Toughness, connectivity and the spectrum of regular graphs

Size: px
Start display at page:

Download "Toughness, connectivity and the spectrum of regular graphs"

Transcription

1 Outline Toughness, connectivity and the spectrum of regular graphs Xiaofeng Gu (University of West Georgia) Joint work with S.M. Cioabă (University of Delaware) AEGT, August 7, 2017

2 Outline Outline 1 Toughness

3 Outline Outline 1 Toughness 2 Generalized connectivity

4 Outline Outline 1 Toughness 2 Generalized connectivity 3 Spanning tree with bounded maximum degree

5 Outline Outline 1 Toughness 2 Generalized connectivity 3 Spanning tree with bounded maximum degree 4 Hamiltonicity

6 Matrix and Eigenvalue We consider undirected simple graphs G = (V, E).

7 Matrix and Eigenvalue We consider undirected simple graphs G = (V, E). Let G be a simple graph with vertices v 1, v 2,, v n. The adjacency matrix of G, denoted by A(G) = (a ij ), is an n n matrix such that a ij = 1 if there is an edge between v i and v j, and a ij = 0 otherwise.

8 Matrix and Eigenvalue We consider undirected simple graphs G = (V, E). Let G be a simple graph with vertices v 1, v 2,, v n. The adjacency matrix of G, denoted by A(G) = (a ij ), is an n n matrix such that a ij = 1 if there is an edge between v i and v j, and a ij = 0 otherwise. (Adjacency) eigenvalues of G are eigenvalues of the adjacency matrix A(G).

9 Matrix and Eigenvalue We consider undirected simple graphs G = (V, E). Let G be a simple graph with vertices v 1, v 2,, v n. The adjacency matrix of G, denoted by A(G) = (a ij ), is an n n matrix such that a ij = 1 if there is an edge between v i and v j, and a ij = 0 otherwise. (Adjacency) eigenvalues of G are eigenvalues of the adjacency matrix A(G). λ i (G) denotes the ith largest eigenvalue of G. So we have λ 1 λ 2 λ n.

10 Matrix and Eigenvalue We consider undirected simple graphs G = (V, E). Let G be a simple graph with vertices v 1, v 2,, v n. The adjacency matrix of G, denoted by A(G) = (a ij ), is an n n matrix such that a ij = 1 if there is an edge between v i and v j, and a ij = 0 otherwise. (Adjacency) eigenvalues of G are eigenvalues of the adjacency matrix A(G). λ i (G) denotes the ith largest eigenvalue of G. So we have λ 1 λ 2 λ n. Let λ = max{ λ 2, λ 3,, λ n } = max{ λ 2, λ n }.

11 Toughness The toughness t(g) of a connected graph G is defined as t(g) = min{ S c(g S) }, where the minimum is taken over all proper subset S V (G) such that c(g S) > 1. Figure: toughness = 1

12 Toughness and hamiltonicity Toughness at least 1 is a necessary condition for hamiltonicity.

13 Toughness and hamiltonicity Toughness at least 1 is a necessary condition for hamiltonicity. Chvátal conjectured that a graph with toughness 2 is hamiltonian.

14 Toughness and hamiltonicity Toughness at least 1 is a necessary condition for hamiltonicity. Chvátal conjectured that a graph with toughness 2 is hamiltonian. It was disproved by Bauer, Broersma and Veldman (2000).

15 Toughness and hamiltonicity Toughness at least 1 is a necessary condition for hamiltonicity. Chvátal conjectured that a graph with toughness 2 is hamiltonian. It was disproved by Bauer, Broersma and Veldman (2000). Conjecture (Chvátal, 1973) There exists some positive t 0 such that any graph with toughness greater than t 0 is Hamiltonian.

16 Some results Theorem (Alon 1995) For any connected d-regular graph G, t(g) > 1 3 ( d 2 dλ+λ 2 1).

17 Some results Theorem (Alon 1995) For any connected d-regular graph G, t(g) > 1 3 ( d 2 dλ+λ 2 1). Theorem (Brouwer, 1995) For any connected d-regular graph G, t(g) > d λ 2.

