Efficient Solutions for the -coloring Problem on Classes of Graphs

Size: px
Start display at page:

Download "Efficient Solutions for the -coloring Problem on Classes of Graphs"

Transcription

1 Efficient Solutions for the -coloring Problem on Classes of Graphs Daniel Posner (PESC - UFRJ) PhD student - posner@cos.ufrj.br Advisor: Márcia Cerioli LIPN Université Paris-Nord 29th november 2011

2 distance d(u, v) = distance between u and v. diameter = max{d(u, v) u, v V(G)} Ex: d(u, v) = 3; diameter of the graph is 3.

3 coloring coloring of a graph G = (V, E) f: V ℕ*, such that if uv E, then f(u) f(v)

4 -coloring -coloring of a graph G = (V, E) f: V ℕ if uv E,, such that then f(u) f(v) 2, if dist(u, v) = 2, then f(u) f(v)

5 Motivation

6 Motivation

7 Motivation (G) = 4

8 Motivation (G) = 9

9 Decision version L(2,1)-coloring Problem Instance: G = (V, E), k ℕ Question: Is there an λ-coloring f of G with f : V {0, 1,..., k}? the minimum span is denoted λ

10 Examples λ +1

11 Known results Class trees p-quasi trees Comp. P P Class diameter 2 k fixed proper interval Comp. NP-c NP-c Open bipartite chain P permutation bipartite planar NP-c Open regular grids Open P cographs P P P bipartite permutation split NP-c P4-tidy split permutation P graphs (q, q-4), q fixed

12 Known results

13 Trees λ = + 1 or + 2

14 Trees [Griggs e Yeh 92] conjectured λ-col. of trees was NP-complete. complete [Chang e Kuo 96] showed an O(n 4.5) algorithm. [Hasunuma et al. 09] gave a linear time algorithm. It is still open a structural characterization of trees.

15 pv(g) pv(g) = minimum number of disjoint paths pv(g) = 3

16 (G) and pv(g) [Griggs e Yeh 92] λ(g λ( ^ K1) = n G is hamiltonian c [Georges et al. 94] pv(gc) 2 λ = n + pv(gc) 2 pv(gc) = 1 λ n - 1

17 (q, q-4) graphs A graph G is (q, q-4) if each set of q vertices induces at most q - 4 P4's. [Babel e Olariu] Ex.: q = 4 a.k.a. cografos (G is cograph P4-free) q = 5 a.k.a. P4-sparse q = 7 superclass of P4-lite (P4-tidy and perfect)

18 (q, q-4)separável p-componente Teo (Jamison e Olariu): If G is (q, q-4), then: (i) union of two (q, q-4) graphs or; (ii) join of two (q, q-4) graphs or; (iii) spider where the head is a (q, q-4) graph or; (iv) it has a separaple p-component H = (H1, H2), H q, G[V \ H2] = G[V \ H] ^ G[H1], G[V \ H1] = G[V \ H] U G[H2].

19 Union and Join

20 Spider graph If G = (V, E) is a spider, then V=S K R. S is a stable set. K is a clique, S = K G[R K] = G[R] ^ G[K] bijective function f : S K (a) edges: thin spider (b) no edges: thick spider

21 Thin spider and Thick spider

22 Separaple p-component

23 λ-coloring of union and join λ-coloring of G H λ = max{ λ(g), λ(h) } λ-coloring G ^ H λ = λ'(g) + λ'(h) + 2

24 λ-coloring of thin spider Teo If G is thin spider with K > 3. then λ = max{ R -1, λ(g[r]) } + 2 K K -1 em {0,..., 2 K - 2}

25 λ-coloring of thick spider Teo If G is thick spider with K 3 λ= { λ(g[r]) + 2 K K n K if λ(g[r]) R otherwise

26 pv(g) in separable p-component Teo If G has a separable p-component H = (H1, H2), then pv(g) = min{ max{ pv(g \ H) - B1( ), CH B3( ), 1} + B2( ) } 2

27 FPT FPT(fixed parameter tractable) in q(g) q(g) = smallest q for which G is (q, q-4) graph Algorithm FPT in q(g) Linear algorithms for (q, q-4) graphs with q fixed Ex: O(2q n) or O(qq n)

28 λ-coloring of separable p-component Teo If G is (q, q-4) graph, q fixed, with a separable p-component then λ can be obtained in linear time. proof. Gc is (q, q-4) graph and Hc is a separable p-component. If G has less than 2q vertices, one can obtain λ in O(2q4q). Otherwise, pv(gc) can be obtained in O (n), as CH qq

29 λ-coloring of separable p-component Teo If G is (q, q-4) graph, q fixed, with a separable p-component then λ can be obtained in linear time. proof. If d(u,v) 3, then u, v H1 U H2.

