The complexity of Sur-Hom(C 4 )

Size: px
Start display at page:

Download "The complexity of Sur-Hom(C 4 )"

Transcription

1 The complexity of Sur-Hom(C 4 ) Barnaby Martin and Danïel Paulusma Algorithms and Complexity in Durham, 7th Slovenian International Conference on Graph Theory Bled 11 25th June, 2011

2 My introduction to the problem. For some finite and relational signature σ, we consider only finite σ-structures A, B etc. A homomorphism from A to B is a function h : A B such that, for all R σ of arity i, if R(a 1,..., a i ) A then R(h(a 1 ),..., h(a i )) B. The homomorphism problem Hom(B) takes as input some A and asks whether there is a homomorphism from A to the fixed template B (denoted A B)? Hom(B) is also known as CSP(B); a constraint satisfaction problem.

3 Hom(B) is always in NP and it is conjectured to possess dichotomy between P and NP-complete. However, quite a lot is known about Hom(H), for instance, when H is a symmetric digraph (graph possibly with loops). The following is Hell and Nešetřil (1990), augmented with Reingold (2005). Theorem (Hell and Nešetřil 1990) If H has a self-loop or is bipartite, Hom(H) is in L. Otherwise Hom(H) is NP-complete.

4 The most important problem for me ancestrally is list homomorphism. The problem List-Hom(B) takes as input some A together with, for each a A, lists l a B and asks whether there is a homomorphism h from A to B s.t. h(a) l a. Much is known about the complexity of List-Hom(B). classification for (irreflexive) graphs graphs by Feder, Hell and Huang (1999). classification for reflexive graphs graphs by Feder and Hell (1998). full classification by Bulatov (2003).

5 Since, trivially, Hom(H) L List-Hom(H), in order to classify List-Hom(H) for graphs it is necessary only to classify List-Hom(H) for bipartite H. Theorem (Feder, Hell and Huang 1999) Let H be a bipartite graph. If the complement of H is a circular arc graph then List-Hom(H) is in P. Otherwise it is NP-complete. The smallest bipartite graph that is not the complement of a circular arc graph is C 6...

6 Theorem (Feder and Hell 1998) Let H be a reflexive graph. If H is an interval graph then List-Hom(H) is in P. Otherwise it is NP-complete. The smallest reflexive graph s.t. List-Hom(H) is NP-complete turns out to be C 4...

7 We introduce two further important problems. The retraction problem Ret(B) takes as input some A, with B an induced substructure of A, and asks whether there is a homomorphism h : A B s.t. h is the identity on B. The problem Ret(B) is logspace equivalent with the problem Hom(B c ), where B c is B expanded with all constants.

8 The compaction problem Comp(H) takes as input some G and asks whether there is a surjective homomorphism h : G H s.t. h is edge-surjective modulo self-loops. 1 The definition of compaction is horrible! Blame the graph-theorists! Except for the self-loops it is quite similar to the modern notion of homomorphic image. 1 Formally: b 1, b 2 H s.t. b 1 b 2 and E(b 1, b 2) H, a 1, a 2 G s.t. E(a 1, a 2) G and h(a 1) = b 1 and h(a 2) = b 2.

9 Examples. There is a surjective homomorphism from the 3-path P 3 to the reflexive 4-cycle C 4 ; there is no compaction There is a surjective homomorphism from the 4-cycle C 4 to the reflexive 4-cycle C 4 ; this is also a compaction

10 It is not too hard to see Sur-Hom(B) Tur P Comp(B) Tur P Ret(B) L List-Hom(B). Sketch proof. For Sur-Hom(B) to Comp(B) consider all element-preimages of B in the input and enforce B on these. For Comp(B) to Ret(B) consider all edge-preimages of B that satisfy edge -surjectivity and identify elements as necessary and enforce B on them. The reduction from Ret(B) to List-Hom(B) is trivial. In fact we have already proved that Ret(C 6 ) and Ret(C 4 ) are NP-complete (using the same reductions as before).

11 Our understanding of these problems now appears to be Hom(C 6 ) L Sur-Hom(C 6 ) Tur P Comp(C 6 ) Tur P Ret(C 6 ) L List-Hom(C 6 ) P?? NP c NP c Hom(C 4 ) L Sur-Hom(C 4 ) Tur P Theorem (Vikas 2004) Comp(C 2k ) is NP-complete for k 3. Theorem (Vikas 2003) Comp(C k ) is NP-complete for k 4. Comp(C 4 ) Tur P Ret(C 4 ) L List-Hom(C 4 )

12 Comp(C 6 ) and Sur-Hom(C 6 ) coincide on inputs of diameter 4 Vikas s construction is of diameter 5. A similar story with C 4... Comp(C 4 ) and Sur-Hom(C 4 ) coincide on inputs of diameter 2 Vikas s construction is of diameter 3.

