Solving Max SAT and #SAT on structured CNF formulas

Size: px
Start display at page:

Download "Solving Max SAT and #SAT on structured CNF formulas"

Transcription

1 Solving Max SAT and #SAT on structured CNF formulas Sigve Hortemo Sæther, Jan Arne Telle, Martin Vatshelle University of Bergen July 14, 2014 Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

2 Outline Equivalence of assignments Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

3 Outline Equivalence of assignments CNF formulas with few equivalence classes Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

4 Outline Equivalence of assignments CNF formulas with few equivalence classes Algorithm for MAX SAT Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

5 Outline Equivalence of assignments CNF formulas with few equivalence classes Algorithm for MAX SAT Polynomial time solvable cases Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

6 Equivalence of assignments Equivalence of assignments to CNF formulas When are two truth assignments to a CNF formula equivalent? Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

7 Equivalence of assignments Equivalence of assignments to CNF formulas When are two truth assignments to a CNF formula equivalent? When they satisfy the same set of clauses. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

8 Equivalence of assignments Equivalence of assignments to CNF formulas When are two truth assignments to a CNF formula equivalent? When they satisfy the same set of clauses. The number of equivalence classes is called the ps-value. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

9 Equivalence of assignments Equivalence of assignments to CNF formulas When are two truth assignments to a CNF formula equivalent? When they satisfy the same set of clauses. The number of equivalence classes is called the ps-value. We need two standard definitions before we give a sufficient condition for low ps-value. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

10 CNF formulas with few equivalence classes Incidence graph (a b c) ( a c d) ( b d) Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

11 CNF formulas with few equivalence classes Incidence graph (a b c) ( a c d) ( b d) a b c d C 1 C 2 C 3 Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

12 CNF formulas with few equivalence classes Incidence graph (a b c) ( a c d) ( b d) a b c d C 1 C 2 C 3 Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

13 CNF formulas with few equivalence classes Incidence graph (a b c) ( a c d) ( b d) a b c d C 1 C 2 C 3 For a CNF formula F we denote the incedence graph by I(F ). Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

14 CNF formulas with few equivalence classes Induced matching Given a bipartite graph M is an induced matching if: a b c d e f g h Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

15 CNF formulas with few equivalence classes Induced matching Given a bipartite graph M is an induced matching if: a b c d e f g h 1 M is a matching. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

16 CNF formulas with few equivalence classes Induced matching Given a bipartite graph M is an induced matching if: a b c d e f g h 1 M is a matching. 2 No other edge is adjacent to 2 edges in M. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

17 CNF formulas with few equivalence classes CNF formulas with low ps-value Lemma Let F be a CNF formula and k be the maximum size of an induced matching in I(F). The ps-value of F is at most cla(f) k + 1 Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

18 CNF formulas with few equivalence classes CNF formulas with low ps-value Lemma Let F be a CNF formula and k be the maximum size of an induced matching in I(F). The ps-value of F is at most cla(f) k + 1 Sketch of proof 1 Let U be the set of unsatisfied clauses, and L the variables appearing in some clause of U, then there is a unique assignment for L. 2 There exist U U of size at most k such that L is uniquely defined by U. 3 There is at most cla(f) k + 1 choices for U Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

19 CNF formulas with few equivalence classes CNF formulas with low ps-value Any CNF formula F where I(F) has a maximum induced matching of size 1 will be on the form: Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

20 CNF formulas with few equivalence classes CNF formulas with low ps-value Any CNF formula F where I(F) has a maximum induced matching of size 1 will be on the form: (a b) Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

21 CNF formulas with few equivalence classes CNF formulas with low ps-value Any CNF formula F where I(F) has a maximum induced matching of size 1 will be on the form: (a b) ( a b c) Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

22 CNF formulas with few equivalence classes CNF formulas with low ps-value Any CNF formula F where I(F) has a maximum induced matching of size 1 will be on the form: (a b) ( a b c) (a b c d) Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

23 CNF formulas with few equivalence classes CNF formulas with low ps-value Any CNF formula F where I(F) has a maximum induced matching of size 1 will be on the form: (a b) ( a b c) (a b c d)... Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

24 Algorithm for MAX SAT DP algorithm strategy 1 Make an ordering of clauses and variables. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

25 Algorithm for MAX SAT DP algorithm strategy 1 Make an ordering of clauses and variables. Let the i first elements of the ordering define a cut S i. 2 Store one solution for each equivalence class of the cut S i. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

