L(2, 1, 1)-Labeling Is NP-Complete for Trees

Size: px
Start display at page:

Download "L(2, 1, 1)-Labeling Is NP-Complete for Trees"

Transcription

1 L(2, 1, 1)-Labeling Is NP-Complete for Trees Petr A. Golovach 1, Bernard Lidický 2, and Daniël Paulusma 3 1 University of Bergen, Bergen, Norway 2 University of Illinois, Urbana, USA 3 University of Durham, Durham, UK SIAM DM 2012, Halifax June 19, 2012

2 Basic definitions Definition (L(p 1,..., p k )-labelings) For positive integers p 1,..., p k, p 1... p k, and λ, an L(p 1,..., p k )-labeling of a graph G with the span λ is a mapping f : V (G) {0, 1,..., λ} such that for any vertices u, v, f (u) f (v) p i if dist G (u, v) i, i {1,..., k}. The minimum span for which an L(p 1,..., p k )-labeling exists is denoted by λ p1,...,p k (G). L(1)-labeling is classical coloring.

3 Basic definitions Examples of L(2, 1) and L(2, 1, 1)-labelings

4 Basic definitions L(2, 1)-labeling of span

5 Basic definitions L(2, 1, 1)-labeling of span

6 Basic definitions Problem (L(p 1,..., p k )-labeling) Parameters: positive integers p 1,..., p k. Instance: a graph G and a positive integer λ. Question: does G have an L(p 1,..., p k )-labeling with span λ?

7 Known results General graphs: L(2, 1)-labeling is NP-complete (Griggs, Yeh; 92).

8 Known results General graphs: L(2, 1)-labeling is NP-complete (Griggs, Yeh; 92). L(2, 1)-labeling can be solved in polynomial time for λ < 4 and is NP-complete otherwise (Fiala, Kloks and Kratochvíl; 01).

9 Known results General graphs: L(2, 1)-labeling is NP-complete (Griggs, Yeh; 92). L(2, 1)-labeling can be solved in polynomial time for λ < 4 and is NP-complete otherwise (Fiala, Kloks and Kratochvíl; 01). L(2, 1, 1)-labeling can be solved in polynomial time for λ < 5 and is NP-complete otherwise (Fiala, Golovach and Kratochvíl; 04).

10 Known results General graphs: L(2, 1)-labeling is NP-complete (Griggs, Yeh; 92). L(2, 1)-labeling can be solved in polynomial time for λ < 4 and is NP-complete otherwise (Fiala, Kloks and Kratochvíl; 01). L(2, 1, 1)-labeling can be solved in polynomial time for λ < 5 and is NP-complete otherwise (Fiala, Golovach and Kratochvíl; 04). Exact algorithms for L(2, 1)-labeling of graphs (Král ; 05 and Havet, Klazar, Kratochvíl, Kratsch, Liedloff; 11).

11 Known results Graphs of bounded treewidth: For any fixed λ, L(p 1,..., p k )-labeling can be solved in polynomial (linear) time by the theorem of Courcelle.

12 Known results Graphs of bounded treewidth: For any fixed λ, L(p 1,..., p k )-labeling can be solved in polynomial (linear) time by the theorem of Courcelle. L(2, 1)-labeling is NP-complete for graphs tw 2 (Fiala, Golovach and Kratochvíl).

13 Known results Graphs of bounded treewidth: For any fixed λ, L(p 1,..., p k )-labeling can be solved in polynomial (linear) time by the theorem of Courcelle. L(2, 1)-labeling is NP-complete for graphs tw 2 (Fiala, Golovach and Kratochvíl). L(1, 1,..., 1)-labeling is solvable in polynomial time (Zhou, Kanari and Nishizeki; 00).

14 Known results Trees: L(2, 1)-labeling can be solved in polynomial time (Chang, Kuo; 96). in linear time (Hasunuma, Ishii, Ono, Uno; 09)

15 Known results Trees: L(2, 1)-labeling can be solved in polynomial time (Chang, Kuo; 96). in linear time (Hasunuma, Ishii, Ono, Uno; 09) L(p 1, 1)-labeling can be solved in polynomial time (Chang, Ke, Kuo, Liu, Yeh; 96).