18 Some results Theorem (Alon 1995) For any connected d-regular graph G, t(g) > 1 3 ( d 2 dλ+λ 2 1). Theorem (Brouwer, 1995) For any connected d-regular graph G, t(g) > d λ 2. Conjecture (Brouwer, 1995) For any connected d-regular graph G, t(g) > d λ 1.

19 More results Theorem (Cioabă and G. 2016) For any connected d-regular graph G with d 3 and edge connectivity κ < d, t(g) > d λ 2 1 d λ 1.

20 More results Theorem (Cioabă and G. 2016) For any connected d-regular graph G with d 3 and edge connectivity κ < d, t(g) > d λ 2 1 d λ 1. brief idea: 1. Let G be a connected d-regular graph with edge connectivity κ. Then t(g) κ /d. 2. Let G be a d-regular graph with d 2 and edge connectivity κ < d. Then λ 2 (G) d 2κ d+1.

21 More results Theorem (Cioabă and G. 2016) For any connected d-regular graph G with d 3 and edge connectivity κ < d, t(g) > d λ 2 1 d λ 1. brief idea: 1. Let G be a connected d-regular graph with edge connectivity κ. Then t(g) κ /d. 2. Let G be a d-regular graph with d 2 and edge connectivity κ < d. Then λ 2 (G) d 2κ d+1. Brouwer s conjecture remains unsolved for the case κ = d.

22 More results Theorem (Liu and Chen 2010) For any connected d-regular graph G, if then t(g) 1. { d λ 2 (G) < d+1, if d is even, d d+1, if d is odd,

23 More results Theorem (Liu and Chen 2010) For any connected d-regular graph G, if then t(g) 1. { d λ 2 (G) < d+1, if d is even, d d+1, if d is odd, Theorem (Cioabă and Wong 2014) For any connected d-regular graph G, if { d 2+ d λ 2 (G) < 2, if d is even, d 2+ d , if d is odd, then t(g) 1.

24 More results Theorem (Cioabă and G. 2016) Let G be a connected d-regular graph with d 3 and edge connectivity κ. If κ = d, or, if κ < d and { d 2+ d λ d d κ (G) < 2, if d is even, d 2+ d , if d is odd, then t(g) 1.

25 More results Theorem (Cioabă and G. 2016) Let G be a connected d-regular graph with d 3 and edge connectivity κ. If κ = d, or, if κ < d and { d 2+ d λ d d κ (G) < 2, if d is even, d 2+ d , if d is odd, then t(g) 1. Theorem (Cioabă and G. 2016) For any bipartite connected d-regular graph G with κ < d, d 1 if λ d (G) < d 2d, then t(g) = 1. d κ

26 Useful tools: Interlacing Theorem Theorem Let A be a real symmetric n n matrix and B be a principal m m submatrix of A. Then λ i (A) λ i (B) λ n m+i (A) for 1 i m.

27 Useful tools: Interlacing Theorem Theorem Let A be a real symmetric n n matrix and B be a principal m m submatrix of A. Then λ i (A) λ i (B) λ n m+i (A) for 1 i m. Corollary Let S 1, S 2,, S k be disjoint subsets of V (G) with e(s i, S j ) = 0 for i j. Then λ k (G) λ k (G[ k i=1s i ]) min 1 i k {λ 1(G[S i ])}.

28 Generalized connectivity The connectivity κ(g) of a graph G is the minimum number of vertices of G whose removal produces a disconnected graph or a single vertex.

29 Generalized connectivity The connectivity κ(g) of a graph G is the minimum number of vertices of G whose removal produces a disconnected graph or a single vertex. Given an integer l 2, Chartrand, Kapoor, Lesniak and Lick defined the l-connectivity κ l (G) of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices.

30 Generalized connectivity The connectivity κ(g) of a graph G is the minimum number of vertices of G whose removal produces a disconnected graph or a single vertex. Given an integer l 2, Chartrand, Kapoor, Lesniak and Lick defined the l-connectivity κ l (G) of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. By definition, for a noncomplete connected graph G, we have t(g) = min 2 l α { κ l(g) l } where α is the independence number of G.

