Conjectures and Questions in Graph Reconfiguration

Size: px
Start display at page:

Download "Conjectures and Questions in Graph Reconfiguration"

Transcription

1 Conjectures and Questions in Graph Reconfiguration Ruth Haas, Smith College Joint Mathematics Meetings January 2014

2 The Reconfiguration Problem Can one feasible solution to a problem can be transformed into another by some allowable set of moves, while maintaining feasibility at all steps? E.g., Power Supply Problem

3 Reconfiguration: Can you get from solution A to solution B? *The reconfiguration problem.*

4 Reconfiguration: Can you get from solution A to solution B? *The reconfiguration problem.* How many steps might it take to go between the two solutions?

5 Reconfiguration: Can you get from solution A to solution B? *The reconfiguration problem.* How many steps might it take to go between the two solutions? How many ways can you get from one solution to another?

6 Reconfiguration: Can you get from solution A to solution B? *The reconfiguration problem.* How many steps might it take to go between the two solutions? How many ways can you get from one solution to another? Can you get from a particular solution to any other?

7 Reconfiguration: Can you get from solution A to solution B? *The reconfiguration problem.* How many steps might it take to go between the two solutions? How many ways can you get from one solution to another? Can you get from a particular solution to any other? How hard is it to tell?

8 Conjecture Reconfiguration is hard.

9 Conjecture Reconfiguration is hard. More specifically: Conjecture The reconfiguration problem is hard when the problem is hard.

10 Theorem (Ito, Demaine, Harvey, Papadimitriou, Siderie, Ueharaf, Uno, 2011) The following problems are PSPACE-complete: independent set reconfiguration, clique reconfiguration, vertex cover reconfiguration, set cover reconfiguration, integer programming reconfiguration, power supply reconfiguration. T. Ito et al. / Theoretical Computer Science 412 (2011) a b c Fig. 1. A sequence of feasible solutions for the power supply problem. lution of I); and fix a polynomially testable symmetric adjacency relation A on the set of feasible solutions, that is, lynomial-time algorithm such that, given an instance I of S and two feasible solutions y 0 and y 00 of I, it determines wheth and y 00 are adjacent. (In almost all problems discussed in this paper, the feasible solutions can be considered as sets

11 The reconfiguration graph. Vertices are feasible solutions. Edge between two represents one application of the reconfiguration rule. So the reconfiguration problem asks whether the two solutions are in the same connected component.

12 Reconfiguration in graph coloring The k-coloring graph of G, C k pgq, vertices are the proper k-colorings of G two k-colorings joined by an edge if they differ in color on just one vertex of G. C 3 pk 2 q

13 Approximating number of colorings of G with k colors. Think of coloring graph as a Markov system. 1/2 1/4 1/4 1/4 1/4 1/4 1/4 Run the Markov process to convergence enough times. Use the number of states found to approx. total number of colorings. Requires: 1) C k pgq to be connected ( mixing ) 2) Convergence must be fast enough. rapid mixing

14 Application to theoretical physics: The Glauber dynamics of an anti-ferromagnetic Potts model at zero temperature. Systems like: magnetism lattice gases spin glasses Discrete collection of atoms for which certain pairs must have different spin values Individual atoms can change spin, one at a time.

15 Reconfiguration of colorings is hard. Theorem (Cereceda,van den Heuvel, Johnson, 2009) The decision problem: Is C 3 pgq connected? is conp-complete. But in some cases it is easy...

16 Theorem (Jerrum, 1995) For all G, if k ą 2 then C k pgq is connected and the chain converges in optimal time Opn log nq.

17 Theorem (Jerrum, 1995) For all G, if k ą 2 then C k pgq is connected and the chain converges in optimal time Opn log nq. Theorem (Vigoda) k ě 11{6 then C k pgq is connected and the chain converges in polynomial time.

18 Theorem (Jerrum, 1995) For all G, if k ą 2 then C k pgq is connected and the chain converges in optimal time Opn log nq. Theorem (Vigoda) k ě 11{6 then C k pgq is connected and the chain converges in polynomial time. There are graphs G for which C p `1q pgq is disconnected.

19 Theorem (Jerrum, 1995) For all G, if k ą 2 then C k pgq is connected and the chain converges in optimal time Opn log nq. Theorem (Vigoda) k ě 11{6 then C k pgq is connected and the chain converges in polynomial time. There are graphs G for which C p `1q pgq is disconnected. Question For what value of k (as a function of, χ, n??) can we insure C k connected?