13 Another introduction to the problem. The Brazilian school. The recent history of Sur-Hom(C 4 ) probably begins with a paper in 2005 by Dantas, de Figueiredo, Gravier and Klein: Finding H-partitions efficiently. It appears as the only one in a family of problems whose complexity is unknown. 2 In this world, the problem is known as 2K 2 -partition: to partition the vertices of a graph into four nonempty classes A, B, C and D such that every vertex in A is adjacent to every vertex in B and every vertex in C is adjacent to every vertex in D. 2K 2 -partition is logspace-equivalent to Sur-Hom(C 4 ) under the reduction G complement(g). 2 Essentially this coincides with the fact that the complexity of Sur-Hom(H) is easy to classify for all H of size 4 except H := C 4.

14 Our Brazilian friends have written extensively on this problem (and its list variant) including. Theorem (Dantas, Maffray and Silva 2010) 2K 2 -partition is in P for K 4 -free graphs diamond-free graphs planar graphs graphs of bounded treewidth claw-free graphs (C 5, P 5 )-free graphs graphs with few P 4 s

15 In a recent paper of de Figueiredo, in press at Discrete Applied Mathematics, The P versus NP-complete dichotomy of some challenging problems in graph theory, such is the importance of this open problem, that the complexity class(!) 2K 2-hard is introduced.

16 In Europe, meanwhile, Sur-Hom(C 4 ) has recently appeared as disconnected cut. Theorem (Fleischner, Mujuni, Paulusma and Szeider 2009) Disconnected cut is in P for graphs of diameter 2 graphs of bounded maximum degree graphs not locally connected triangle-free graphs graphs with a dominating edge Theorem (Ito, Kaminski, Paulusma and Thilikos 2009) Disconnected cut is in P for apex-minor-free graphs. connected chordal graphs

17 Working around the problem Sur-Hom(C 4 ) my colleagues in ACiD proved instead: Theorem (Golovach, Paulusma and Song 2011) Let T be a partially reflexive tree. Then, if the vertices in T with a self-loop induce a subtree of T, Sur-Hom(T) is in P. Otherwise, it is NP-complete. I also mention the following result. Theorem (Creignou, Khanna and Sudan 2001) If all relations of B are from one among Horn, dual Horn, bijunctive or affine, Sur-Hom(B) is in P. Otherwise, it is NP-complete.

18 Sur-Hom(C 4 ) appears to be very close to being tractable. Any input of diameter 3 is a trivial yes-instance. If Ret(C 4 ) is in P for inputs of diameter 2, it follows that so is Sur-Hom(C 4 ). Now, Ret(C 4 ) on inputs of diameter 2 really is close to be encodeable as a 2-SAT (the standard method to prove that list homomorphism is tractable).

19 Sur-Hom(C 4 ) appears to be very close to being tractable. Any input of diameter 3 is a trivial yes-instance. If Ret(C 4 ) is in P for inputs of diameter 2, it follows that so is Sur-Hom(C 4 ). Now, Ret(C 4 ) on inputs of diameter 2 really is close to be encodeable as a 2-SAT (the standard method to prove that list homomorphism is tractable). Theorem (M. 2011) Ret(C 4 ) is NP-complete on inputs of diameter 2 (with a dominating non-edge).

20 p p a p b p a p bp q c q d q q dq h0 cq h 1 h 3 h 2 Figure: Possible evaluations of... Figure: H-gadget (q; red) and V-gadget (p; blue).

21 p p 3 1 a p 3 0 b p 2 1 q 3 1 c q 3 2 d q 0 1 q cq a p dq h0 bp h 3 h 1 h 2 Figure: Clause gadget for ( p q)... Figure: i.e. {(3, 1), (1, 3), (3, 3)}.

22 p p 3 1 a p 3 0 b p 2 1 a p bp q 3 1 c q 3 2 d q 0 1 q dq h0 cq h 1 h 3 h 2 Figure: Clause gadget for (p q)... Figure: i.e. {(1, 1), (3, 1), (1, 3)}.

23 In order to satisfy the diameter constraints, we join all a p (in different gadgets) in a big clique. We do likewise for b p, c q and d q. If we were interested in NLogspace-hardness, we would be done, by reduction from 2-SAT. The same reduction works for Ret(C 4 ) on inputs of diameter 2 as for Sur-Hom(C 4 ).

24 p p a p b p a p bp q c q d q Figure: Gadget for... q dq cq h 0 h 3 h 1 h 2 Figure: {(0, 3), (3, 3), (3, 1), (1, 1)}.