16 Known results Trees: L(2, 1)-labeling can be solved in polynomial time (Chang, Kuo; 96). in linear time (Hasunuma, Ishii, Ono, Uno; 09) L(p 1, 1)-labeling can be solved in polynomial time (Chang, Ke, Kuo, Liu, Yeh; 96). L(p 1, p 2 )-labeling can be solved in polynomial time if p 2 divides p 1 and is NP-complete otherwise (Fiala, Golovach and Kratochvíl; 08).

17 Known results Trees: L(2, 1)-labeling can be solved in polynomial time (Chang, Kuo; 96). in linear time (Hasunuma, Ishii, Ono, Uno; 09) L(p 1, 1)-labeling can be solved in polynomial time (Chang, Ke, Kuo, Liu, Yeh; 96). L(p 1, p 2 )-labeling can be solved in polynomial time if p 2 divides p 1 and is NP-complete otherwise (Fiala, Golovach and Kratochvíl; 08). L(p 1, 1)-labeling is NP-complete if p 1 is part of the input (Golovach; 06).

18 Known results Theorem Every tree T satisfies (T ) + 1 λ 2,1 (T ) (T ) + 2. Theorem (King, Ras, Zhou; 10 and indep. Fiala, Golovach, Kratochvíl; 04) Every tree T satisfies ω(t 3 ) 1 λ 2,1,1 (T ) ω(t 3 ).

19 Main result Theorem (Golovach, L., Paulusma) The L(2, 1, 1)-labeling problem is NP-complete for the class of trees.

20 Sketch of the proof Problem (3-Satisfiability) Instance: variables x 1,..., x x and clauses C 1,..., C m. Question: can φ = C 1... C m be satisfied?

21 Sketch of the proof - Idea of the reduction x i {4i, λ 4i, 4i + 2, λ (4i + 2)}.. x i x j x s {4i, λ 4i, 4j + 2, λ (4j + 2), 4s, λ 4s}

22 Sketch of the proof - Idea of the reduction x i {4i, λ 4i, 4i + 2, λ (4i + 2)}.. x i x j x s {4i, λ 4i, 4j + 2, λ (4j + 2), 4s, λ 4s} distance 2 distance 4

23 Sketch of the proof - Idea of the reduction x i {4i, λ 4i, 4i + 2, λ (4i + 2)} 4i 4i + 2 λ (4i + 2).. λ 4i x i x j x s {4i, λ 4i, 4j + 2, λ (4j + 2), 4s, λ 4s} distance 2 distance 4 x i = { true, false, if 4i or λ 4i is not used, if 4i + 2 or λ (4i + 2) is not used.

24 Sketch of the proof - Idea of the reduction x i {4i, λ 4i, 4i + 2, λ (4i + 2)} 4i λ 4i λ (4i + 2)..? not x i x i x j x s {4i, λ 4i, 4j + 2, λ (4j + 2), 4s, λ 4s} distance 2 distance 4 x i = { true, false, if 4i or λ 4i is not used, if 4i + 2 or λ (4i + 2) is not used.

25 Sketch of the proof - Forcing lists x i {4i, λ 4i, 4i + 2, λ (4i + 2)}.. x i x j x s {4i, λ 4i, 4j + 2, λ (4j + 2), 4s, λ 4s}

26 Sketch of the proof - Forcing lists T (k) {2, 4,..., 2k} {λ 2k, λ 2k 2,..., λ 2} {0, λ} {1, λ 1}

27 Sketch of the proof - Forcing lists T (k) {2k, λ 2k} 2k 2 copies of T (k 1) Trees F (k)

28 Sketch of the proof - Forcing lists T (k) S F (i) F (i) For each i {1,..., k}, s.t. 2i / S Forcing of a list S {2, 4,..., 2k} {λ 2k, λ 2k 2,..., λ 2} s.t. x S, λ x S.

29 Cyclic labelings Definition (Cyclic metric (modulo λ + 1)) For positive integers a, b {0,..., λ}, a b c = min{ a b, λ + 1 a b }.

30 Cyclic labelings Definition (Cyclic metric (modulo λ + 1)) For positive integers a, b {0,..., λ}, a b c = min{ a b, λ + 1 a b }. Definition (C(p 1,..., p k )-labelings) For positive integers p 1,..., p k, p 1... p k, and λ, an C(p 1,..., p k )-labeling of a graph G with the span λ is a mapping f : V (G) {0, 1,..., λ} such that for any vertices u, v, f (u) f (v) c p i if dist G (u, v) i, i {1,..., k}.

