of two, log onto a computer. 2. Create a folder on the desktop a. Right click anywhere on the desktop new folder Name the folder Chemistry 3. Open MS Excel

More information

Esterification in CSTRs in Series with Aspen Plus V8.0

Esterification in CSTRs in Series with Aspen Plus V8.0 Esterification in CSTRs in Series with Aspen Plus V8.0 1. Lesson Objectives Use Aspen Plus to determine whether a given reaction is technically feasible using three continuous stirred tank reactors in

More information

Relative Permittivity Variation Surrounding PCB Via Hole Structures

Relative Permittivity Variation Surrounding PCB Via Hole Structures Relative Permittivity Variation Surrounding PCB Via Hole Structures SPI2008 Avignon France May 12-15, 2008 Lambert Simonovich lambert@nortel.com 1 SPI2008 Relative Permittivity Variation Surrounding PCB

More information

A Practical Method to Model Effective Permittivity and Phase Delay Due to Conductor Surface Roughness

A Practical Method to Model Effective Permittivity and Phase Delay Due to Conductor Surface Roughness Designon 2017 A Practical Method to Model Effective Permittivity and Phase Delay Due to onductor Surface Roughness Lambert (Bert) Simonovich, Lamsim Enterprises Inc. lsimonovich@lamsimenterprises.com 1

More information

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Yuriy Shlepnev Simberian Inc., www.simberian.com Abstract: Models of transmission lines and transitions

More information

Spreadsheet Solution of Systems of Nonlinear Differential Equations

Spreadsheet Solution of Systems of Nonlinear Differential Equations Spreadsheets in Education (ejsie) Volume 1 Issue 3 Article 4 10-5-2005 Spreadsheet Solution of Systems of Nonlinear Differential Equations Ali El-Hajj American University of Beirut, Lebanon, elhajj@aub.edu.lb

More information

Determination of Density 1

Determination of Density 1 Introduction Determination of Density 1 Authors: B. D. Lamp, D. L. McCurdy, V. M. Pultz and J. M. McCormick* Last Update: February 1, 2013 Not so long ago a statistical data analysis of any data set larger

More information

Objectives. Assessment. Assessment 5/14/14. Convert quantities from one unit to another using appropriate conversion factors.

Objectives. Assessment. Assessment 5/14/14. Convert quantities from one unit to another using appropriate conversion factors. Objectives Convert quantities from one unit to another using appropriate conversion factors. Identify the independent and dependent variables in an experiment. Evaluate and make inferences from data represented

More information

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Material parameters identification with GMS-parameters in Simbeor 2011

Material parameters identification with GMS-parameters in Simbeor 2011 Simbeor Application Note #2011_04, April 2011 Material parameters identification with GMS-parameters in Simbeor 2011 www.simberian.com Simbeor : Accurate, Fast, Easy, Affordable Electromagnetic Signal

More information

Load-Strength Interference

Load-Strength Interference Load-Strength Interference Loads vary, strengths vary, and reliability usually declines for mechanical systems, electronic systems, and electrical systems. The cause of failures is a load-strength interference

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION VNA Measurement S-Parameter Quality Metrics 2 S-Parameter Quality Metrics Quality is important Reciprocity Forward and reverse transmission

More information

Fast, efficient and accurate: via models that correlate to 20 GHz

Fast, efficient and accurate: via models that correlate to 20 GHz JANUARY 28 31, 2013 SANTA CLARA CONVENTION CENTER Fast, efficient and accurate: via models that correlate to 20 GHz Michael Steinberger, SiSoft Eric Brock, SiSoft Donald Telian, SiGuys Via Presentation

More information

MLC Discoidal Capacitors for EMI-RFI Filters Employing Non- Overlapping Electrodes Yield Substantial Performance Improvements.

MLC Discoidal Capacitors for EMI-RFI Filters Employing Non- Overlapping Electrodes Yield Substantial Performance Improvements. CARTS USA 2005 March 21-24, 2005 Palm Springs, CA MLC Discoidal Capacitors for EMI-RFI Filters Employing Non- Overlapping Electrodes Yield Substantial Performance Improvements. Hung V. Trinh, Daniel F.

More information