30 λ-coloring of separable p-component Teo If G is (q, q-4) graph, q fixed, with a separable p-component then λ can be obtained in linear time. proof. Let G' be obtained from G merging vertices in the same class. If pv(g'c) > 1, then λ(g') = n' + pv(g'c) 2 (Georges et al.) If pv(g'c) = 1, then λ(g') = n' -1 (use hamiltonian path.)

31 λ-coloring of separable p-component Teo If G is (q, q-4) graph, q fixed, with a separable p-component then λ can be obtained in linear time. proof. Assign the same color to the merged vertices For each O(q q) possible G' one can obtain λ'. λ will be the minimum among all these λ' Complexity: O(n 2q5q)

32 Example

33 Example

34 Exemplo Example

35 Exemplo Example

36 Exemplo Example

37 Exemplo Example

38 Exemplo Example

39 Exemplo Example

40 Exemplo Example

41 Exemplo Example

42 Exemplo Example

43 Exemplo Example

44 Exemplo Example

45 Exemplo Example

46 interval graph Interval graph: G = Ω(I) I

47 comparability graph Comparability graph: transitive orientation of the edges of the graph. xy, yz xz Cocomparability graph: Gc is a comparability graph.

48 permutation graph Permutation graph: G = Ω(S) S

49 split graph Split graph: G = (V, E), V = S K. K is a clique S is a stable set

50 split permutation graphs Split permutation graph: G is split and permutation. [Brandstädt, Bang Le and Spinrad-99]

51 split permutation graphs 4n There are θ ( ) split permutation graphs. n [Guruswami-99] Split permutation clique Helly [ISGCI] Extended triangle G is clique-helly every extended triangle of G has an universal vertex [Szwarcfiter-97]

52 split permutation graphs

53 split permutation graphs Our work: For a split permutation graph G, (G) = max{ (GR), (GL) } GL = G \ SR GR = G \ SL (G) can be computed in linear time. O(n2) algorithm that obtain an -coloring with this span

54 split permutation graphs

55 split permutation graphs Chain ordering a1 < a2 < < a L + M such that: N(a 1 ) N(a 2 )... N(a L + M) Asteroidal triple (AT) (AT-free)

56 split permutation graphs c SM KL N(c) or KR N(c).

57 split permutation graphs For a split permutation graph G, (G) max{ (GR), (GL) } diameter of GL is 2 (GL) = nl + pv(glc) - 2 GL subgraph of G (G) (GL).

58 split permutation graphs P(R)? (GR) P(R) (G) = max{ (GR), (GL) }

59 split permutation graphs c G

60 split permutation graphs Interval model has to be modified: (a) (b) (c)

61 split permutation graphs A linear-time algorithm to find (GR) and (GL) For split permutation graphs (G) = max{ (GR), (GL)}. This proof also gives a O(n2) algorithm to find an optimum -coloring of graphs on this class.

62 Open Problems

63 Open Problems Griggs and Yeh Conjecture: λ 2 only proved for a few classes of graphs, and it is still open for bipartite graphs. λ [Gonçalves 06]

64 Upper bounds in λ Class Upper bound diameter 2 2 [Griggs and Yeh] regular grids +2 [Calamoneri et al.] cocomparability 4-1 [Calamoneri et al.] cograph n + pv(gc) -2 [Chang e Kuo], 2 [C. and P.] planar [van den Heuvel and McGuinness] bipartite permutation weakly chordal wb(g)+1 [Araki] 2 [C. and P.] split [C. and P.] interval 2 [Calamoneri et al.]