31 Cyclic labelings C(2, 1)-labeling of span

32 Cyclic labelings What is the computational complexity of C(2, 1, 1)-Labeling on trees?

33 Thank you for your attention!

A Channel Assignment Problem [F. Roberts, 1988]

A Channel Assignment Problem [F. Roberts, 1988] 1 2 A Channel Assignment Problem [F. Roberts, 1988] Find an efficient assignment of channels f(x) R to sites x R 2 so { that two levels of interference are avoided: 2d if x y A f(x) f(y) d if x y 2A 1.1

More information

Choosability on H-Free Graphs

Choosability on H-Free Graphs Choosability on H-Free Graphs Petr A. Golovach 1, Pinar Heggernes 1, Pim van t Hof 1, and Daniël Paulusma 2 1 Department of Informatics, University of Bergen, Norway {petr.golovach,pinar.heggernes,pim.vanthof}@ii.uib.no

More information

L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs

L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs MATEMATIKA, 2014, Volume 30, Number 2, 109-116 c UTM Centre for Industrial and Applied Mathematics L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs Murugan Muthali Tamil Nadu Open University

More information

Complexity of locally injective homomorphism to the Theta graphs

Complexity of locally injective homomorphism to the Theta graphs Complexity of locally injective homomorphism to the Theta graphs Bernard Lidický and Marek Tesař Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic

More information

On Injective Colourings of Chordal Graphs

On Injective Colourings of Chordal Graphs On Injective Colourings of Chordal Graphs Pavol Hell 1,, André Raspaud 2, and Juraj Stacho 1 1 School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, B.C., Canada V5A 1S6

More information

The L(2, 1)-labeling on the skew and converse skew products of graphs

The L(2, 1)-labeling on the skew and converse skew products of graphs Applied Mathematics Letters 20 (2007) 59 64 www.elsevier.com/locate/aml The L(2, 1)-labeling on the skew and converse skew products of graphs Zhendong Shao a,,rogerk.yeh b, David Zhang c a Department of

More information

On Graph Contractions and Induced Minors

On Graph Contractions and Induced Minors On Graph Contractions and Induced Minors Pim van t Hof, 1, Marcin Kamiński 2, Daniël Paulusma 1,, Stefan Szeider, 3, and Dimitrios M. Thilikos 4, 1 School of Engineering and Computing Sciences, Durham

More information

Complexity of Locally Injective k-colourings of Planar Graphs

Complexity of Locally Injective k-colourings of Planar Graphs Complexity of Locally Injective k-colourings of Planar Graphs Jan Kratochvil a,1, Mark Siggers b,2, a Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI) Charles University,

More information

Radio Number for Square Paths

Radio Number for Square Paths Radio Number for Square Paths Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 9003 Melanie Xie Department of Mathematics East Los Angeles College Monterey

More information

Research Article L(2, 1)-Labeling of the Strong Product of Paths and Cycles

Research Article L(2, 1)-Labeling of the Strong Product of Paths and Cycles e Scientific World Journal Volume, Article ID 3, pages http://dx.doi.org/.//3 Research Article L(, )-Labeling of the Strong Product of Paths and Cycles Zehui Shao, and Aleksander Vesel 3 School of Information

More information

The L(3, 2, 1)-labeling on the Skew and Converse Skew Products of Graphs

The L(3, 2, 1)-labeling on the Skew and Converse Skew Products of Graphs Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 11, Number 1 (2016), pp. 29 36 Research India Publications http://www.ripublication.com/atam.htm The L(3, 2, 1)-labeling on the Skew

More information

Induced Subtrees in Interval Graphs

Induced Subtrees in Interval Graphs Induced Subtrees in Interval Graphs Pinar Heggernes 1, Pim van t Hof 1, and Martin Milanič 2 1 Department of Informatics, University of Bergen, Norway {pinar.heggernes,pim.vanthof}@ii.uib.no 2 UP IAM and

More information

On the Tree Search Problem with Non-uniform costs

On the Tree Search Problem with Non-uniform costs On the Tree Search Problem with Non-uniform costs Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický, Dömötör Pálvölgyi, Tomáš Valla University of Salerno, Rényi Institute, University of Illinois at

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 29 March 2016 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Golovach, P.A. and Johnson,