20 Proposition (Cereceda, van den Heuvel, and Johnson, 2008) There is no function F pχq, so that for all graphs G and integers More interesting extremal graphs k ą F pχpgqq, C k pgq is connected. Eg. graph K m,m L- m (matching), : K m,m minus χpgq a perfect 2 and m matching coloring ( musing 3) all m colors on each part is an isolated vertex in C m pgq (L m )+1 = D(L m )+1 = m m m has frozen m -colourings hence L m is not m -mixing

21 Recall colpgq = 1` least max back degree (under all vert. orderings) Theorem (Dyer, Flaxman, Frieze, Vigoda, 2006) For any graph G and integer k ě colpgq ` 1, C k pgq is connected.

22 Recall colpgq = 1` least max back degree (under all vert. orderings) Theorem (Dyer, Flaxman, Frieze, Vigoda, 2006) For any graph G and integer k ě colpgq ` 1, C k pgq is connected. In fact:

23 Recall colpgq = 1` least max back degree (under all vert. orderings) Theorem (Dyer, Flaxman, Frieze, Vigoda, 2006) For any graph G and integer k ě colpgq ` 1, C k pgq is connected. In fact: Theorem (Choo and MacGillivray, 2011) If k ě colpgq ` 2, then C k pgq is Hamiltonian.

24 Recall colpgq = 1` least max back degree (under all vert. orderings) Theorem (Dyer, Flaxman, Frieze, Vigoda, 2006) For any graph G and integer k ě colpgq ` 1, C k pgq is connected. In fact: Theorem (Choo and MacGillivray, 2011) If k ě colpgq ` 2, then C k pgq is Hamiltonian. In special cases reconfiguration has nice structure.

25 Non-isomorphic colorings. Consider 3-colorings of P , 2123, , 2321, , 2121, , 2323, , 2132, , 2312, , 2131, , 2313, 3212

26 Non-isomorphic colorings. Consider 3-colorings of P , 2121, , 2323, , 2123, , 2321, , 2132, , 2312, , 2131, , 2313, 3212

27 Non-isomorphic colorings. Consider 3-colorings of P , 2121, , 2323, , 2123, , 2321, , 2131, , 2313, , 2132, , 2312, 3213

28 Non-isomorphic colorings. Consider 3-colorings of P , 2121, , 2323, , 2123, , 2321, , 2131, , 2313, 3212 I 3 pp 4 q 1231, 2132, , 2312, 3213

29 Non-isomorphic colorings. Consider just the canonical representatives 1212, 2121, , 2323, , 2123, , 2321, , 2131, , 2313, , 2132, , 2312, 3213

30 Non-isomorphic colorings. Consider just the canonical representatives 1212, 2121, , 2323, , 2123, , 2321, , 2131, , 2313, , 2132, , 2312, 3213 Can k pp 4 q in blue and additional edges of I k pp 4 q in red.

31 Comparing the coloring graphs C k pgq all colorings I k pgq isomorphic classes Can k pgq canonical representatives Note that I k pgq is obtained from C k pgq by contracting pairs of isomorphic colorings. Thus if C k pgq is connected, then I k pgq is connected.

32 Comparing the coloring graphs C k pgq all colorings I k pgq isomorphic classes Can k pgq canonical representatives Note that I k pgq is obtained from C k pgq by contracting pairs of isomorphic colorings. Thus if C k pgq is connected, then I k pgq is connected. The converse is false.

33 Comparing the coloring graphs The 5 cycle:

34 Comparing the coloring graphs The 5 cycle: Can 3 pc 5 q is disconnected.

35 Comparing the coloring graphs The 5 cycle: Can 3 pc 5 q is disconnected. I 3 pc 5 q is C 5.

36 Comparing the coloring graphs The 5 cycle: Can 3 pc 5 q is disconnected. I 3 pc 5 q is C 5. C 3 pc 5 q is two disjoint 15 cycles.

37 Comparing the coloring graphs The 5 cycle: Can 3 pc 5 q is disconnected. I 3 pc 5 q is C 5. C 3 pc 5 q is two disjoint 15 cycles. So I k pgq can be connected while C k pgq disconnected.

38 Different orders give different Canonical graphs.

39 Different orders give different Canonical graphs

40 Different orders give different Canonical graphs

41 Different orders give different Canonical graphs Two orders for CanpP 4 q

42 Connectivity Theorem Every connected graph n ą 2 that is not complete has an order π such that Cank π pgq is disconnected for sufficiently large k. G must have an induced P 3. t112 u t123 u

43 Question Under what conditions is Cank π pgq connected?

44 Question Under what conditions is Cank π pgq connected? In general the decision problem is hard.

45 Question Under what conditions is Cank π pgq connected? In general the decision problem is hard. Conjecture If k ą f pcolpgqq then Cank π pgq is connected... for some order π.