The L(3, 2, 1)-labeling on the Skew and Converse Skew Products of Graphs

The L(3, 2, 1)-labeling on the Skew and Converse Skew Products of Graphs Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 11, Number 1 (2016), pp. 29 36 Research India Publications http://www.ripublication.com/atam.htm The L(3, 2, 1)-labeling on the Skew

More information

Probe interval graphs and probe unit interval graphs on superclasses of cographs

Probe interval graphs and probe unit interval graphs on superclasses of cographs Author manuscript, published in "" Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 177 194 Probe interval graphs and probe unit interval graphs on superclasses of cographs

More information

Nonrepetitive, acyclic and clique colorings of graphs with few P 4 s

Nonrepetitive, acyclic and clique colorings of graphs with few P 4 s Nonrepetitive, acyclic and clique colorings of graphs with few P 4 s Eurinardo Rodrigues Costa, Rennan Ferreira Dantas, Rudini Menezes Sampaio Departamento de Computação, Universidade Federal do Ceará

More information

Induced Subtrees in Interval Graphs

Induced Subtrees in Interval Graphs Induced Subtrees in Interval Graphs Pinar Heggernes 1, Pim van t Hof 1, and Martin Milanič 2 1 Department of Informatics, University of Bergen, Norway {pinar.heggernes,pim.vanthof}@ii.uib.no 2 UP IAM and

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Pinar Heggernes Pim van t Hof Daniel Meister Yngve Villanger Abstract Given two graphs G and H as input, the Induced Subgraph

More information

Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs

Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs Florent Foucaud Université Blaise Pascal, Clermont-Ferrand, France joint work with: George B. Mertzios

More information

A Channel Assignment Problem [F. Roberts, 1988]

A Channel Assignment Problem [F. Roberts, 1988] 1 2 A Channel Assignment Problem [F. Roberts, 1988] Find an efficient assignment of channels f(x) R to sites x R 2 so { that two levels of interference are avoided: 2d if x y A f(x) f(y) d if x y 2A 1.1

More information

arxiv: v1 [cs.dm] 29 Oct 2012

arxiv: v1 [cs.dm] 29 Oct 2012 arxiv:1210.7684v1 [cs.dm] 29 Oct 2012 Square-Root Finding Problem In Graphs, A Complete Dichotomy Theorem. Babak Farzad 1 and Majid Karimi 2 Department of Mathematics Brock University, St. Catharines,

More information

On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs

On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs On the Complexity of Some Packing and Covering Problems in Graphs and Hypergraphs Andreas Brandstädt University of Rostock, Germany (with C. Hundt, A. Leitert, M. Milanič, R. Mosca, R. Nevries, and D.

More information

A Linear-Time Algorithm for the Terminal Path Cover Problem in Cographs

A Linear-Time Algorithm for the Terminal Path Cover Problem in Cographs A Linear-Time Algorithm for the Terminal Path Cover Problem in Cographs Ruo-Wei Hung Department of Information Management Nan-Kai Institute of Technology, Tsao-Tun, Nantou 54, Taiwan rwhung@nkc.edu.tw

More information

1 Notation. 2 Sergey Norin OPEN PROBLEMS

1 Notation. 2 Sergey Norin OPEN PROBLEMS OPEN PROBLEMS 1 Notation Throughout, v(g) and e(g) mean the number of vertices and edges of a graph G, and ω(g) and χ(g) denote the maximum cardinality of a clique of G and the chromatic number of G. 2

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

arxiv: v2 [math.co] 4 Jun 2009

arxiv: v2 [math.co] 4 Jun 2009 Chordal Bipartite Graphs with High Boxicity L. Sunil Chandran, Mathew C. Francis, and Rogers Mathew arxiv:0906.0541v [math.co] 4 Jun 009 Department of Computer Science and Automation, Indian Institute

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Parameterized Domination in Circle Graphs

Parameterized Domination in Circle Graphs Parameterized Domination in Circle Graphs Nicolas Bousquet 1, Daniel Gonçalves 1, George B. Mertzios 2, Christophe Paul 1, Ignasi Sau 1, and Stéphan Thomassé 3 1 AlGCo project-team, CNRS, LIRMM, Montpellier,

More information

Dominator Colorings and Safe Clique Partitions

Dominator Colorings and Safe Clique Partitions Dominator Colorings and Safe Clique Partitions Ralucca Gera, Craig Rasmussen Naval Postgraduate School Monterey, CA 994, USA {rgera,ras}@npsedu and Steve Horton United States Military Academy West Point,

More information

Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems

Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems Arash Rafiey Department of Informatics, University of Bergen, Norway arash.rafiey@ii.uib.no Abstract We consider

More information

Enumerating minimal connected dominating sets in graphs of bounded chordality,

Enumerating minimal connected dominating sets in graphs of bounded chordality, Enumerating minimal connected dominating sets in graphs of bounded chordality, Petr A. Golovach a,, Pinar Heggernes a, Dieter Kratsch b a Department of Informatics, University of Bergen, N-5020 Bergen,