31 Results Theorem (Fiedler 1973) For a d-regular graph, κ d λ 2.

32 Results Theorem (Fiedler 1973) For a d-regular graph, κ d λ 2. Theorem (Krivelevich and Sudakov 2006) For a d-regular graph, κ d 36λ2 d.

33 Results Theorem (Fiedler 1973) For a d-regular graph, κ d λ 2. Theorem (Krivelevich and Sudakov 2006) For a d-regular graph, κ d 36λ2 d. Theorem (Cioabă and G. 2016) Let l, k be integers with l k 2. For any connected d-regular graph G with V (G) k + l 1, d 3 and edge connectivity κ, if κ = d, or, if κ < d and λ (l k+1)d d κ (G) < then κ l (G) k. { d 2+ d , if d is even, d 2+ d , if d is odd,

34 Corollaries Corollary (Cioabă and G. 2016) Let l 2. For any connected d-regular graph G with V (G) l + 1 and d 3, if { d 2+ d λ l (G) < 2, if d is even, d 2+ d , if d is odd, then κ l (G) 2.

35 Corollaries Corollary (Cioabă and G. 2016) Let l 2. For any connected d-regular graph G with V (G) l + 1 and d 3, if { d 2+ d λ l (G) < 2, if d is even, d 2+ d , if d is odd, then κ l (G) 2. Corollary (Cioabă and G. 2016) For any connected d-regular graph G with d 3, if { d 2+ d λ 2 (G) < 2, if d is even, d 2+ d , if d is odd, then κ(g) 2.

36 Spanning tree with bounded maximum degree For an integer k 2, a k-tree is a tree with the maximum degree at most k.

37 Spanning tree with bounded maximum degree For an integer k 2, a k-tree is a tree with the maximum degree at most k. Theorem (Win 1989) Let k 2 and G be a connected graph. If for any S V (G), c(g S) (k 2) S + 2, then G has a spanning k-tree.

38 Spanning tree with bounded maximum degree Theorem (Wong 2013) Let k 3 and G be a connected d-regular graph. If λ 4 < d, then G has a spanning k-tree. d (k 2)(d+1)

39 Spanning tree with bounded maximum degree Theorem (Wong 2013) Let k 3 and G be a connected d-regular graph. If λ 4 < d, then G has a spanning k-tree. d (k 2)(d+1) Theorem (Cioabă and G. 2016) Let k 3 and G be a connected d-regular graph with edge connectivity κ. Let l = d (k 2)κ. Each of the following statements holds. (i) If l 0, then G has a spanning k-tree. (ii) If l > 0 and λ 3d l < d spanning k-tree. d (k 2)(d+1), then G has a

40 Hamiltonian graphs Conjecture (Krivelevich and Sudakov, 2002) Let G be a d-regular graph with n vertics and with the second largest absolute value λ. There exist a positive consitant C such that for large enough n, if d/λ > C, then G is Hamiltonian.

41 Hamiltonian graphs Conjecture (Krivelevich and Sudakov, 2002) Let G be a d-regular graph with n vertics and with the second largest absolute value λ. There exist a positive consitant C such that for large enough n, if d/λ > C, then G is Hamiltonian. Recall: Conjecture (Chvátal, 1973) There exists some positive t 0 such that any graph with toughness greater than t 0 is Hamiltonian.

42 Hamiltonian graphs Conjecture (Krivelevich and Sudakov, 2002) Let G be a d-regular graph with n vertics and with the second largest absolute value λ. There exist a positive consitant C such that for large enough n, if d/λ > C, then G is Hamiltonian. Recall: Conjecture (Chvátal, 1973) There exists some positive t 0 such that any graph with toughness greater than t 0 is Hamiltonian. Recall: Theorem (Brouwer, 1995) For any connected d-regular graph G, t(g) > d λ 2.