26 Algorithm for MAX SAT DP algorithm strategy 1 Make an ordering of clauses and variables. Let the i first elements of the ordering define a cut S i. 2 Store one solution for each equivalence class of the cut S i. 3 Use solutions for S i to find solutions of S i+1. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

27 Algorithm for MAX SAT DP algorithm strategy 1 Make an ordering of clauses and variables. Let the i first elements of the ordering define a cut S i. 2 Store one solution for each equivalence class of the cut S i. 3 Use solutions for S i to find solutions of S i+1. Note: the linear ordering can be replaced by a tree-like decomposition. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

28 Algorithm for MAX SAT Equivalence over a cut Let F be a CNF formula, X var(f ) and C cla(f ) defines a cut. X C C X Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

29 Algorithm for MAX SAT Equivalence over a cut Let F be a CNF formula, X var(f ) and C cla(f ) defines a cut. X C C X Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

30 Algorithm for MAX SAT Equivalence over a cut Let F be a CNF formula, X var(f ) and C cla(f ) defines a cut. X C C X Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

31 Algorithm for MAX SAT Equivalence over a cut Let F be a CNF formula, X var(f ) and C cla(f ) defines a cut. X C C X We define ps-value of a cut as the ps-value of the formula where each variable is removed from all clauses on the same side as the variable. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

32 Algorithm for MAX SAT PS-width 1 The ps-width of a decomposition (ordering) is the max ps-value over all cuts defined by the decomposition. 2 The ps-width of a CNF formula is the min ps-width over all decompositions. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

33 Algorithm for MAX SAT Runningtime for MAX SAT Theorem Given a formula F over n variables and m clauses and of total size s, and a decomposition of F of ps-width k, we solve #SAT, and weighted MAXSAT in time O(k 3 s(m + n)). If the decomposition is a linear order the runningtime can be improved by a factor k. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

34 Polynomially solvable cases Formulas of linear PS-width We say a formula has an interval order if: Each variable and clause can be assigned an interval of the real line. Such that a variable x is in a clause c if and only if the interval of x intersects the interval of c. Incidence graphs of such formulas are called interval bigraphs. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

35 Polynomially solvable cases Formulas of linear PS-width We say a formula has an interval order if: Each variable and clause can be assigned an interval of the real line. Such that a variable x is in a clause c if and only if the interval of x intersects the interval of c. Incidence graphs of such formulas are called interval bigraphs. Many other classes of bipartite intersection graphs correspond to formulas which have polynomial ps-width. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

36 Polynomially solvable cases Relation to graph decomposition A tree-decomposition of I(F) of tree-width O(log(n)) can be turned into a decomposition of polynomial ps-width. A clique-decomposition of I(F) of constant clique-width can be turned into a decomposition of polynomial ps-width. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

37 Polynomially solvable cases Relation to graph decomposition A tree-decomposition of I(F) of tree-width O(log(n)) can be turned into a decomposition of polynomial ps-width. A clique-decomposition of I(F) of constant clique-width can be turned into a decomposition of polynomial ps-width. An active community study a wide range of width parameters such as: tree-width, branch-width, rank-width, boolean-width, clique-width, cut-width, MM-width, MIM-width... Bounding any of these parameters would prove polynomial ps-width. Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

38 Future research Polynomially solvable cases 1 Can we approximate ps-width? 2 Can we recognize graphs of MIM-width 1? 3 Does real world SAT instances have low ps-width? Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

39 Polynomially solvable cases THANK YOU Sæther, Telle, Vatshelle (UiB) Max SAT on structured formulas July 14, / 15

Solving #SAT and MaxSAT by dynamic programming

Solving #SAT and MaxSAT by dynamic programming Solving #SAT and MaxSAT by dynamic programming Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle {sigve.sether,telle,martin.vatshelle}@ii.uib.no Department of Informatics, University of Bergen,

More information

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 Intractable Problems There are many problems for which the best known algorithms take a very long time (e.g., exponential in some

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

Branching. Teppo Niinimäki. Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science

Branching. Teppo Niinimäki. Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science Branching Teppo Niinimäki Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science 1 For a large number of important computational problems

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity Tandy Warnow October 30, 2018 CS 173, Introduction to Computational Complexity Tandy Warnow Overview Topics: Solving problems using oracles Proving the answer to