More information

d 2 -coloring of a Graph

d 2 -coloring of a Graph d -coloring of a Graph K. Selvakumar and S. Nithya Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 67 01, Tamil Nadu, India E-mail: selva 158@yahoo.co.in Abstract A subset S of

More information

arxiv: v1 [cs.dm] 26 Apr 2010

arxiv: v1 [cs.dm] 26 Apr 2010 A Simple Polynomial Algorithm for the Longest Path Problem on Cocomparability Graphs George B. Mertzios Derek G. Corneil arxiv:1004.4560v1 [cs.dm] 26 Apr 2010 Abstract Given a graph G, the longest path

More information

Hong-Gwa Yeh and Gerard J. Chang. 1. Introduction

Hong-Gwa Yeh and Gerard J. Chang. 1. Introduction TAIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 3, pp. 353-360, September 1998 THE PATH-PARTITION PROBLEM IN BIPARTITE DISTANCE-HEREDITARY GRAPHS Hong-Gwa Yeh and Gerard J. Chang Abstract. A path partition

More information

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E.

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E. Nowhere zero flow Definition: A flow on a graph G = (V, E) is a pair (D, f) such that 1. D is an orientation of G. 2. f is a function on E. 3. u N + D (v) f(uv) = w ND f(vw) for every (v) v V. Example:

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

Tree-width. September 14, 2015

Tree-width. September 14, 2015 Tree-width Zdeněk Dvořák September 14, 2015 A tree decomposition of a graph G is a pair (T, β), where β : V (T ) 2 V (G) assigns a bag β(n) to each vertex of T, such that for every v V (G), there exists

More information

Chordal Graphs, Interval Graphs, and wqo

Chordal Graphs, Interval Graphs, and wqo Chordal Graphs, Interval Graphs, and wqo Guoli Ding DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY BATON ROUGE, LA 70803-4918 E-mail: ding@math.lsu.edu Received July 29, 1997 Abstract: Let be the

More information

Group connectivity of certain graphs

Group connectivity of certain graphs Group connectivity of certain graphs Jingjing Chen, Elaine Eschen, Hong-Jian Lai May 16, 2005 Abstract Let G be an undirected graph, A be an (additive) Abelian group and A = A {0}. A graph G is A-connected

More information

Definitions Results. Polar cographs 1 IMA-ROSE. Ecole Polytechnique Fédérale de Lausanne, Switzerland

Definitions Results. Polar cographs 1 IMA-ROSE. Ecole Polytechnique Fédérale de Lausanne, Switzerland Polar cographs Tınaz Ekim 1 N.V.R. Mahadev 2 Dominique de Werra 1 1 IMA-ROSE Ecole Polytechnique Fédérale de Lausanne, Switzerland tinaz.ekim@epfl.ch, dewerra.ima@epfl.ch 2 Fitchburg State College, USA

More information

Flavia Bonomo, Guillermo Duran, Amedeo Napoli, Mario Valencia-Pabon. HAL Id: hal

Flavia Bonomo, Guillermo Duran, Amedeo Napoli, Mario Valencia-Pabon. HAL Id: hal A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P4 -sparse graphs Flavia Bonomo, Guillermo Duran, Amedeo

More information

Multilevel Distance Labelings for Paths and Cycles

Multilevel Distance Labelings for Paths and Cycles Multilevel Distance Labelings for Paths and Cycles Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, USA Email: dliu@calstatela.edu Xuding Zhu

More information

A characterisation of eccentric sequences of maximal outerplanar graphs

A characterisation of eccentric sequences of maximal outerplanar graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 58(3) (2014), Pages 376 391 A characterisation of eccentric sequences of maximal outerplanar graphs P. Dankelmann Department of Mathematics University of Johannesburg

More information

Graph Classes and Ramsey Numbers

Graph Classes and Ramsey Numbers Graph Classes and Ramsey Numbers Rémy Belmonte, Pinar Heggernes, Pim van t Hof, Arash Rafiey, and Reza Saei Department of Informatics, University of Bergen, Norway Abstract. For a graph class G and any

More information

THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS. 1. Introduction

THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS. 1. Introduction THE COMPLEXITY OF DISSOCIATION SET PROBLEMS IN GRAPHS YURY ORLOVICH, ALEXANDRE DOLGUI, GERD FINKE, VALERY GORDON, FRANK WERNER Abstract. A subset of vertices in a graph is called a dissociation set if