25 p p a p b p a p bp q c q d q Figure: Gadget for... q dq cq h 0 h 3 h 1 h 2 Figure: {(3, 3), (3, 1), (1, 0), (1, 1)}.

26 I now claim we are done, as D := ({3, 1, 0} : {(3, 1), (1, 3), (3, 3)}, {(1, 1), (3, 1), (1, 3)}, {(0, 3), (3, 3), (3, 1), (1, 1)}, {(3, 3), (3, 1), (1, 0), (1, 1)}) is such that Hom(D) is NP-complete, by: Theorem (Bulatov, Jeavons and Krokhin 2005) Let B be a finite core with A B, A = 2, a subset that as a unary relation belongs to B. If for each f Pol(B), f A is not majority, semilattice or Mal tsev, then Hom(B) is NP-complete.

27 Unfortunately, this reduction for Ret(C 4 ), on diameter 2 with dominating non-edge, does not immediately work for Sur-Hom(C 4 ): the degenerate cases no longer vanish. Instead we have to borrow most, but not quite all, of the construction of Vikas. x vv v v h 0 h 3 u v u v y v y v wv w v h 1 h 2

On disconnected cuts and separators

On disconnected cuts and separators On disconnected cuts and separators Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3 and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai,

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 159 (2011) 1345 1351 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam On disconnected cuts and separators

More information

Parameterizing cut sets in a graph by the number of their components

Parameterizing cut sets in a graph by the number of their components Parameterizing cut sets in a graph by the number of their components Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3, and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku

More information

Constraint Satisfaction

Constraint Satisfaction Constraint Satisfaction and Graph Theory Plan How much is lost by focusing on graphs How graphs help intuition How graph theory gets used Graph Colouring Graph Colouring One of the most common illustrations

More information

Theoretical Computer Science. Parameterizing cut sets in a graph by the number of their components

Theoretical Computer Science. Parameterizing cut sets in a graph by the number of their components Theoretical Computer Science 412 (2011) 6340 6350 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Parameterizing cut sets in

More information

Tutorial on the Constraint Satisfaction Problem

Tutorial on the Constraint Satisfaction Problem Tutorial on the Constraint Satisfaction Problem Miklós Maróti Vanderbilt University and University of Szeged Nový Smokovec, 2012. September 2 7. Miklós Maróti (Vanderbilt and Szeged) The Constraint Satisfaction

More information

Complexity of conservative Constraint Satisfaction Problems

Complexity of conservative Constraint Satisfaction Problems Complexity of conservative Constraint Satisfaction Problems ANDREI A. BULATOV Simon Fraser University In a constraint satisfaction problem (CSP) the aim is to find an assignment of values to a given set

More information

Flexible satisfaction

Flexible satisfaction Flexible satisfaction LCC 2016, Aix-Marseille Université Marcel Jackson A problem and overview A problem in semigroup theory The semigroup B 1 2 ( ) ( ) 1 0 1 0, 0 1 0 0, ( ) 0 1, 0 0 ( ) 0 0, 1 0 ( )

More information

Constraint satisfaction problems and dualities

Constraint satisfaction problems and dualities Andrei Krokhin - CSPs and dualities 1 Constraint satisfaction problems and dualities Andrei Krokhin University of Durham Andrei Krokhin - CSPs and dualities 2 The CSP The Constraint Satisfaction (or Homomorphism)

More information

Bounded width problems and algebras

Bounded width problems and algebras Algebra univers. 56 (2007) 439 466 0002-5240/07/030439 28, published online February 21, 2007 DOI 10.1007/s00012-007-2012-6 c Birkhäuser Verlag, Basel, 2007 Algebra Universalis Bounded width problems and

More information

Complexity of Generalised Colourings of Chordal Graphs

Complexity of Generalised Colourings of Chordal Graphs Complexity of Generalised Colourings of Chordal Graphs A depth examination report submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Computing

More information

List H-Coloring a Graph by Removing Few Vertices

List H-Coloring a Graph by Removing Few Vertices List H-Coloring a Graph by Removing Few Vertices Rajesh Chitnis 1, László Egri 2, and Dániel Marx 2 1 Department of Computer Science, University of Maryland at College Park, USA, rchitnis@cs.umd.edu 2

More information

{Symmetry, Logic, CSP}

{Symmetry, Logic, CSP} {Symmetry, Logic, CSP} Libor Barto Charles University in Prague {Symmetry, Logic, Computation} Simons Institute, Berkeley, 9 Nov 2016 Message Topic: Constraint Satisfaction Problem (CSP) over a fixed finite