46 Hamiltonian Canonical colorings Theorem (H, 2012) For k ě 3 colors, any tree, T, there exists an order π such that Cank π pt q has a Hamilton cycle.

47 Hamiltonian Canonical colorings Theorem (H, 2012) For k ě 3 colors, any tree, T, there exists an order π such that Cank π pt q has a Hamilton cycle. Theorem (H, MacGillivray, 2012) If G is a split graph then there exists an order π such that Can π t pgq has a Hamilton path, for t ě χpgq ` 1. Further if there exists a partition into simplicial vertices, C, and a clique, D, such that the clique is size ωpgq χpgq and C ě 2 then Can π t pgq has a Hamilton cycle.

48 Hamiltonian Canonical colorings But Can π 6 pk 2,2,2q Proposition Can π k pk n 1,n 2,...,n r q has no Hamilton path, for any order π of the vertices, when n 1, n 2, n 3 ě 2.

49 Connected Canonical colorings Theorem (H, MacGillivray) If G is perfect and χpgq ωpgq ColpGq then there exists an order π such that Cank π pgq is connected for all k ě χpgq ` 1.

50 Connected Canonical colorings Theorem (H, MacGillivray) If G is perfect and χpgq ωpgq ColpGq then there exists an order π such that Cank π pgq is connected for all k ě χpgq ` 1. Theorem (H, MacGillivray, 2013) Let G be a bipartite graph on n vertices, then there exists an ordering π of the vertices such that Cank π pgq is connected for k ě n{2 ` 2.

51 Conjecture If k ą f pcolpgqq then there exists an order π such that Can π k pgq is connected.

52 Conjecture If k ą f pcolpgqq then there exists an order π such that Cank π pgq is connected. Conjecture If k V pgq then there exists an order π such that Can π k pgq is connected.

The Complexity of Change

The Complexity of Change The Complexity of Change JAN VAN DEN HEUVEL UQ, Brisbane, 26 July 2016 Department of Mathematics London School of Economics and Political Science A classical puzzle: the 15-Puzzle 13 2 3 12 1 2 3 4 9 11

More information

Classifying Coloring Graphs

Classifying Coloring Graphs University of Richmond UR Scholarship Repository Math and Computer Science Faculty Publications Math and Computer Science 2016 Classifying Coloring Graphs Julie Beier Janet Fierson Ruth Haas Heather M.

More information

Counting Colorings on Cubic Graphs

Counting Colorings on Cubic Graphs Counting Colorings on Cubic Graphs Chihao Zhang The Chinese University of Hong Kong Joint work with Pinyan Lu (Shanghai U of Finance and Economics) Kuan Yang (Oxford University) Minshen Zhu (Purdue University)

More information

Not all counting problems are efficiently approximable. We open with a simple example.

Not all counting problems are efficiently approximable. We open with a simple example. Chapter 7 Inapproximability Not all counting problems are efficiently approximable. We open with a simple example. Fact 7.1. Unless RP = NP there can be no FPRAS for the number of Hamilton cycles in a

More information

Lecture 6: September 22

Lecture 6: September 22 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 6: September 22 Lecturer: Prof. Alistair Sinclair Scribes: Alistair Sinclair Disclaimer: These notes have not been subjected

More information

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS Andreas Galanis Joint work with: Jin-Yi Cai Leslie Ann Goldberg Heng Guo Mark Jerrum Daniel Štefankovič Eric Vigoda The Power of Randomness

More information

Marthe Bonamy, Paul Dorbec, Paul Ouvrard. July 6, University of Bordeaux

Marthe Bonamy, Paul Dorbec, Paul Ouvrard. July 6, University of Bordeaux RECONFIGURING DOMINATING SETS UNDER TOKEN SLIDING Marthe onamy, Paul Dorbec, Paul Ouvrard July 6, 2017 University of ordeaux Domination Definition A dominating set in a graph G (V, E) is a subset D V such

More information

The complexity of approximate counting Part 1

The complexity of approximate counting Part 1 The complexity of approximate counting Part 1 Leslie Ann Goldberg, University of Oxford Counting Complexity and Phase Transitions Boot Camp Simons Institute for the Theory of Computing January 2016 The

More information

The Complexity of Computing the Sign of the Tutte Polynomial

The Complexity of Computing the Sign of the Tutte Polynomial The Complexity of Computing the Sign of the Tutte Polynomial Leslie Ann Goldberg (based on joint work with Mark Jerrum) Oxford Algorithms Workshop, October 2012 The Tutte polynomial of a graph G = (V,