More information

Martin Milanič

Martin Milanič 1 / 75 Algorithmic Graph Theory Part I - Review of Basic Notions in Graph Theory, Algorithms and Complexity Martin Milanič martin.milanic@upr.si University of Primorska, Koper, Slovenia Dipartimento di

More information

L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs

L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs MATEMATIKA, 2014, Volume 30, Number 2, 109-116 c UTM Centre for Industrial and Applied Mathematics L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs Murugan Muthali Tamil Nadu Open University

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 311 (011) 911 90 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Bounding χ in terms of ω and for some classes of graphs

More information

Distance Two Labeling of Some Total Graphs

Distance Two Labeling of Some Total Graphs Gen. Math. Notes, Vol. 3, No. 1, March 2011, pp.100-107 ISSN 2219-7184; Copyright c ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in Distance Two Labeling of Some Total

More information

Weighted Upper Domination. Arman Boyacı, Bogazici University, Turkey Jérôme Monnot, Université Paris-Dauphine, LAMSADE, France

Weighted Upper Domination. Arman Boyacı, Bogazici University, Turkey Jérôme Monnot, Université Paris-Dauphine, LAMSADE, France Weighted Upper Domination Arman Boyacı, Bogazici University, Turkey Jérôme Monnot, Université Paris-Dauphine, LAMSADE, France Abstract - Upper Domination Number: the cardinality of maximum minimal dominating

More information

arxiv: v3 [cs.dm] 18 Jan 2018

arxiv: v3 [cs.dm] 18 Jan 2018 On H-topological intersection graphs Steven Chaplick 1, Martin Töpfer 2, Jan Voborník 3, and Peter Zeman 3 1 Lehrstuhl für Informatik I, Universität Würzburg, Germany, www1.informatik.uni-wuerzburg.de/en/staff,

More information

arxiv: v2 [math.co] 7 Jan 2019

arxiv: v2 [math.co] 7 Jan 2019 Clique-Width for Hereditary Graph Classes Konrad K. Dabrowski, Matthew Johnson and Daniël Paulusma arxiv:1901.00335v2 [math.co] 7 Jan 2019 Abstract Clique-width is a well-studied graph parameter owing

More information

Complexity Classification of Some Edge Modification Problems

Complexity Classification of Some Edge Modification Problems Complexity Classification of Some Edge Modification Problems Assaf Natanzon 1, Ron Shamir 1, and Roded Sharan 1 Department of Computer Science, Tel Aviv University, Tel-Aviv, Israel. fnatanzon,shamir,rodedg@math.tau.ac.il.

More information

Dominating Set Counting in Graph Classes

Dominating Set Counting in Graph Classes Dominating Set Counting in Graph Classes Shuji Kijima 1, Yoshio Okamoto 2, and Takeaki Uno 3 1 Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan kijima@inf.kyushu-u.ac.jp

More information

Complexity of conditional colorability of graphs

Complexity of conditional colorability of graphs Complexity of conditional colorability of graphs Xueliang Li 1, Xiangmei Yao 1, Wenli Zhou 1 and Hajo Broersma 2 1 Center for Combinatorics and LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China.

More information

Conjectures and Questions in Graph Reconfiguration

Conjectures and Questions in Graph Reconfiguration Conjectures and Questions in Graph Reconfiguration Ruth Haas, Smith College Joint Mathematics Meetings January 2014 The Reconfiguration Problem Can one feasible solution to a problem can be transformed

More information

Radio Number for Square Paths

Radio Number for Square Paths Radio Number for Square Paths Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 9003 Melanie Xie Department of Mathematics East Los Angeles College Monterey

More information

arxiv: v2 [cs.dm] 2 Feb 2016

arxiv: v2 [cs.dm] 2 Feb 2016 The VC-Dimension of Graphs with Respect to k-connected Subgraphs Andrea Munaro Laboratoire G-SCOP, Université Grenoble Alpes arxiv:130.6500v [cs.dm] Feb 016 Abstract We study the VC-dimension of the set

More information

A well-quasi-order for tournaments

A well-quasi-order for tournaments A well-quasi-order for tournaments Maria Chudnovsky 1 Columbia University, New York, NY 10027 Paul Seymour 2 Princeton University, Princeton, NJ 08544 June 12, 2009; revised April 19, 2011 1 Supported

More information

Computing the Hull Number of Chordal and Distance-Hereditary Graphs. LIMOS - Université Blaise Pascal SOFSEM 2013