More information

Universal algebra for CSP Lecture 2

Universal algebra for CSP Lecture 2 Universal algebra for CSP Lecture 2 Ross Willard University of Waterloo Fields Institute Summer School June 26 30, 2011 Toronto, Canada R. Willard (Waterloo) Universal algebra Fields Institute 2011 1 /

More information

Polymorphisms, and how to use them

Polymorphisms, and how to use them Polymorphisms, and how to use them Libor Barto 1, Andrei Krokhin 2, and Ross Willard 3 1 Department of Algebra, Faculty of Mathematics and Physics Charles University in Prague, Czech Republic libor.barto@gmail.com

More information

Polymorphisms, and How to Use Them

Polymorphisms, and How to Use Them Polymorphisms, and How to Use Them Libor Barto 1, Andrei Krokhin 2, and Ross Willard 3 1 Department of Algebra, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic libor.barto@gmail.com

More information

Author manuscript, published in "27th International Symposium on Theoretical Aspects of Computer Science - STACS 2010 (2010) "

Author manuscript, published in 27th International Symposium on Theoretical Aspects of Computer Science - STACS 2010 (2010) Author manuscript, published in "27th International Symposium on Theoretical Aspects of Computer Science - STACS 2010 (2010) 335-346" Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France),

More information

Enumerating Homomorphisms

Enumerating Homomorphisms Enumerating Homomorphisms Andrei A. Bulatov School of Computing Science, Simon Fraser University, Burnaby, Canada Víctor Dalmau 1, Department of Information and Communication Technologies, Universitat

More information

The complexity of the list homomorphism problem for graphs

The complexity of the list homomorphism problem for graphs The complexity of the list homomorphism problem for graphs László Egri, Andrei Krokhin, Benoit Larose, Pascal Tesson April 2, 2009 Abstract We completely characterise the computational complexity of the

More information

The complexity of the list homomorphism problem for graphs

The complexity of the list homomorphism problem for graphs The complexity of the list homomorphism problem for graphs László Egri School of Computer Science McGill University, Montréal, Canada laszlo.egri@mail.mcgill.ca Andrei Krokhin School of Engineering and

More information

Graphs admitting a k-nu Polymorphism

Graphs admitting a k-nu Polymorphism Graphs admitting a k-nu Polymorphism B. Larose 1 2 and friends 1 Concordia University, Montréal QC 2 Champlain Regional College, St-Lambert QC AMS Sectional Meeting, Boulder CO, April 2013 Authors and

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Dualities for Constraint Satisfaction Problems

Dualities for Constraint Satisfaction Problems Dualities for Constraint Satisfaction Problems Andrei Bulatov 1, Andrei Krokhin 2, and Benoit Larose 3 1 School of Computing Science Simon Fraser University Burnaby, BC, Canada, V5A 1S6 abulatov@cs.sfu.ca

More information

Graphs, Polymorphisms, and Multi-Sorted Structures

Graphs, Polymorphisms, and Multi-Sorted Structures Graphs, Polymorphisms, and Multi-Sorted Structures Ross Willard University of Waterloo NSAC 2013 University of Novi Sad June 6, 2013 Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC

More information

The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory

The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory Tomás Feder Moshe Y. Vardi IBM Almaden Research Center 650 Harry Road San Jose,

More information

The complexity of constraint satisfaction: an algebraic approach

The complexity of constraint satisfaction: an algebraic approach The complexity of constraint satisfaction: an algebraic approach Andrei KROKHIN Department of Computer Science University of Durham Durham, DH1 3LE UK Andrei BULATOV School of Computer Science Simon Fraser

More information

International Workshop on Mathematics of Constraint Satisfaction: Algebra, Logic and Graph Theory

International Workshop on Mathematics of Constraint Satisfaction: Algebra, Logic and Graph Theory International Workshop on Mathematics of Constraint Satisfaction: Algebra, Logic and Graph Theory 20-24 March 2006 St Anne's College, University of Oxford www.comlab.ox.ac.uk/mathscsp Constraints & Algebra

More information

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS ANDREI BULATOV, PETER JEAVONS, AND ANDREI KROKHIN Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction

More information

Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 27 & July 2/4, 2012

Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 27 & July 2/4, 2012 Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 27 & July 2/4, 2012 vs. complexity For some restricted constraint languages we know some polynomial time algorithms

More information

Caterpillar duality for CSP. C. Carvalho (UoD), V. Dalmau (UPF) and A. Krokhin (UoD)

Caterpillar duality for CSP. C. Carvalho (UoD), V. Dalmau (UPF) and A. Krokhin (UoD) Caterpillar duality for CSP C. Carvalho (UoD), V. Dalmau (UPF) and A. Krokhin (UoD) Motivation The following problems Scheduling; System of linear equations; Drawing up a timetable; Check the satisfiability