More information

On the Dynamic Chromatic Number of Graphs

On the Dynamic Chromatic Number of Graphs On the Dynamic Chromatic Number of Graphs Maryam Ghanbari Joint Work with S. Akbari and S. Jahanbekam Sharif University of Technology m_phonix@math.sharif.ir 1. Introduction Let G be a graph. A vertex

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Counting and Sampling Fall 2017 Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Lecturer: Shayan Oveis Gharan November 29th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

The minimum G c cut problem

The minimum G c cut problem The minimum G c cut problem Abstract In this paper we define and study the G c -cut problem. Given a complete undirected graph G = (V ; E) with V = n, edge weighted by w(v i, v j ) 0 and an undirected

More information

XVI International Congress on Mathematical Physics

XVI International Congress on Mathematical Physics Aug 2009 XVI International Congress on Mathematical Physics Underlying geometry: finite graph G=(V,E ). Set of possible configurations: V (assignments of +/- spins to the vertices). Probability of a configuration

More information

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes:

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes: Classes of Problems We can characterize many problems into three classes: CS 461, Lecture 23 Jared Saia University of New Mexico P is the set of yes/no problems that can be solved in polynomial time. Intuitively

More information

Lecture 19: November 10

Lecture 19: November 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 19: November 10 Lecturer: Prof. Alistair Sinclair Scribes: Kevin Dick and Tanya Gordeeva Disclaimer: These notes have not been

More information

On k-total Dominating Graphs

On k-total Dominating Graphs On k-total Dominating Graphs arxiv:1711.04363v2 [math.co] 15 Nov 2017 S. Alikhani and D. Fatehi Department of Mathematics Yazd University, 89195-741, Yazd, Iran alikhani@yazd.ac.ir, davidfatehi@yahoo.com

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

Graph homomorphisms. Peter J. Cameron. Combinatorics Study Group Notes, September 2006

Graph homomorphisms. Peter J. Cameron. Combinatorics Study Group Notes, September 2006 Graph homomorphisms Peter J. Cameron Combinatorics Study Group Notes, September 2006 Abstract This is a brief introduction to graph homomorphisms, hopefully a prelude to a study of the paper [1]. 1 Homomorphisms

More information

Toughness, connectivity and the spectrum of regular graphs

Toughness, connectivity and the spectrum of regular graphs Outline Toughness, connectivity and the spectrum of regular graphs Xiaofeng Gu (University of West Georgia) Joint work with S.M. Cioabă (University of Delaware) AEGT, August 7, 2017 Outline Outline 1 Toughness

More information

1 Notation. 2 Sergey Norin OPEN PROBLEMS

1 Notation. 2 Sergey Norin OPEN PROBLEMS OPEN PROBLEMS 1 Notation Throughout, v(g) and e(g) mean the number of vertices and edges of a graph G, and ω(g) and χ(g) denote the maximum cardinality of a clique of G and the chromatic number of G. 2

More information

Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Dynamics for the critical 2D Potts/FK model: many questions and a few answers Dynamics for the critical 2D Potts/FK model: many questions and a few answers Eyal Lubetzky May 2018 Courant Institute, New York University Outline The models: static and dynamical Dynamical phase transitions

More information

The coupling method - Simons Counting Complexity Bootcamp, 2016

The coupling method - Simons Counting Complexity Bootcamp, 2016 The coupling method - Simons Counting Complexity Bootcamp, 2016 Nayantara Bhatnagar (University of Delaware) Ivona Bezáková (Rochester Institute of Technology) January 26, 2016 Techniques for bounding

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Boundary cliques, clique trees and perfect sequences of maximal cliques of a chordal graph

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Boundary cliques, clique trees and perfect sequences of maximal cliques of a chordal graph MATHEMATICAL ENGINEERING TECHNICAL REPORTS Boundary cliques, clique trees and perfect sequences of maximal cliques of a chordal graph Hisayuki HARA and Akimichi TAKEMURA METR 2006 41 July 2006 DEPARTMENT

More information

Polynomial-time Reductions

Polynomial-time Reductions Polynomial-time Reductions Disclaimer: Many denitions in these slides should be taken as the intuitive meaning, as the precise meaning of some of the terms are hard to pin down without introducing the

More information

Parameterised Subgraph Counting Problems

Parameterised Subgraph Counting Problems Parameterised Subgraph Counting Problems Kitty Meeks University of Glasgow University of Strathclyde, 27th May 2015 Joint work with Mark Jerrum (QMUL) What is a counting problem? Decision problems Given