Computing the Hull Number of Chordal and Distance-Hereditary Graphs. LIMOS - Université Blaise Pascal SOFSEM 2013 Computing the Hull Number of Chordal and Distance-Hereditary Graphs Mamadou M. Kanté Lhouari Nourine LIMOS - Université Blaise Pascal SOFSEM 20 Betweenness Relations A betweenness on a ground set V is

More information

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

On Injective Colourings of Chordal Graphs

On Injective Colourings of Chordal Graphs On Injective Colourings of Chordal Graphs Pavol Hell 1,, André Raspaud 2, and Juraj Stacho 1 1 School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, B.C., Canada V5A 1S6

More information

A taste of perfect graphs

A taste of perfect graphs A taste of perfect graphs Remark Determining the chromatic number of a graph is a hard problem, in general, and it is even hard to get good lower bounds on χ(g). An obvious lower bound we have seen before

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Uli Wagner ETH Zürich Flows Definition Let G = (V, E) be a multigraph (allow loops and parallel edges). An (integer-valued) flow on G (also called

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

arxiv: v1 [math.co] 5 Oct 2018

arxiv: v1 [math.co] 5 Oct 2018 Grundy dominating sequences on X-join product Graciela Nasini Pablo Torres arxiv:1810.02737v1 [math.co] 5 Oct 2018 Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario

More information

The Longest Path Problem has a Polynomial Solution on Interval Graphs

The Longest Path Problem has a Polynomial Solution on Interval Graphs Algorithmica (2011) 61:320 341 DOI 10.1007/s00453-010-9411-3 The Longest Path Problem has a Polynomial Solution on Interval Graphs Kyriaki Ioannidou George B. Mertzios Stavros D. Nikolopoulos Received:

More information

arxiv: v2 [cs.ds] 18 Oct 2017

arxiv: v2 [cs.ds] 18 Oct 2017 Fully polynomial FPT algorithms for some classes of bounded clique-width graphs David Coudert 1, Guillaume Ducoffe 1,2,3, and Alexandru Popa 2,4 arxiv:1707.05016v2 [cs.ds] 18 Oct 2017 1 Université Côte

More information

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell Discussiones Mathematicae Graph Theory 24 (2004 ) 389 402 ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2 Bert L. Hartnell Saint Mary s University Halifax, Nova Scotia, Canada B3H 3C3 e-mail: bert.hartnell@smu.ca

More information

The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and Split Graphs

The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and Split Graphs Chiang Mai J. Sci. 2013; 40(1) 8 3 Chiang Mai J. Sci. 2013; 40(1) : 83-88 http://it.science.cmu.ac.th/ejournal/ Contributed Paper The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Chapter 3: Proving NP-completeness Results

Chapter 3: Proving NP-completeness Results Chapter 3: Proving NP-completeness Results Six Basic NP-Complete Problems Some Techniques for Proving NP-Completeness Some Suggested Exercises 1.1 Six Basic NP-Complete Problems 3-SATISFIABILITY (3SAT)

More information

Packing of Rigid Spanning Subgraphs and Spanning Trees

Packing of Rigid Spanning Subgraphs and Spanning Trees Packing of Rigid Spanning Subgraphs and Spanning Trees Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti December 14, 2011 Abstract We prove that every 6k + 2l, 2k-connected simple graph contains

More information

Precoloring extension on chordal graphs

Precoloring extension on chordal graphs Precoloring extension on chordal graphs Dániel Marx 17th August 2004 Abstract In the precoloring extension problem (PrExt) we are given a graph with some of the vertices having a preassigned color and

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

On disconnected cuts and separators

On disconnected cuts and separators On disconnected cuts and separators Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3 and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai,

More information

Antipodal Labelings for Cycles

Antipodal Labelings for Cycles Antipodal Labelings for Cycles Justie Su-Tzu Juan and Daphne Der-Fen Liu Submitted: December 2006; revised: August 2007 Abstract Let G be a graph with diameter d. An antipodal labeling of G is a function

More information

The Reduction of Graph Families Closed under Contraction

The Reduction of Graph Families Closed under Contraction The Reduction of Graph Families Closed under Contraction Paul A. Catlin, Department of Mathematics Wayne State University, Detroit MI 48202 November 24, 2004 Abstract Let S be a family of graphs. Suppose