More information

Counting Matrix Partitions of Graphs

Counting Matrix Partitions of Graphs Counting Matrix Partitions of Graphs David Richerby University of Oxford Joint work with Martin Dyer, Andreas Göbel, Leslie Ann Goldberg, Colin McQuillan and Tomoyuki Yamakami David Richerby (Oxford) Counting

More information

On Graph Contractions and Induced Minors

On Graph Contractions and Induced Minors On Graph Contractions and Induced Minors Pim van t Hof, 1, Marcin Kamiński 2, Daniël Paulusma 1,, Stefan Szeider, 3, and Dimitrios M. Thilikos 4, 1 School of Engineering and Computing Sciences, Durham

More information

Choosability on H-Free Graphs

Choosability on H-Free Graphs Choosability on H-Free Graphs Petr A. Golovach 1, Pinar Heggernes 1, Pim van t Hof 1, and Daniël Paulusma 2 1 Department of Informatics, University of Bergen, Norway {petr.golovach,pinar.heggernes,pim.vanthof}@ii.uib.no

More information

Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs

Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs Gregory Gutin Arash Rafiey Anders Yeo Abstract For digraphs D and H, a mapping f : V (D) V (H) is a homomorphism of D to H if uv A(D) implies

More information

Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete

Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete Jaroslav Nešetřil 1 and Mark Siggers 1 Department of Applied Mathematics and Institute for Theoretical Computer Science

More information

Absorption in Universal Algebra and CSP

Absorption in Universal Algebra and CSP Absorption in Universal Algebra and CSP Libor Barto 1 and Marcin Kozik 2 1 Department of Algebra, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic libor.barto@gmail.com 2

More information

The Complexity of the Counting CSP

The Complexity of the Counting CSP The Complexity of the Counting CSP Víctor Dalmau Universitat Pompeu Fabra The Complexity of the Counting CSP p.1/23 (Non Uniform) Counting CSP Def: (Homomorphism formulation) Let B be a (finite) structure.

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

CSCI3390-Lecture 17: A sampler of NP-complete problems

CSCI3390-Lecture 17: A sampler of NP-complete problems CSCI3390-Lecture 17: A sampler of NP-complete problems 1 List of Problems We now know that if L is any problem in NP, that L P SAT, and thus SAT is NP-hard. Since SAT is also in NP we find that SAT is

More information

On the hardness of losing width

On the hardness of losing width On the hardness of losing width Marek Cygan 1, Daniel Lokshtanov 2, Marcin Pilipczuk 1, Micha l Pilipczuk 1, and Saket Saurabh 3 1 Institute of Informatics, University of Warsaw, Poland {cygan@,malcin@,mp248287@students}mimuwedupl

More information

COMBINATORIAL PROOF THAT SUBPROJECTIVE CONSTRAINT SATISFACTION PROBLEMS ARE NP-COMPLETE

COMBINATORIAL PROOF THAT SUBPROJECTIVE CONSTRAINT SATISFACTION PROBLEMS ARE NP-COMPLETE COMBINATORIAL PROOF THAT SUBPROJECTIVE CONSTRAINT SATISFACTION PROBLEMS ARE NP-COMPLETE JAROSLAV NEŠETŘIL AND MARK H. SIGGERS Abstract. We introduce a new general polynomial-time constructionthe fibre

More information

A FINER REDUCTION OF CONSTRAINT PROBLEMS TO DIGRAPHS

A FINER REDUCTION OF CONSTRAINT PROBLEMS TO DIGRAPHS Logical Methods in Computer Science Vol. 11(4:18)2015, pp. 1 33 www.lmcs-online.org Submitted Jun. 24, 2014 Published Dec. 29, 2015 A FINER REDUCTION OF CONSTRAINT PROBLEMS TO DIGRAPHS JAKUB BULÍN a, DEJAN

More information

Lecture 16: Constraint Satisfaction Problems

Lecture 16: Constraint Satisfaction Problems A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem

More information

Fixed-parameter Approximability of Boolean MinCSPs

Fixed-parameter Approximability of Boolean MinCSPs Fixed-parameter Approximability of Boolean MinCSPs Édouard Bonnet, László Egri, and Dániel Marx Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary (MTA SZTAKI)

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

The restrictive H-coloring problem

The restrictive H-coloring problem Discrete Applied Mathematics 145 (2005) 297 305 www.elsevier.com/locate/dam The restrictive H-coloring problem Josep Díaz 1, Maria Serna 2, Dimitrios M. Thilikos 2 Departament de Llenguatges i Sistemes

More information

The Complexity of Constraint Satisfaction Games and QCSP

The Complexity of Constraint Satisfaction Games and QCSP The Complexity of Constraint Satisfaction Games and QCSP Ferdinand Börner Institut für Informatik University of Potsdam Potsdam, D-14482, Germany fboerner@rz.uni-potsdam.de Hubie Chen Department of Technology