More information

ON TWO QUESTIONS ABOUT CIRCULAR CHOOSABILITY

ON TWO QUESTIONS ABOUT CIRCULAR CHOOSABILITY ON TWO QUESTIONS ABOUT CIRCULAR CHOOSABILITY SERGUEI NORINE Abstract. We answer two questions of Zhu on circular choosability of graphs. We show that the circular list chromatic number of an even cycle

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 03 October 2016 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dabrowski, K.K. and Lozin,

More information

The complexity of Sur-Hom(C 4 )

The complexity of Sur-Hom(C 4 ) The complexity of Sur-Hom(C 4 ) Barnaby Martin and Danïel Paulusma Algorithms and Complexity in Durham, 7th Slovenian International Conference on Graph Theory Bled 11 25th June, 2011 My introduction to

More information

A LOWER BOUND FOR RADIO k-chromatic NUMBER OF AN ARBITRARY GRAPH

A LOWER BOUND FOR RADIO k-chromatic NUMBER OF AN ARBITRARY GRAPH Volume 10, Number, Pages 5 56 ISSN 1715-0868 A LOWER BOUND FOR RADIO k-chromatic NUMBER OF AN ARBITRARY GRAPH SRINIVASA RAO KOLA AND PRATIMA PANIGRAHI Abstract Radio k-coloring is a variation of Hale s

More information

Multilevel Distance Labelings for Paths and Cycles

Multilevel Distance Labelings for Paths and Cycles Multilevel Distance Labelings for Paths and Cycles Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, USA Email: dliu@calstatela.edu Xuding Zhu

More information

Packing Bipartite Graphs with Covers of Complete Bipartite Graphs

Packing Bipartite Graphs with Covers of Complete Bipartite Graphs Packing Bipartite Graphs with Covers of Complete Bipartite Graphs Jérémie Chalopin 1, and Daniël Paulusma 2, 1 Laboratoire d Informatique Fondamentale de Marseille, CNRS & Aix-Marseille Université, 39

More information

On vertex coloring without monochromatic triangles

On vertex coloring without monochromatic triangles On vertex coloring without monochromatic triangles arxiv:1710.07132v1 [cs.ds] 19 Oct 2017 Micha l Karpiński, Krzysztof Piecuch Institute of Computer Science University of Wroc law Joliot-Curie 15, 50-383

More information

The L(2, 1)-labeling on β-product of Graphs

The L(2, 1)-labeling on β-product of Graphs International Journal on Data Science and Technology 018; 4(): 54-59 http://wwwsciencepublishinggroupcom/j/ijdst doi: 1011648/jijdst01804013 ISSN: 47-00 (Print); ISSN: 47-35 (Online) The L(, 1)-labeling

More information

Computing branchwidth via efficient triangulations and blocks

Computing branchwidth via efficient triangulations and blocks Computing branchwidth via efficient triangulations and blocks Fedor Fomin Frédéric Mazoit Ioan Todinca Abstract Minimal triangulations and potential maximal cliques are the main ingredients for a number

More information

Linear time algorithm for computing a small biclique in graphs without long induced paths

Linear time algorithm for computing a small biclique in graphs without long induced paths Linear time algorithm for computing a small biclique in graphs without long induced paths Aistis Atminas 1, Vadim V. Lozin 2, and Igor Razgon 3 1 DIMAP and Mathematics Institute, University of Warwick,

More information

CSE 421 NP-Completeness

CSE 421 NP-Completeness CSE 421 NP-Completeness Yin at Lee 1 Cook-Levin heorem heorem (Cook 71, Levin 73): 3-SA is NP-complete, i.e., for all problems A NP, A p 3-SA. (See CSE 431 for the proof) So, 3-SA is the hardest problem

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 532 (2014) 64 72 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Bandwidth consecutive multicolorings

More information

Hamiltonian Spectra of Trees

Hamiltonian Spectra of Trees Hamiltonian Spectra of Trees Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, USA Email: dliu@calstatela.edu September 2006 (Revised: December

More information

Antipodal Labelings for Cycles

Antipodal Labelings for Cycles Antipodal Labelings for Cycles Justie Su-Tzu Juan and Daphne Der-Fen Liu Submitted: December 2006; revised: August 2007 Abstract Let G be a graph with diameter d. An antipodal labeling of G is a function

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

Cliques and Clubs.