More information

Generalized Subgraph-Restricted Matchings in Graphs

Generalized Subgraph-Restricted Matchings in Graphs Generalized Subgraph-Restricted Matchings in Graphs Wayne Goddard a Sandra M. Hedetniemi a Stephen T. Hedetniemi a Renu Laskar b a Dept of Computer Science, Clemson University, Clemson SC 29634, USA b

More information

Multiple Petersen subdivisions in permutation graphs

Multiple Petersen subdivisions in permutation graphs Multiple Petersen subdivisions in permutation graphs arxiv:1204.1989v1 [math.co] 9 Apr 2012 Tomáš Kaiser 1 Jean-Sébastien Sereni 2 Zelealem Yilma 3 Abstract A permutation graph is a cubic graph admitting

More information

Graph Packing - Conjectures and Results

Graph Packing - Conjectures and Results Graph Packing p.1/23 Graph Packing - Conjectures and Results Hemanshu Kaul kaul@math.iit.edu www.math.iit.edu/ kaul. Illinois Institute of Technology Graph Packing p.2/23 Introduction Let G 1 = (V 1,E

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

IMA Preprint Series # 2385

IMA Preprint Series # 2385 LIST COLORINGS WITH DISTINCT LIST SIZES, THE CASE OF COMPLETE BIPARTITE GRAPHS By Zoltán Füredi and Ida Kantor IMA Preprint Series # 2385 ( October 2011 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

More information

Complexity of Locally Injective k-colourings of Planar Graphs

Complexity of Locally Injective k-colourings of Planar Graphs Complexity of Locally Injective k-colourings of Planar Graphs Jan Kratochvil a,1, Mark Siggers b,2, a Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI) Charles University,

More information

arxiv: v1 [math.co] 14 May 2017

arxiv: v1 [math.co] 14 May 2017 arxiv:70504954v [mathco] 4 May 207 Vizing-type bounds for graphs with induced subgraph restrictions Elliot Krop, Pritul Patel, and Gaspar Porta Abstract For any graphs G and H, we say that a bound is of

More information

arxiv: v1 [cs.dm] 4 May 2018

arxiv: v1 [cs.dm] 4 May 2018 Connected greedy colouring in claw-free graphs arxiv:1805.01953v1 [cs.dm] 4 May 2018 Ngoc Khang Le and Nicolas Trotignon November 9, 2018 Abstract An ordering of the vertices of a graph is connected if

More information

Relating threshold tolerance graphs to other graph classes

Relating threshold tolerance graphs to other graph classes Relating threshold tolerance graphs to other graph classes Tiziana Calamoneri 1 and Blerina Sinaimeri 2 1 Sapienza University of Rome via Salaria 113, 00198 Roma, Italy. 2 INRIA and Université de Lyon

More information

Some hard families of parameterised counting problems

Some hard families of parameterised counting problems Some hard families of parameterised counting problems Mark Jerrum and Kitty Meeks School of Mathematical Sciences, Queen Mary University of London {m.jerrum,k.meeks}@qmul.ac.uk September 2014 Abstract

More information

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song Korean J. Math. 25 (2017), No. 2, pp. 279 301 https://doi.org/10.11568/kjm.2017.25.2.279 L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE Byeong Moon Kim, Woonjae Hwang,

More information

New Results on Graph Packing

New Results on Graph Packing Graph Packing p.1/18 New Results on Graph Packing Hemanshu Kaul hkaul@math.uiuc.edu www.math.uiuc.edu/ hkaul/. University of Illinois at Urbana-Champaign Graph Packing p.2/18 Introduction Let G 1 = (V

More information

Uniqueness of the maximal entropy measure on essential spanning forests. A One-Act Proof by Scott Sheffield

Uniqueness of the maximal entropy measure on essential spanning forests. A One-Act Proof by Scott Sheffield Uniqueness of the maximal entropy measure on essential spanning forests A One-Act Proof by Scott Sheffield First, we introduce some notation... An essential spanning forest of an infinite graph G is a

More information

Nowhere-zero 3-flows in triangularly connected graphs

Nowhere-zero 3-flows in triangularly connected graphs Nowhere-zero 3-flows in triangularly connected graphs Genghua Fan 1, Hongjian Lai 2, Rui Xu 3, Cun-Quan Zhang 2, Chuixiang Zhou 4 1 Center for Discrete Mathematics Fuzhou University Fuzhou, Fujian 350002,