More information

Promise constraint satisfaction

Promise constraint satisfaction Promise constraint satisfaction Jakub Opršal (TU Dresden) Joint work with Jakub Bulín, Andrei Krokhin, and others Krkonoše, Sep 4, 2018 This project has received funding from the European Research Council

More information

MAL TSEV CONSTRAINTS MADE SIMPLE

MAL TSEV CONSTRAINTS MADE SIMPLE Electronic Colloquium on Computational Complexity, Report No. 97 (2004) MAL TSEV CONSTRAINTS MADE SIMPLE Departament de Tecnologia, Universitat Pompeu Fabra Estació de França, Passeig de la circumval.lació,

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 29 March 2016 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Golovach, P.A. and Johnson,

More information

Complexity of conditional colorability of graphs

Complexity of conditional colorability of graphs Complexity of conditional colorability of graphs Xueliang Li 1, Xiangmei Yao 1, Wenli Zhou 1 and Hajo Broersma 2 1 Center for Combinatorics and LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China.

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dabrowski, K.K. and Lozin, V.V.

More information

The Complexity of Approximating Small Degree Boolean #CSP

The Complexity of Approximating Small Degree Boolean #CSP The Complexity of Approximating Small Degree Boolean #CSP Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics Counting CSP F (Γ) is a family of

More information

CSP, Algebras, Varieties. Andrei A. Bulatov Simon Fraser University

CSP, Algebras, Varieties. Andrei A. Bulatov Simon Fraser University CSP Algebras Varieties Andrei A. Bulatov Simon Fraser University CSP Reminder An instance o CSP is deined to be a pair o relational structures A and B over the same vocabulary τ. Does there exist a homomorphism

More information

On the hardness of losing width

On the hardness of losing width On the hardness of losing width Marek Cygan 1, Daniel Lokshtanov 2, Marcin Pilipczuk 1, Micha l Pilipczuk 1, and Saket Saurabh 3 1 Institute of Informatics, University of Warsaw, Poland {cygan@,malcin@,mp248287@students}mimuwedupl

More information

Trichotomy Results on the Complexity of Reasoning with Disjunctive Logic Programs

Trichotomy Results on the Complexity of Reasoning with Disjunctive Logic Programs Trichotomy Results on the Complexity of Reasoning with Disjunctive Logic Programs Mirosław Truszczyński Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA Abstract. We present

More information

Quantified Equality Constraints

Quantified Equality Constraints Quantified Equality Constraints Manuel Bodirsky Institut für Informatik Humboldt-Universität zu Berlin, Germany bodirsky@informatik.hu-berlin.de Hubie Chen Departament de Tecnologies de la Informació i

More information

On the hardness of losing weight

On the hardness of losing weight On the hardness of losing weight Andrei Krokhin 1 and Dániel Marx 2 1 Department of Computer Science, Durham University, Durham, DH1 3LE, UK andrei.krokhin@durham.ac.uk 2 Department of Computer Science

More information

TOPOLOGY IS IRRELEVANT (IN THE INFINITE DOMAIN DICHOTOMY CONJECTURE FOR CONSTRAINT SATISFACTION PROBLEMS)

TOPOLOGY IS IRRELEVANT (IN THE INFINITE DOMAIN DICHOTOMY CONJECTURE FOR CONSTRAINT SATISFACTION PROBLEMS) TOPOLOGY IS IRRELEVANT (IN THE INFINITE DOMAIN DICHOTOMY CONJECTURE FOR CONSTRAINT SATISFACTION PROBLEMS) LIBOR BARTO AND MICHAEL PINSKER Abstract. We prove that an ω-categorical core structure primitively

More information

Constraint satisfaction problems over infinite domains

Constraint satisfaction problems over infinite domains Constraint satisfaction problems over infinite domains Michael Kompatscher, Trung Van Pham Theory and Logic Group TU Wien Research Seminar, 27/04/2016 Schaefer s theorem Let Φ be a set of propositional

More information

Wheel-free planar graphs

Wheel-free planar graphs Wheel-free planar graphs Pierre Aboulker Concordia University, Montréal, Canada email: pierreaboulker@gmail.com Maria Chudnovsky Columbia University, New York, NY 10027, USA e-mail: mchudnov@columbia.edu

More information

Clonoids and Promise CSP

Clonoids and Promise CSP Clonoids and Promise CSP Jakub Buĺın JKU Linz AAA94 & NSAC 2017 Research supported by University of Colorado Boulder and the Austrian Science Fund (FWF): P29931 In this talk... A more general framework

More information

THERE ARE NO PURE RELATIONAL WIDTH 2 CONSTRAINT SATISFACTION PROBLEMS. Keywords: Computational Complexity, Constraint Satisfaction Problems.