Cliques and Clubs. Cliques and Clubs Petr A. Golovach 1, Pinar Heggernes 1, Dieter Kratsch 2, and Arash Rafiey 1 1 Department of Informatics, University of Bergen, Norway, {petr.golovach,pinar.heggernes,arash.rafiey}@ii.uib.no

More information

Four-coloring P 6 -free graphs. I. Extending an excellent precoloring

Four-coloring P 6 -free graphs. I. Extending an excellent precoloring Four-coloring P 6 -free graphs. I. Extending an excellent precoloring Maria Chudnovsky Princeton University, Princeton, NJ 08544 Sophie Spirkl Princeton University, Princeton, NJ 08544 Mingxian Zhong Columbia

More information

Improved Bounds on the L(2, 1)-Number of Direct and Strong Products of Graphs

Improved Bounds on the L(2, 1)-Number of Direct and Strong Products of Graphs IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR AERS VOL. ***, NO. ***, *** 2007 Improed Bounds on the L(2, )-Number of Direct and Strong roducts of Graphs Zhendong Shao, Sandi Klažar, Daid Zhang,

More information

List backbone coloring of paths and cycles

List backbone coloring of paths and cycles AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 66(3) (2016), Pages 378 392 List backbone coloring of paths and cycles Wannapol Pimpasalee Department of Mathematics, Faculty of Science Khon Kaen University

More information

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices Partitioning Graphs of Supply and Demand Generalization of Knapsack Problem Takao Nishizeki Tohoku University Graph Supply Vertices and Demand Vertices Supply Vertices Demand Vertices Graph Each Supply

More information

A Linear Kernel for Finding Square Roots of Almost Planar Graphs

A Linear Kernel for Finding Square Roots of Almost Planar Graphs A Linear Kernel for Finding Square Roots of Almost Planar Graphs Petr A. Golovach 1, Dieter Kratsch 2, Daniël Paulusma 3, and Anthony Stewart 4 1 Department of Informatics, University of Bergen, Bergen,

More information

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song Korean J. Math. 25 (2017), No. 2, pp. 279 301 https://doi.org/10.11568/kjm.2017.25.2.279 L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE Byeong Moon Kim, Woonjae Hwang,

More information

Complexity of conditional colorability of graphs

Complexity of conditional colorability of graphs Complexity of conditional colorability of graphs Xueliang Li 1, Xiangmei Yao 1, Wenli Zhou 1 and Hajo Broersma 2 1 Center for Combinatorics and LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China.

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Finding Paths with Minimum Shared Edges in Graphs with Bounded Treewidth

Finding Paths with Minimum Shared Edges in Graphs with Bounded Treewidth Finding Paths with Minimum Shared Edges in Graphs with Bounded Treewidth Z.-Q. Ye 1, Y.-M. Li 2, H.-Q. Lu 3 and X. Zhou 4 1 Zhejiang University, Hanzhou, Zhejiang, China 2 Wenzhou University, Wenzhou,

More information

Theoretical Computer Science. Parameterizing cut sets in a graph by the number of their components

Theoretical Computer Science. Parameterizing cut sets in a graph by the number of their components Theoretical Computer Science 412 (2011) 6340 6350 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Parameterizing cut sets in

More information

CS 161: Design and Analysis of Algorithms

CS 161: Design and Analysis of Algorithms CS 161: Design and Analysis of Algorithms NP- Complete I P, NP Polynomial >me reduc>ons NP- Hard, NP- Complete Sat/ 3- Sat Decision Problem Suppose there is a func>on A that outputs True or False A decision

More information

Chordal networks of polynomial ideals

Chordal networks of polynomial ideals Chordal networks of polynomial ideals Diego Cifuentes Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology Joint work with Pablo

More information

Solving Max SAT and #SAT on structured CNF formulas

Solving Max SAT and #SAT on structured CNF formulas Solving Max SAT and #SAT on structured CNF formulas Sigve Hortemo Sæther, Jan Arne Telle, Martin Vatshelle University of Bergen July 14, 2014 Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas

More information

Packing chromatic number of subcubic graphs

Packing chromatic number of subcubic graphs Packing chromatic number of subcubic graphs József Balogh Alexandr Kostochka Xujun Liu arxiv:1703.09873v2 [math.co] 30 Mar 2017 March 31, 2017 Abstract A packing k-coloring of a graph G is a partition