More information

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015 CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015 Lecturer: Toniann Pitassi Scribe Notes by: Xu Zhao 1 Communication Complexity Applications Communication Complexity (CC) has many

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Hardness of Approximation of Graph Partitioning into Balanced Complete Bipartite Subgraphs

Hardness of Approximation of Graph Partitioning into Balanced Complete Bipartite Subgraphs Hardness of Approximation of Graph Partitioning into Balanced Complete Bipartite Subgraphs Hideaki OTSUKI Abstract For a graph G, a biclique edge partition S BP (G) is a collection of complete bipartite

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity NP-Complete Languages John E. Savage Brown University February 2, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February

More information

Lecture 19: NP-Completeness 1

Lecture 19: NP-Completeness 1 Lecture 19: NP-Completeness 1 Revised Sun May 25, 2003 Outline of this Lecture Polynomial-time reductions. CLRS pp.984-5 The class N PC. CLRS p. 986 Proving that problems are N PC. SAT, CLIQUE, INDEPENDENT

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

Detecting Backdoor Sets with Respect to Horn and Binary Clauses

Detecting Backdoor Sets with Respect to Horn and Binary Clauses Detecting Backdoor Sets with Respect to Horn and Binary Clauses Naomi Nishimura 1,, Prabhakar Ragde 1,, and Stefan Szeider 2, 1 School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 18 February 16, 2018 February 16, 2018 CS21 Lecture 18 1 Outline the complexity class NP 3-SAT is NP-complete NP-complete problems: independent set, vertex cover,

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization Department of Computer Science Series of Publications C Report C-2004-2 The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

NP-Complete Reductions 1

NP-Complete Reductions 1 x x x 2 x 2 x 3 x 3 x 4 x 4 CS 4407 2 22 32 Algorithms 3 2 23 3 33 NP-Complete Reductions Prof. Gregory Provan Department of Computer Science University College Cork Lecture Outline x x x 2 x 2 x 3 x 3

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Exact Max 2-SAT: Easier and Faster. Martin Fürer Shiva Prasad Kasiviswanathan Pennsylvania State University, U.S.A

Exact Max 2-SAT: Easier and Faster. Martin Fürer Shiva Prasad Kasiviswanathan Pennsylvania State University, U.S.A Exact Max 2-SAT: Easier and Faster Martin Fürer Shiva Prasad Kasiviswanathan Pennsylvania State University, U.S.A MAX 2-SAT Input: A 2-CNF fomula F with weights on clauses. Good assignment is one that

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel Propositional Logic Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

arxiv: v1 [cs.dm] 29 Oct 2012

arxiv: v1 [cs.dm] 29 Oct 2012 arxiv:1210.7684v1 [cs.dm] 29 Oct 2012 Square-Root Finding Problem In Graphs, A Complete Dichotomy Theorem. Babak Farzad 1 and Majid Karimi 2 Department of Mathematics Brock University, St. Catharines,

More information

Improving Unsatisfiability-based Algorithms for Boolean Optimization

Improving Unsatisfiability-based Algorithms for Boolean Optimization Improving Unsatisfiability-based Algorithms for Boolean Optimization Vasco Manquinho Ruben Martins Inês Lynce IST/INESC-ID, Technical University of Lisbon, Portugal SAT 2010, Edinburgh 1 / 27 Motivation

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

CS 5114: Theory of Algorithms

CS 5114: Theory of Algorithms CS 5114: Theory of Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Spring 2014 Copyright c 2014 by Clifford A. Shaffer CS 5114: Theory of Algorithms Spring

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Introduction to Advanced Results

Introduction to Advanced Results Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26 Outline Boolean Hierarchy Probabilistic Complexity Parameterized

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition.

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. Lecture #14: 0.0.1 NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. 0.0.2 Preliminaries: Definition 1 n abstract problem Q is a binary relations on a set I of

More information

NP-Completeness Review

NP-Completeness Review CS124 NP-Completeness Review Where We Are Headed Up to this point, we have generally assumed that if we were given a problem, we could find a way to solve it. Unfortunately, as most of you know, there

More information

Introduction to Solving Combinatorial Problems with SAT

Introduction to Solving Combinatorial Problems with SAT Introduction to Solving Combinatorial Problems with SAT Javier Larrosa December 19, 2014 Overview of the session Review of Propositional Logic The Conjunctive Normal Form (CNF) Modeling and solving combinatorial