THERE ARE NO PURE RELATIONAL WIDTH 2 CONSTRAINT SATISFACTION PROBLEMS. Keywords: Computational Complexity, Constraint Satisfaction Problems. THERE ARE NO PURE RELATIONAL WIDTH 2 CONSTRAINT SATISFACTION PROBLEMS Departament de tecnologies de la informació i les comunicacions, Universitat Pompeu Fabra, Estació de França, Passeig de la circumval.laci

More information

Supermodular Functions and the Complexity of Max CSP

Supermodular Functions and the Complexity of Max CSP Supermodular Functions and the Complexity of Max CSP David Cohen a, Martin Cooper b, Peter Jeavons c, Andrei Krokhin d, a Department of Computer Science, Royal Holloway, University of London, Egham, Surrey,

More information

Finding cut-vertices in the square roots of a graph

Finding cut-vertices in the square roots of a graph Finding cut-vertices in the square roots of a graph Guillaume Ducoffe To cite this version: Guillaume Ducoffe. Finding cut-vertices in the square roots of a graph. [Research Report] Université Côte d Azur,

More information

GRAPHS ADMITTING k-nu OPERATIONS. PART 1: THE REFLEXIVE CASE

GRAPHS ADMITTING k-nu OPERATIONS. PART 1: THE REFLEXIVE CASE GRAPHS ADMITTING k-nu OPERATIONS. PART 1: THE REFLEXIVE CASE TOMÁS FEDER, PAVOL HELL, BENOÎT LAROSE, CYNTHIA LOTEN, MARK SIGGERS, AND CLAUDE TARDIF Abstract. We describe a generating set for the variety

More information

Algebraic view on promise constraint satisfaction and hardness of coloring a D-colorable graph with 2D 1 colors

Algebraic view on promise constraint satisfaction and hardness of coloring a D-colorable graph with 2D 1 colors Algebraic view on promise constraint satisfaction and hardness of coloring a D-colorable graph with 2D 1 colors Jakub Opršal (TU Dresden) Joint work with Jakub Bulín and Andrei Krokhin Dagstuhl, June 5,

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Toward Quandle Dichotomy

Toward Quandle Dichotomy Robert McGrail, Mona Merling, Mary Sharac, Japheth Wood Laboratory for Algebraic and Symbolic Computation Reem-Kayden Center for Science and Computation Bard College Annandale-on-Hudson, NY 12504 April

More information

Complexity of locally injective homomorphism to the Theta graphs

Complexity of locally injective homomorphism to the Theta graphs Complexity of locally injective homomorphism to the Theta graphs Bernard Lidický and Marek Tesař Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic

More information

Graph polynomials from simple graph sequences

Graph polynomials from simple graph sequences Graph polynomials from simple graph sequences Delia Garijo 1 Andrew Goodall 2 Patrice Ossona de Mendez 3 Jarik Nešetřil 2 1 University of Seville, Spain 2 Charles University, Prague, Czech Republic 3 CAMS,

More information

Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph arxiv: v6 [cs.cc] 4 Jan 2015

Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph arxiv: v6 [cs.cc] 4 Jan 2015 Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph arxiv:1403.5961v6 [cs.cc] 4 Jan 2015 Faisal N. Abu-Khzam, Carl Feghali, Haiko Müller January 6, 2015 Abstract A graph G = (V, E) is

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Bi-Arc Digraphs and Conservative Polymorphisms

Bi-Arc Digraphs and Conservative Polymorphisms Bi-Arc Digraphs and Conservative Polymorphisms Pavol Hell Arash Rafiey arxiv:1608.03368v3 [cs.ds] 29 Dec 2016 Abstract We introduce the class of bi-arc digraphs, and show they coincide with the class of

More information

Solving #SAT and MaxSAT by dynamic programming

Solving #SAT and MaxSAT by dynamic programming Solving #SAT and MaxSAT by dynamic programming Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle {sigve.sether,telle,martin.vatshelle}@ii.uib.no Department of Informatics, University of Bergen,

More information

CSPs and Connectedness: P/NP-Complete Dichotomy for Idempotent, Right Quasigroups

CSPs and Connectedness: P/NP-Complete Dichotomy for Idempotent, Right Quasigroups CSPs and Connectedness: P/NP-Complete Dichotomy for Idempotent, Right Quasigroups Robert W McGrail, James Belk, Solomon Garber, and Japheth Wood Reem Kayden Center for Science and Computation Bard College