More information

Reconfiguration on sparse graphs

Reconfiguration on sparse graphs Reconfiguration on sparse graphs Daniel Lokshtanov 1, Amer E. Mouawad 2, Fahad Panolan 3, M.S. Ramanujan 1, and Saket Saurabh 3 1 University of Bergen, Norway. daniello,ramanujan.sridharan@ii.uib.no 2

More information

A Note on the Glauber Dynamics for Sampling Independent Sets

A Note on the Glauber Dynamics for Sampling Independent Sets A Note on the Glauber Dynamics for Sampling Independent Sets Eric Vigoda Division of Informatics King s Buildings University of Edinburgh Edinburgh EH9 3JZ vigoda@dcs.ed.ac.uk Submitted: September 25,

More information

Decay of Correlation in Spin Systems

Decay of Correlation in Spin Systems (An algorithmic perspective to the) Decay of Correlation in Spin Systems Yitong Yin Nanjing University Decay of Correlation hardcore model: random independent set I v Pr[v 2 I ] (d+)-regular tree `! σ:

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms

A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms Yufei Zhao (MIT) Joint work with Ashwin Sah (MIT) Mehtaab Sawhney (MIT) David Stoner (Harvard) Question Fix d. Which

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Reconfiguration in bounded bandwidth and treedepth

Reconfiguration in bounded bandwidth and treedepth Reconfiguration in bounded bandwidth and treedepth Marcin Wrochna Uniwersytet Warszawski, Institute of Computer Science, Warsaw, Poland. Email: mw290715@students.mimuw.edu.pl arxiv:1405.0847v1 [cs.cc]

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

Statistics 251/551 spring 2013 Homework # 4 Due: Wednesday 20 February

Statistics 251/551 spring 2013 Homework # 4 Due: Wednesday 20 February 1 Statistics 251/551 spring 2013 Homework # 4 Due: Wednesday 20 February If you are not able to solve a part of a problem, you can still get credit for later parts: Just assume the truth of what you were

More information

Probe interval graphs and probe unit interval graphs on superclasses of cographs

Probe interval graphs and probe unit interval graphs on superclasses of cographs Author manuscript, published in "" Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 177 194 Probe interval graphs and probe unit interval graphs on superclasses of cographs

More information

Lecture 5: Counting independent sets up to the tree threshold

Lecture 5: Counting independent sets up to the tree threshold CS 7535: Markov Chain Monte Carlo Algorithms Fall 2014 Lecture 5: Counting independent sets up to the tree threshold Lecturer: Richard Brooks and Rakshit Trivedi Date: December 02 In this lecture, we will

More information

arxiv: v2 [math.co] 24 Sep 2008

arxiv: v2 [math.co] 24 Sep 2008 Sports scheduling for not all pairs of teams arxiv:0809.3682v2 [math.co] 24 Sep 2008 Kenji KASHIWABARA, Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguroku, Tokyo, Japan

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and Split Graphs

The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and Split Graphs Chiang Mai J. Sci. 2013; 40(1) 8 3 Chiang Mai J. Sci. 2013; 40(1) : 83-88 http://it.science.cmu.ac.th/ejournal/ Contributed Paper The NP-Hardness of the Connected p-median Problem on Bipartite Graphs and

More information

Lecture 28: April 26

Lecture 28: April 26 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 28: April 26 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Chordal Graphs, Interval Graphs, and wqo

Chordal Graphs, Interval Graphs, and wqo Chordal Graphs, Interval Graphs, and wqo Guoli Ding DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY BATON ROUGE, LA 70803-4918 E-mail: ding@math.lsu.edu Received July 29, 1997 Abstract: Let be the

More information

Even Pairs and Prism Corners in Square-Free Berge Graphs

Even Pairs and Prism Corners in Square-Free Berge Graphs Even Pairs and Prism Corners in Square-Free Berge Graphs Maria Chudnovsky Princeton University, Princeton, NJ 08544 Frédéric Maffray CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France Paul

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Problem set 8: solutions 1. Fix constants a R and b > 1. For n N, let f(n) = n a and g(n) = b n. Prove that f(n) = o ( g(n) ). Solution. First we observe that g(n) 0 for all

More information

Formal definition of P

Formal definition of P Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity. In SAT we want to know if

More information

Ring Sums, Bridges and Fundamental Sets

Ring Sums, Bridges and Fundamental Sets 1 Ring Sums Definition 1 Given two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) we define the ring sum G 1 G 2 = (V 1 V 2, (E 1 E 2 ) (E 1 E 2 )) with isolated points dropped. So an edge is in G 1 G