More information

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008 CS 301 - Lecture 28 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

arxiv: v3 [cs.ds] 7 Mar 2017 March 8, 2017

arxiv: v3 [cs.ds] 7 Mar 2017 March 8, 2017 A width parameter useful for chordal and co-comparability graphs Dong Yeap Kang 1, O-joung Kwon 2, Torstein J. F. Strømme 3, and Jan Arne Telle 3 1 Department of Mathematical Sciences, KAIST, Daejeon,

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

Good representations via complete clause-learning

Good representations via complete clause-learning Good representations via complete clause-learning Oliver Kullmann Swansea University, United Kingdom http://cs.swan.ac.uk/~csoliver Rome, September 27, 2012, Limits of Theorem Proving O Kullmann (Swansea

More information

Keywords. Approximation Complexity Theory: historical remarks. What s PCP?

Keywords. Approximation Complexity Theory: historical remarks. What s PCP? Keywords The following terms should be well-known to you. 1. P, NP, NP-hard, NP-complete. 2. (polynomial-time) reduction. 3. Cook-Levin theorem. 4. NPO problems. Instances. Solutions. For a long time it

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

Algebraic Dynamic Programming. Solving Satisfiability with ADP

Algebraic Dynamic Programming. Solving Satisfiability with ADP Algebraic Dynamic Programming Session 12 Solving Satisfiability with ADP Robert Giegerich (Lecture) Stefan Janssen (Exercises) Faculty of Technology Summer 2013 http://www.techfak.uni-bielefeld.de/ags/pi/lehre/adp

More information

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices Partitioning Graphs of Supply and Demand Generalization of Knapsack Problem Takao Nishizeki Tohoku University Graph Supply Vertices and Demand Vertices Supply Vertices Demand Vertices Graph Each Supply

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

Approximation Preserving Reductions

Approximation Preserving Reductions Approximation Preserving Reductions - Memo Summary - AP-reducibility - L-reduction technique - Complete problems - Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions Polynomial time reduction and NP-completeness Exploring some time complexity limits of polynomial time algorithmic solutions 1 Polynomial time reduction Definition: A language L is said to be polynomial

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter Some Problems. A Brief History of Ideas

Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter Some Problems. A Brief History of Ideas Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter 2006 NP-Completeness (Chapter 8) Given positive integers a, b, c Question 1: does there exist a positive integer x such that

More information

Polynomial-time reductions. We have seen several reductions:

Polynomial-time reductions. We have seen several reductions: Polynomial-time reductions We have seen several reductions: Polynomial-time reductions Informal explanation of reductions: We have two problems, X and Y. Suppose we have a black-box solving problem X in

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

A Collection of Problems in Propositional Logic

A Collection of Problems in Propositional Logic A Collection of Problems in Propositional Logic Hans Kleine Büning SS 2016 Problem 1: SAT (respectively SAT) Instance: A propositional formula α (for SAT in CNF). Question: Is α satisfiable? The problems

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Malte Helmert and Gabriele Röger University of Basel April 24, 2017 Propositional Logic: Overview Chapter overview: propositional

More information

Introduction. Pvs.NPExample

Introduction. Pvs.NPExample Introduction Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 09 NP-Completeness (Chapter 34) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu I

More information

Contents. Typical techniques. Proving hardness. Constructing efficient algorithms

Contents. Typical techniques. Proving hardness. Constructing efficient algorithms Contents Typical techniques Proving hardness Constructing efficient algorithms Generating Maximal Independent Sets Consider the generation of all maximal sets of an independence system. Generating Maximal

More information

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions Summary of the previous lecture Recall that we mentioned the following topics: P: is the set of decision problems (or languages) that are solvable in polynomial time. NP: is the set of decision problems

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

Polynomial-time Reductions

Polynomial-time Reductions Polynomial-time Reductions Disclaimer: Many denitions in these slides should be taken as the intuitive meaning, as the precise meaning of some of the terms are hard to pin down without introducing the

More information

Minimization of Matched Formulas

Minimization of Matched Formulas WDS'11 Proceedings of Contributed Papers, Part I, 101 105, 2011. ISBN 978-80-7378-184-2 MATFYZPRESS Minimization of Matched Formulas Š. Gurský Charles University, Faculty of Mathematics and Physics, Prague,

More information

Complexity of locally injective homomorphism to the Theta graphs

Complexity of locally injective homomorphism to the Theta graphs Complexity of locally injective homomorphism to the Theta graphs Bernard Lidický and Marek Tesař Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