More information

Siegel s theorem, edge coloring, and a holant dichotomy

Siegel s theorem, edge coloring, and a holant dichotomy Siegel s theorem, edge coloring, and a holant dichotomy Tyson Williams (University of Wisconsin-Madison) Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison) Appeared at FOCS 2014 1 /

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof T-79.5103 / Autumn 2006 NP-complete problems 1 NP-COMPLETE PROBLEMS Characterizing NP Variants of satisfiability Graph-theoretic problems Coloring problems Sets and numbers Pseudopolynomial algorithms

More information

On Digraph Coloring Problems and Treewidth Duality

On Digraph Coloring Problems and Treewidth Duality On Digraph Coloring Problems and Treewidth Duality Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain atserias@lsi.upc.edu November 24, 2006 Abstract It is known that every constraint-satisfaction

More information

Datalog and Constraint Satisfaction with Infinite Templates

Datalog and Constraint Satisfaction with Infinite Templates Datalog and Constraint Satisfaction with Infinite Templates Manuel Bodirsky 1 and Víctor Dalmau 2 1 CNRS/LIX, École Polytechnique, bodirsky@lix.polytechnique.fr 2 Universitat Pompeu Fabra, victor.dalmau@upf.edu

More information

arxiv: v3 [cs.dm] 18 Jan 2018

arxiv: v3 [cs.dm] 18 Jan 2018 On H-topological intersection graphs Steven Chaplick 1, Martin Töpfer 2, Jan Voborník 3, and Peter Zeman 3 1 Lehrstuhl für Informatik I, Universität Würzburg, Germany, www1.informatik.uni-wuerzburg.de/en/staff,

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Affine Systems of Equations and Counting Infinitary Logic

Affine Systems of Equations and Counting Infinitary Logic Affine Systems of Equations and Counting Infinitary Logic Albert Atserias Andrei Bulatov Anu Dawar October 22, 2007 Abstract We study the definability of constraint satisfaction problems (CSP) in various

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics ( ) Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam On the forbidden induced subgraph sandwich problem

More information

arxiv: v2 [math.co] 7 Jan 2019

arxiv: v2 [math.co] 7 Jan 2019 Clique-Width for Hereditary Graph Classes Konrad K. Dabrowski, Matthew Johnson and Daniël Paulusma arxiv:1901.00335v2 [math.co] 7 Jan 2019 Abstract Clique-width is a well-studied graph parameter owing

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

Coloring graphs with forbidden induced subgraphs

Coloring graphs with forbidden induced subgraphs Coloring graphs with forbidden induced subgraphs Maria Chudnovsky Abstract. Since graph-coloring is an NP -complete problem in general, it is natural to ask how the complexity changes if the input graph

More information

8.5 Sequencing Problems

8.5 Sequencing Problems 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS. 1. Introduction

THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS. 1. Introduction THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS YURY ORLOVICH, ALEXANDRE DOLGUI, GERD FINKE, VALERY GORDON, FRANK WERNER Abstract. A subset of vertices in a graph is called a dissociation set if

More information

Counting problems and clones of functions

Counting problems and clones of functions Counting problems and clones of functions Andrei A. Bulatov and Amir Hedayaty Simon Fraser University, abulatov@cs.sfu.ca, hedayaty@gmail.com Abstract. Counting solutions of various combinatorial problems

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

CSC 373: Algorithm Design and Analysis Lecture 15

CSC 373: Algorithm Design and Analysis Lecture 15 CSC 373: Algorithm Design and Analysis Lecture 15 Allan Borodin February 13, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 21 Announcements and Outline Announcements

More information

On counting homomorphisms to directed acyclic graphs

On counting homomorphisms to directed acyclic graphs On counting homomorphisms to directed acyclic graphs Martin Dyer Leslie Ann Goldberg Mike Paterson October 13, 2006 Abstract It is known that if P and NP are different then there is an infinite hierarchy

More information

Supermodular functions and the complexity of MAX CSP

Supermodular functions and the complexity of MAX CSP Discrete Applied Mathematics 149 (2005) 53 72 www.elsevier.com/locate/dam Supermodular functions and the complexity of MAX CSP David Cohen a, Martin Cooper b, Peter Jeavons c, Andrei Krokhin d, a Department

More information

Polynomial kernels for constant-factor approximable problems

Polynomial kernels for constant-factor approximable problems 1 Polynomial kernels for constant-factor approximable problems Stefan Kratsch November 11, 2010 2 What do these problems have in common? Cluster Edge Deletion, Cluster Edge Editing, Edge Dominating Set,

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 18 February 16, 2018 February 16, 2018 CS21 Lecture 18 1 Outline the complexity class NP 3-SAT is NP-complete NP-complete problems: independent set, vertex cover,

More information