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Parameterizing cut sets in a graph by the number of their components

Parameterizing cut sets in a graph by the number of their components Parameterizing cut sets in a graph by the number of their components Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3, and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku

More information

Chordal structure in computer algebra: Permanents

Chordal structure in computer algebra: Permanents Chordal structure in computer algebra: Permanents Diego Cifuentes Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology Joint

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Hardness of the Covering Radius Problem on Lattices

Hardness of the Covering Radius Problem on Lattices Hardness of the Covering Radius Problem on Lattices Ishay Haviv Oded Regev June 6, 2006 Abstract We provide the first hardness result for the Covering Radius Problem on lattices (CRP). Namely, we show

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 159 (2011) 1345 1351 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam On disconnected cuts and separators

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales LECTURE 9: INTRACTABILITY COMP3121/3821/9101/9801 1 / 29 Feasibility

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity NP-Complete Languages John E. Savage Brown University February 2, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February

More information

Packing Posets in the Boolean Lattice

Packing Posets in the Boolean Lattice page.1... Packing Posets in the Boolean Lattice Andrew P. Dove Jerrold R. Griggs University of South Carolina Columbia, SC USA SIAM-DM14 Conference Minneapolis page.2 Andrew Dove page.3 Andrew Dove Jerry

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Enumerating minimal connected dominating sets in graphs of bounded chordality,

Enumerating minimal connected dominating sets in graphs of bounded chordality, Enumerating minimal connected dominating sets in graphs of bounded chordality, Petr A. Golovach a,, Pinar Heggernes a, Dieter Kratsch b a Department of Informatics, University of Bergen, N-5020 Bergen,

More information

Time to learn about NP-completeness!

Time to learn about NP-completeness! Time to learn about NP-completeness! Harvey Mudd College March 19, 2007 Languages A language is a set of strings Examples The language of strings of all zeros with odd length The language of strings with

More information

Poset-free Families of Sets

Poset-free Families of Sets Poset-free Families of Sets... Jerrold R. Griggs Wei-Tian Li Linyuan Lu Department of Mathematics University of South Carolina Columbia, SC USA Combinatorics and Posets Minisymposium SIAM-DM12 Halifax,

More information

Efficient Solutions for the -coloring Problem on Classes of Graphs

Efficient Solutions for the -coloring Problem on Classes of Graphs Efficient Solutions for the -coloring Problem on Classes of Graphs Daniel Posner (PESC - UFRJ) PhD student - posner@cos.ufrj.br Advisor: Márcia Cerioli LIPN Université Paris-Nord 29th november 2011 distance

More information

Graph Labellings with Variable Weights, a Survey

Graph Labellings with Variable Weights, a Survey Graph Labellings with Variable Weights, a Survey Jerrold R. Griggs a,1 Daniel Král b,2 a Department of Mathematics, University of South Carolina, Columbia, SC 29208 USA. E-mail: griggs@math.sc.edu. b Department

More information

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions My T. Thai 1 1 Hardness of Approximation Consider a maximization problem Π such as MAX-E3SAT. To show that it is NP-hard to approximation

More information

Computational Complexity

Computational Complexity Computational Complexity Algorithm performance and difficulty of problems So far we have seen problems admitting fast algorithms flow problems, shortest path, spanning tree... and other problems for which

More information

The Packing Coloring of Distance Graphs D(k, t)

The Packing Coloring of Distance Graphs D(k, t) The Packing Coloring of Distance Graphs D(k, t) arxiv:13020721v1 [mathco] 4 Feb 2013 Jan Ekstein Přemysl Holub Olivier Togni October 3, 2017 Abstract The packing chromatic number χ ρ (G) of a graph G is

More information

Complete the following table using the equation and graphs given:

Complete the following table using the equation and graphs given: L2 1.2 Characteristics of Polynomial Functions Lesson MHF4U Jensen In section 1.1 we looked at power functions, which are single-term polynomial functions. Many polynomial functions are made up of two

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

How hard is it to find a good solution?