More NP-Complete Problems

More NP-Complete Problems CS 473: Algorithms, Spring 2018 More NP-Complete Problems Lecture 23 April 17, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Recap NP: languages/problems that have

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

NP-complete Problems

NP-complete Problems NP-complete Problems HP, TSP, 3COL, 0/1IP Dimitris Diamantis µπλ November 6, 2014 Dimitris Diamantis (µπλ ) NP-complete Problems November 6, 2014 1 / 34 HAMILTON PATH is NP-Complete Definition Given an

More information

Chapter 3: Proving NP-completeness Results

Chapter 3: Proving NP-completeness Results Chapter 3: Proving NP-completeness Results Six Basic NP-Complete Problems Some Techniques for Proving NP-Completeness Some Suggested Exercises 1.1 Six Basic NP-Complete Problems 3-SATISFIABILITY (3SAT)

More information

Outline of this Chapter

Outline of this Chapter Outline of this Chapter Problems in DP Structure and Properties of the Boolean Hierarchy over NP Exact Graph Colorability J. Rothe (HHU Düsseldorf) Komplexitätstheorie II 1 / 45 Problems in DP Reminder:

More information

There are two types of problems:

There are two types of problems: Np-complete Introduction: There are two types of problems: Two classes of algorithms: Problems whose time complexity is polynomial: O(logn), O(n), O(nlogn), O(n 2 ), O(n 3 ) Examples: searching, sorting,

More information

Generalizations of Matched CNF Formulas

Generalizations of Matched CNF Formulas Generalizations of Matched CNF Formulas Stefan Szeider (szeider@cs.toronto.edu) Department of Computer Science, University of Toronto, M5S 3G4 Toronto, Ontario, Canada Abstract. A CNF formula is called

More information

Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time

Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time Michael Krivelevich and Dan Vilenchik Tel-Aviv University Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time p. 1/2

More information

Lecture 24 : Even more reductions

Lecture 24 : Even more reductions COMPSCI 330: Design and Analysis of Algorithms December 5, 2017 Lecture 24 : Even more reductions Lecturer: Yu Cheng Scribe: Will Wang 1 Overview Last two lectures, we showed the technique of reduction

More information

ENEE 459E/CMSC 498R In-class exercise February 10, 2015

ENEE 459E/CMSC 498R In-class exercise February 10, 2015 ENEE 459E/CMSC 498R In-class exercise February 10, 2015 In this in-class exercise, we will explore what it means for a problem to be intractable (i.e. it cannot be solved by an efficient algorithm). There

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

Efficient Approximation for Restricted Biclique Cover Problems

Efficient Approximation for Restricted Biclique Cover Problems algorithms Article Efficient Approximation for Restricted Biclique Cover Problems Alessandro Epasto 1, *, and Eli Upfal 2 ID 1 Google Research, New York, NY 10011, USA 2 Department of Computer Science,

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Massimo Lauria KTH Royal Institute of Technology (Stockholm) 1 st Computational Complexity Conference, 015 Portland! Joint work with Jakob Nordström

More information

On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs

On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs Andreas Brandstädt University of Rostock, Germany (with C. Hundt, A. Leitert, M. Milanič, R. Mosca, R. Nevries, and D.

More information

COMP 382. Unit 10: NP-Completeness

COMP 382. Unit 10: NP-Completeness COMP 382 Unit 10: NP-Completeness Time complexity 1 log n n n 2 n 3 2 n n n Space complexity 1 log n n n 2 n 3 2 n n n Complexity theory Focus on decidability (yes/no) problems What is P? Deterministic,

More information

On the Structure and the Number of Prime Implicants of 2-CNFs

On the Structure and the Number of Prime Implicants of 2-CNFs On the Structure and the Number of Prime Implicants of 2-CNFs Navid Talebanfard Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro-ku Ookayama 2-12-1, Japan 152-8552

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35.

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35. NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 4 NP-completeness Recap: relations between classes EXP PSPACE = NPSPACE conp NP conp

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Computational Complexity of Some Restricted Instances of 3SAT

Computational Complexity of Some Restricted Instances of 3SAT Computational Complexity of Some Restricted Instances of 3SAT Piotr Berman Marek Karpinski Alexander D. Scott Abstract Tovey [10] showed that it is NP-hard to decide the satisfiability of 3-SAT instances

More information