More information

Graph invariants, homomorphisms, and the Tutte polynomial

Graph invariants, homomorphisms, and the Tutte polynomial Graph invariants, homomorphisms, and the Tutte polynomial A. Goodall, J. Nešetřil February 26, 2013 1 The chromatic polynomial 1.1 The chromatic polynomial and proper colourings There are various ways

More information

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph M. Lemańska a, J. A. Rodríguez-Velázquez b, Rolando Trujillo-Rasua c, a Department of Technical

More information

CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS

CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS 4 A CONJECTURE OF KOTZIG ON SELF-COMPLEMENTARY GRAPHS This chapter deals with one of the maln aim of the thesis, to discuss a conjecture of Kotzig on selfcomplementary graphs. Some of the results are reported

More information

Parameterised Subgraph Counting Problems

Parameterised Subgraph Counting Problems Parameterised Subgraph Counting Problems Kitty Meeks University of Glasgow University of Strathclyde, 27th May 2015 Joint work with Mark Jerrum (QMUL) What is a counting problem? Decision problems Given

More information

Blockers for the stability number and the chromatic number

Blockers for the stability number and the chromatic number Blockers for the stability number and the chromatic number C. Bazgan C. Bentz C. Picouleau B. Ries Abstract Given an undirected graph G = (V, E) and two positive integers k and d, we are interested in

More information

Tree-width and algorithms

Tree-width and algorithms Tree-width and algorithms Zdeněk Dvořák September 14, 2015 1 Algorithmic applications of tree-width Many problems that are hard in general become easy on trees. For example, consider the problem of finding

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings Matchings A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex. M-saturated M={ } M-unsaturated Perfect Matching 1 M-alternating path M not M M not M M

More information

Malaya J. Mat. 2(3)(2014)

Malaya J. Mat. 2(3)(2014) Malaya J Mat (3)(04) 80-87 On k-step Hamiltonian Bipartite and Tripartite Graphs Gee-Choon Lau a,, Sin-Min Lee b, Karl Schaffer c and Siu-Ming Tong d a Faculty of Comp & Mathematical Sciences, Universiti

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 3398 303 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Maximal cliques in {P 2 P 3, C }-free graphs S.A.

More information

Lecture 3: Oct 7, 2014

Lecture 3: Oct 7, 2014 Information and Coding Theory Autumn 04 Lecturer: Shi Li Lecture : Oct 7, 04 Scribe: Mrinalkanti Ghosh In last lecture we have seen an use of entropy to give a tight upper bound in number of triangles

More information

On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs

On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs Theoretical Computer Science 381 (2007) 57 67 www.elsevier.com/locate/tcs On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs C.M.H. de Figueiredo a,, L.

More information

Proper connection number and 2-proper connection number of a graph

Proper connection number and 2-proper connection number of a graph Proper connection number and 2-proper connection number of a graph arxiv:1507.01426v2 [math.co] 10 Jul 2015 Fei Huang, Xueliang Li, Shujing Wang Center for Combinatorics and LPMC-TJKLC Nankai University,

More information

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1 arxiv:509.005v [math.co] 0 Sep 05 On uniquely -colorable plane graphs without prescribed adjacent faces Ze-peng LI School of Electronics Engineering and Computer Science Key Laboratory of High Confidence

More information

PROBLEMS IN EXTREMAL GRAPH THEORY LALE OZKAHYA DISSERTATION

PROBLEMS IN EXTREMAL GRAPH THEORY LALE OZKAHYA DISSERTATION PROBLEMS IN EXTREMAL GRAPH THEORY BY LALE OZKAHYA DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the

More information

The path partition problem and related problems in bipartite graphs

The path partition problem and related problems in bipartite graphs The path partition problem and related problems in bipartite graphs Jérôme Monnot and Sophie Toulouse Abstract We prove that it is NP-complete to decide whether a bipartite graph of maximum degree three

More information

An approximate version of Hadwiger s conjecture for claw-free graphs

An approximate version of Hadwiger s conjecture for claw-free graphs An approximate version of Hadwiger s conjecture for claw-free graphs Maria Chudnovsky Columbia University, New York, NY 10027, USA and Alexandra Ovetsky Fradkin Princeton University, Princeton, NJ 08544,

More information

The P k partition problem and related problems in bipartite graphs

The P k partition problem and related problems in bipartite graphs The P k partition problem and related problems in bipartite graphs Jérôme Monnot and Sophie Toulouse No Institute Given Abstract. In this paper, we continue the investigation proposed in [5] about the

More information