How hard is it to find a good solution? How hard is it to find a good solution? Simons Institute Open Lecture November 4, 2013 Research Area: Complexity Theory Given a computational problem, find an efficient algorithm that solves it. Goal of

More information

arxiv: v1 [math.co] 12 Dec 2014

arxiv: v1 [math.co] 12 Dec 2014 The Parameterized Complexity of Graph Cyclability Petr A. Golovach Marcin Kamiński Spyridon Maniatis arxiv:1412.3955v1 [math.co] 12 Dec 2014 Dimitrios M. Thilikos, Abstract The cyclability of a graph is

More information

Computational Complexity of Some Restricted Instances of 3SAT

Computational Complexity of Some Restricted Instances of 3SAT Computational Complexity of Some Restricted Instances of 3SAT Piotr Berman Marek Karpinski Alexander D. Scott Abstract Tovey [10] showed that it is NP-hard to decide the satisfiability of 3-SAT instances

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dabrowski, K.K. and Lozin, V.V.

More information

On the rank of Directed Hamiltonicity and beyond

On the rank of Directed Hamiltonicity and beyond Utrecht University Faculty of Science Department of Information and Computing Sciences On the rank of Directed Hamiltonicity and beyond Author: Ioannis Katsikarelis Supervisors: Dr. Hans L. Bodlaender

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Distance Two Labeling of Some Total Graphs

Distance Two Labeling of Some Total Graphs Gen. Math. Notes, Vol. 3, No. 1, March 2011, pp.100-107 ISSN 2219-7184; Copyright c ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in Distance Two Labeling of Some Total

More information

Monadic Second Order Logic on Graphs with Local Cardinality Constraints

Monadic Second Order Logic on Graphs with Local Cardinality Constraints Monadic Second Order Logic on Graphs with Local Cardinality Constraints STEFAN SZEIDER Vienna University of Technology, Austria We introduce the class of MSO-LCC problems which are problems of the following

More information

A lower bound on the order of the largest induced linear forest in triangle-free planar graphs

A lower bound on the order of the largest induced linear forest in triangle-free planar graphs A lower bound on the order of the largest induced linear forest in triangle-free planar graphs François Dross a, Mickael Montassier a, and Alexandre Pinlou b a Université de Montpellier, LIRMM b Université

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 17 April 2013 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Chalopin, J. and Paulusma,

More information

arxiv: v1 [math.co] 22 Jan 2018

arxiv: v1 [math.co] 22 Jan 2018 arxiv:1801.07025v1 [math.co] 22 Jan 2018 Spanning trees without adjacent vertices of degree 2 Kasper Szabo Lyngsie, Martin Merker Abstract Albertson, Berman, Hutchinson, and Thomassen showed in 1990 that

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Session 21. April 13, 2009 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3137 Announcements Homework 5 due next Monday I m out of town Wed to Sun for conference

More information

A note on unsatisfiable k-cnf formulas with few occurrences per variable

A note on unsatisfiable k-cnf formulas with few occurrences per variable A note on unsatisfiable k-cnf formulas with few occurrences per variable Shlomo Hoory Department of Computer Science University of British Columbia Vancouver, Canada shlomoh@cs.ubc.ca Stefan Szeider Department

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

On disconnected cuts and separators

On disconnected cuts and separators On disconnected cuts and separators Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3 and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai,

More information

Branchwidth of chordal graphs

Branchwidth of chordal graphs Branchwidth of chordal graphs Christophe Paul a and Jan Arne Telle b a CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 2, France b Department of Informatics, University of Bergen, Norway (Research conducted

More information

CS Homework Chapter 6 ( 6.14 )

CS Homework Chapter 6 ( 6.14 ) CS50 - Homework Chapter 6 ( 6. Dan Li, Xiaohui Kong, Hammad Ibqal and Ihsan A. Qazi Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 560 Intelligent Systems Program, University

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016)

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) The final exam will be on Thursday, May 12, from 8:00 10:00 am, at our regular class location (CSI 2117). It will be closed-book and closed-notes, except

More information

On Distance Coloring

On Distance Coloring On Distance Coloring Dexter Kozen Cornell University Alexa Sharp Oberlin College June 29, 2007 Abstract Call a connected undirected graph (d, c)-colorable if there is a vertex coloring using at most c

More information

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60 McGill University Faculty of Science Solutions to Practice Final Examination Math 40 Discrete Structures Time: hours Marked out of 60 Question. [6] Prove that the statement (p q) (q r) (p r) is a contradiction