More information

The Chromatic Number of Ordered Graphs With Constrained Conflict Graphs

The Chromatic Number of Ordered Graphs With Constrained Conflict Graphs The Chromatic Number of Ordered Graphs With Constrained Conflict Graphs Maria Axenovich and Jonathan Rollin and Torsten Ueckerdt September 3, 016 Abstract An ordered graph G is a graph whose vertex set

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs Colourings of cubic graphs inducing isomorphic monochromatic subgraphs arxiv:1705.06928v2 [math.co] 10 Sep 2018 Marién Abreu 1, Jan Goedgebeur 2, Domenico Labbate 1, Giuseppe Mazzuoccolo 3 1 Dipartimento

More information

RECAP: Extremal problems Examples

RECAP: Extremal problems Examples RECAP: Extremal problems Examples Proposition 1. If G is an n-vertex graph with at most n edges then G is disconnected. A Question you always have to ask: Can we improve on this proposition? Answer. NO!

More information

AN INTRODUCTION TO CHROMATIC POLYNOMIALS

AN INTRODUCTION TO CHROMATIC POLYNOMIALS BACKGROUND POLYNOMIALS COMPLEX ZEROS AN INTRODUCTION TO CHROMATIC POLYNOMIALS Gordon Royle School of Mathematics & Statistics University of Western Australia Junior Mathematics Seminar, UWA September 2011

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: Rule of Inference Mathematical Induction: Conjecturing and Proving Mathematical Induction:

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

The Complexity of Approximating Small Degree Boolean #CSP

The Complexity of Approximating Small Degree Boolean #CSP The Complexity of Approximating Small Degree Boolean #CSP Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics Counting CSP F (Γ) is a family of

More information

Matroid Representation of Clique Complexes

Matroid Representation of Clique Complexes Matroid Representation of Clique Complexes Kenji Kashiwabara 1, Yoshio Okamoto 2, and Takeaki Uno 3 1 Department of Systems Science, Graduate School of Arts and Sciences, The University of Tokyo, 3 8 1,

More information

The Ising Partition Function: Zeros and Deterministic Approximation

The Ising Partition Function: Zeros and Deterministic Approximation The Ising Partition Function: Zeros and Deterministic Approximation Jingcheng Liu Alistair Sinclair Piyush Srivastava University of California, Berkeley Summer 2017 Jingcheng Liu (UC Berkeley) The Ising

More information

4 Packing T-joins and T-cuts

4 Packing T-joins and T-cuts 4 Packing T-joins and T-cuts Introduction Graft: A graft consists of a connected graph G = (V, E) with a distinguished subset T V where T is even. T-cut: A T -cut of G is an edge-cut C which separates

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Linear Extension Counting is Fixed- Parameter Tractable in Essential Width

Linear Extension Counting is Fixed- Parameter Tractable in Essential Width Linear Extension Counting is Fixed- Parameter Tractable in Essential Width Joshua Cooper University of South Carolina Department of Mathematics AMS Southeastern Sectional Fall 2013 University of Louisville,

More information

arxiv: v1 [math.co] 27 Aug 2015

arxiv: v1 [math.co] 27 Aug 2015 arxiv:1508.06934v1 [math.co] 27 Aug 2015 TRIANGLE-FREE UNIQUELY 3-EDGE COLORABLE CUBIC GRAPHS SARAH-MARIE BELCASTRO AND RUTH HAAS Abstract. This paper presents infinitely many new examples of triangle-free

More information

More NP-Complete Problems

More NP-Complete Problems CS 473: Algorithms, Spring 2018 More NP-Complete Problems Lecture 23 April 17, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Recap NP: languages/problems that have

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]).

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]). Coloring Basics A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]). For an i S, the set f 1 (i) is called a color class. A k-coloring is called proper if adjacent

More information

A taste of perfect graphs

A taste of perfect graphs A taste of perfect graphs Remark Determining the chromatic number of a graph is a hard problem, in general, and it is even hard to get good lower bounds on χ(g). An obvious lower bound we have seen before

More information

Combinatorial Commutative Algebra, Graph Colorability, and Algorithms

Combinatorial Commutative Algebra, Graph Colorability, and Algorithms I G,k = g 1,...,g n Combinatorial Commutative Algebra, Graph Colorability, and Algorithms Chris Hillar (University of California, Berkeley) Joint with Troels Windfeldt! (University of Copenhagen)! Outline

More information

University of Chicago Autumn 2003 CS Markov Chain Monte Carlo Methods

University of Chicago Autumn 2003 CS Markov Chain Monte Carlo Methods University of Chicago Autumn 2003 CS37101-1 Markov Chain Monte Carlo Methods Lecture 4: October 21, 2003 Bounding the mixing time via coupling Eric Vigoda 4.1 Introduction In this lecture we ll use the

More information

Graph Theory and Optimization Computational Complexity (in brief)

Graph Theory and Optimization Computational Complexity (in brief) Graph Theory and Optimization Computational Complexity (in brief) Nicolas Nisse Inria, France Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France September 2015 N. Nisse Graph Theory

More information

Independent Transversals in r-partite Graphs

Independent Transversals in r-partite Graphs Independent Transversals in r-partite Graphs Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract Let G(r, n) denote

More information

The Turán number of sparse spanning graphs

The Turán number of sparse spanning graphs The Turán number of sparse spanning graphs Noga Alon Raphael Yuster Abstract For a graph H, the extremal number ex(n, H) is the maximum number of edges in a graph of order n not containing a subgraph isomorphic

More information

Quasi-parity and perfect graphs. Irena Rusu. L.R.I., U.R.A. 410 du C.N.R.S., bât. 490, Orsay-cedex, France

Quasi-parity and perfect graphs. Irena Rusu. L.R.I., U.R.A. 410 du C.N.R.S., bât. 490, Orsay-cedex, France Quasi-parity and perfect graphs Irena Rusu L.R.I., U.R.A. 410 du C.N.R.S., bât. 490, 91405 Orsay-cedex, France Abstract In order to prove the Strong Perfect Graph Conjecture, the existence of a simple

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

The P versus NP Problem. Ker-I Ko. Stony Brook, New York

The P versus NP Problem. Ker-I Ko. Stony Brook, New York The P versus NP Problem Ker-I Ko Stony Brook, New York ? P = NP One of the seven Millenium Problems The youngest one A folklore question? Has hundreds of equivalent forms Informal Definitions P : Computational

More information

Efficient Solutions for the -coloring Problem on Classes of Graphs

Efficient Solutions for the -coloring Problem on Classes of Graphs Efficient Solutions for the -coloring Problem on Classes of Graphs Daniel Posner (PESC - UFRJ) PhD student - posner@cos.ufrj.br Advisor: Márcia Cerioli LIPN Université Paris-Nord 29th november 2011 distance

More information

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs Colourings of cubic graphs inducing isomorphic monochromatic subgraphs arxiv:1705.06928v1 [math.co] 19 May 2017 Marién Abreu 1, Jan Goedgebeur 2, Domenico Labbate 1, Giuseppe Mazzuoccolo 3 1 Dipartimento

More information

arxiv: v1 [cs.ds] 13 Nov 2016

arxiv: v1 [cs.ds] 13 Nov 2016 An FPTAS for Counting Proper Four-Colorings on Cubic Graphs Pinyan Lu Kuan Yang Chihao Zhang Minshen Zhu arxiv:6.0400v [cs.ds] Nov 06 Abstract Graph coloring is arguably the most exhaustively studied problem

More information

Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems

Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems Ivona Bezáková Daniel Štefankovič Vijay V. Vazirani Eric Vigoda Abstract We present an improved cooling schedule for

More information

Combinatorics and Optimization 442/642, Fall 2012

Combinatorics and Optimization 442/642, Fall 2012 Compact course notes Combinatorics and Optimization 44/64, Fall 0 Graph Theory Contents Professor: J. Geelen transcribed by: J. Lazovskis University of Waterloo December 6, 0 0. Foundations..............................................

More information

Improved FPTAS for Multi-Spin Systems

Improved FPTAS for Multi-Spin Systems Improved FPTAS for Multi-Spin Systems Pinyan Lu and Yitong Yin 2 Microsoft Research Asia, China. pinyanl@microsoft.com 2 State Key Laboratory for Novel Software Technology, Nanjing University, China. yinyt@nju.edu.cn

More information

HOW IS A CHORDAL GRAPH LIKE A SUPERSOLVABLE BINARY MATROID?

HOW IS A CHORDAL GRAPH LIKE A SUPERSOLVABLE BINARY MATROID? HOW IS A CHORDAL GRAPH LIKE A SUPERSOLVABLE BINARY MATROID? RAUL CORDOVIL, DAVID FORGE AND SULAMITA KLEIN To the memory of Claude Berge Abstract. Let G be a finite simple graph. From the pioneering work

More information

INDUCED CYCLES AND CHROMATIC NUMBER

INDUCED CYCLES AND CHROMATIC NUMBER INDUCED CYCLES AND CHROMATIC NUMBER A.D. SCOTT DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE, GOWER STREET, LONDON WC1E 6BT Abstract. We prove that, for any pair of integers k, l 1, there exists an integer