More information

A Note on S-Packing Colorings of Lattices

A Note on S-Packing Colorings of Lattices A Note on S-Packing Colorings of Lattices Wayne Goddard and Honghai Xu Department of Mathematical Sciences Clemson University, Clemson SC 964 {goddard,honghax}@clemson.edu Abstract Let a, a,..., a k be

More information

FPT is Characterized by Useful Obstruction Sets

FPT is Characterized by Useful Obstruction Sets FPT is Characterized by Useful Obstruction Sets Bart M. P. Jansen Joint work with Michael R. Fellows, Charles Darwin Univ. June 21st 2013, WG 2013, Lübeck A NEW CHARACTERIZATION OF FPT 2 Well-Quasi-Orders

More information

Rainbow triangles in 3-edge-colored graphs

Rainbow triangles in 3-edge-colored graphs Rainbow triangles in 3-edge-colored graphs József Balogh, Ping Hu, Bernard Lidický, Florian Pfender, Jan Volec, Michael Young SIAM Conference on Discrete Mathematics Jun 17, 2014 2 Problem Find a 3-edge-coloring

More information

MINIMAL RANKINGS OF THE CARTESIAN PRODUCT K n K m

MINIMAL RANKINGS OF THE CARTESIAN PRODUCT K n K m Discussiones Mathematicae Graph Theory 32 (2012) 725 735 doi:10.7151/dmgt.1634 MINIMAL RANKINGS OF THE CARTESIAN PRODUCT K n K m Gilbert Eyabi (1), Jobby Jacob (2), Renu C. Laskar (3) Darren A. Narayan

More information

NATIONAL UNIVERSITY OF SINGAPORE CS3230 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER II: Time Allowed 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE CS3230 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER II: Time Allowed 2 Hours NATIONAL UNIVERSITY OF SINGAPORE CS3230 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER II: 2017 2018 Time Allowed 2 Hours INSTRUCTIONS TO STUDENTS 1. This assessment consists of Eight (8) questions and comprises

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

Model Checking Lower Bounds for Simple Graphs. Michael Lampis KTH Royal Institute of Technology

Model Checking Lower Bounds for Simple Graphs. Michael Lampis KTH Royal Institute of Technology Model Checking Lower Bounds for Simple Graphs Michael Lampis KTH Royal Institute of Technology March 11, 2013 Algorithmic Meta-Theorems Positive results Problem X is tractable. Negative results Problem

More information

THE THREE-STATE PERFECT PHYLOGENY PROBLEM REDUCES TO 2-SAT

THE THREE-STATE PERFECT PHYLOGENY PROBLEM REDUCES TO 2-SAT COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2009 International Press Vol. 9, No. 4, pp. 295-302, 2009 001 THE THREE-STATE PERFECT PHYLOGENY PROBLEM REDUCES TO 2-SAT DAN GUSFIELD AND YUFENG WU Abstract.

More information

Some Properties on the Generalized Hierarchical Product of Graphs

Some Properties on the Generalized Hierarchical Product of Graphs Some Properties on the Generalized Hierarchical Product of Graphs Lali Barrière Cristina Dalfó Miquel Àngel Fiol Margarida Mitjana Universitat Politècnica de Catalunya July 23, 2008 Outline 1 The hierarchical

More information

Faster Algorithm for Optimum Steiner Trees. Jens Vygen

Faster Algorithm for Optimum Steiner Trees. Jens Vygen Faster Algorithm for Optimum Steiner Trees Jens Vygen University of Bonn Aussois 2010 The Steiner Tree Problem Given an undirected graph G with weights c : E(G) R +, and a terminal set T V (G), The Steiner

More information

Computing Bounded Path Decompositions in Logspace

Computing Bounded Path Decompositions in Logspace Computing Bounded Path Decompositions in Logspace Shiva Kintali Sinziana Munteanu Department of Computer Science, Princeton University, Princeton, NJ 08540-5233. kintali@cs.princeton.edu munteanu@princeton.edu

More information

Parameterized Domination in Circle Graphs

Parameterized Domination in Circle Graphs Parameterized Domination in Circle Graphs Nicolas Bousquet 1, Daniel Gonçalves 1, George B. Mertzios 2, Christophe Paul 1, Ignasi Sau 1, and Stéphan Thomassé 3 1 AlGCo project-team, CNRS, LIRMM, Montpellier,

More information