More information

A Randomised Approximation Algorithm for Counting the Number of Forests in Dense Graphs

A Randomised Approximation Algorithm for Counting the Number of Forests in Dense Graphs Combinatorics, Probability and Computing (1994) 3, 273-283 Copyright 1994 Cambridge University Press A Randomised Approximation Algorithm for Counting the Number of Forests in Dense Graphs J. D. ANNANt

More information

Computational Complexity. IE 496 Lecture 6. Dr. Ted Ralphs

Computational Complexity. IE 496 Lecture 6. Dr. Ted Ralphs Computational Complexity IE 496 Lecture 6 Dr. Ted Ralphs IE496 Lecture 6 1 Reading for This Lecture N&W Sections I.5.1 and I.5.2 Wolsey Chapter 6 Kozen Lectures 21-25 IE496 Lecture 6 2 Introduction to

More information

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Pinar Heggernes Pim van t Hof Daniel Meister Yngve Villanger Abstract Given two graphs G and H as input, the Induced Subgraph

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

On balanced colorings of sparse hypergraphs

On balanced colorings of sparse hypergraphs On balanced colorings of sparse hypergraphs Andrzej Dude Department of Mathematics Western Michigan University Kalamazoo, MI andrzej.dude@wmich.edu January 21, 2014 Abstract We investigate 2-balanced colorings

More information

Strange Combinatorial Connections. Tom Trotter

Strange Combinatorial Connections. Tom Trotter Strange Combinatorial Connections Tom Trotter Georgia Institute of Technology trotter@math.gatech.edu February 13, 2003 Proper Graph Colorings Definition. A proper r- coloring of a graph G is a map φ from

More information

Complexity of conditional colorability of graphs

Complexity of conditional colorability of graphs Complexity of conditional colorability of graphs Xueliang Li 1, Xiangmei Yao 1, Wenli Zhou 1 and Hajo Broersma 2 1 Center for Combinatorics and LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China.

More information

Complexity of Locally Injective k-colourings of Planar Graphs

Complexity of Locally Injective k-colourings of Planar Graphs Complexity of Locally Injective k-colourings of Planar Graphs Jan Kratochvil a,1, Mark Siggers b,2, a Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI) Charles University,

More information

arxiv: v1 [cs.dm] 3 Mar 2014

arxiv: v1 [cs.dm] 3 Mar 2014 Reconfiguring Independent Sets in Claw-Free Graphs Paul Bonsma 1, Marcin Kamiński 2, and Marcin Wrochna 2 1 University of Twente, Faculty of EEMCS, PO Box 217, 7500 AE Enschede, the Netherlands. Email:

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

UNAVOIDABLE INDUCED SUBGRAPHS IN LARGE GRAPHS WITH NO HOMOGENEOUS SETS

UNAVOIDABLE INDUCED SUBGRAPHS IN LARGE GRAPHS WITH NO HOMOGENEOUS SETS UNAVOIDABLE INDUCED SUBGRAPHS IN LARGE GRAPHS WITH NO HOMOGENEOUS SETS MARIA CHUDNOVSKY, RINGI KIM, SANG-IL OUM, AND PAUL SEYMOUR Abstract. An n-vertex graph is prime if it has no homogeneous set, that

More information

The chromatic number of ordered graphs with constrained conflict graphs

The chromatic number of ordered graphs with constrained conflict graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 69(1 (017, Pages 74 104 The chromatic number of ordered graphs with constrained conflict graphs Maria Axenovich Jonathan Rollin Torsten Ueckerdt Department

More information

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006.

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. Outline A last complete problem for NP conp, conp NP Function problems MAX-CUT A cut in a graph G=(V,E) is a set of nodes S used to partition

More information

This is a repository copy of Chromatic index of graphs with no cycle with a unique chord.

This is a repository copy of Chromatic index of graphs with no cycle with a unique chord. This is a repository copy of Chromatic index of graphs with no cycle with a unique chord. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74348/ Article: Machado, RCS, de

More information

Extremal Restraints for Graph Colourings

Extremal Restraints for Graph Colourings Extremal Restraints for Graph Colourings Aysel Erey Dalhousie University CanaDAM 2015 University of Saskatchewan, Saskatoon, June 1 (Joint work with Jason Brown) Definition A proper k-colouring of G is

More information

An extremal problem involving 4-cycles and planar polynomials

An extremal problem involving 4-cycles and planar polynomials An extremal problem involving 4-cycles and planar polynomials Work supported by the Simons Foundation Algebraic and Extremal Graph Theory Introduction Suppose G is a 3-partite graph with n vertices in

More information