43 Hamiltonian graphs Conjecture (Krivelevich and Sudakov, 2002) Let G be a d-regular graph with n vertics and with the second largest absolute value λ. There exist a positive consitant C such that for large enough n, if d/λ > C, then G is Hamiltonian. Recall: Conjecture (Chvátal, 1973) There exists some positive t 0 such that any graph with toughness greater than t 0 is Hamiltonian. Recall: Theorem (Brouwer, 1995) For any connected d-regular graph G, t(g) > d λ 2. Krivelevich and Sudakov proved, if d/λ > f(n), then G is Hamiltonian.

44 Thank You

Edge-Disjoint Spanning Trees and Eigenvalues of Regular Graphs

Edge-Disjoint Spanning Trees and Eigenvalues of Regular Graphs Edge-Disjoint Spanning Trees and Eigenvalues of Regular Graphs Sebastian M. Cioabă and Wiseley Wong MSC: 05C50, 15A18, 05C4, 15A4 March 1, 01 Abstract Partially answering a question of Paul Seymour, we

More information

We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time.

We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time. 9 Tough Graphs and Hamilton Cycles We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time. However in the early 1970 s it

More information

An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs

An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs Tilburg University joint work with M.A. Fiol, W.H. Haemers and G. Perarnau Laplacian matrix Eigenvalue interlacing Two cases

More information

Eigenvalues and edge-connectivity of regular graphs

Eigenvalues and edge-connectivity of regular graphs Eigenvalues and edge-connectivity of regular graphs Sebastian M. Cioabă University of Delaware Department of Mathematical Sciences Newark DE 19716, USA cioaba@math.udel.edu August 3, 009 Abstract In this

More information

Toughness and prism-hamiltonicity of P 4 -free graphs

Toughness and prism-hamiltonicity of P 4 -free graphs Toughness and prism-hamiltonicity of P 4 -free graphs M. N. Ellingham Pouria Salehi Nowbandegani Songling Shan Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240

More information

Eulerian Subgraphs and Hamilton-Connected Line Graphs

Eulerian Subgraphs and Hamilton-Connected Line Graphs Eulerian Subgraphs and Hamilton-Connected Line Graphs Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV 2606, USA Dengxin Li Department of Mathematics Chongqing Technology

More information

Hamiltonian claw-free graphs

Hamiltonian claw-free graphs Hamiltonian claw-free graphs Hong-Jian Lai, Yehong Shao, Ju Zhou and Hehui Wu August 30, 2005 Abstract A graph is claw-free if it does not have an induced subgraph isomorphic to a K 1,3. In this paper,

More information

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

The Toughness of Cubic Graphs

The Toughness of Cubic Graphs The Toughness of Cubic Graphs Wayne Goddard Department of Mathematics University of Pennsylvania Philadelphia PA 19104 USA wgoddard@math.upenn.edu Abstract The toughness of a graph G is the minimum of

More information

The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index

The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV 6506, U.S.A. Huiya Yan Department of Mathematics

More information

On the Dynamic Chromatic Number of Graphs

On the Dynamic Chromatic Number of Graphs On the Dynamic Chromatic Number of Graphs Maryam Ghanbari Joint Work with S. Akbari and S. Jahanbekam Sharif University of Technology m_phonix@math.sharif.ir 1. Introduction Let G be a graph. A vertex

More information

Set-orderedness as a generalization of k-orderedness and cyclability

Set-orderedness as a generalization of k-orderedness and cyclability Set-orderedness as a generalization of k-orderedness and cyclability Keishi Ishii Kenta Ozeki National Institute of Informatics, Tokyo 101-8430, Japan e-mail: ozeki@nii.ac.jp Kiyoshi Yoshimoto Department

More information

Chordality and 2-Factors in Tough Graphs

Chordality and 2-Factors in Tough Graphs Chordality and -Factors in Tough Graphs D. Bauer 1 G. Y. Katona D. Kratsch 3 H. J. Veldman 4 1 Department of Mathematical Sciences, Stevens Institute of Technology Hooken, NJ 07030, U.S.A. Mathematical

More information

Computer Engineering Department, Ege University 35100, Bornova Izmir, Turkey

Computer Engineering Department, Ege University 35100, Bornova Izmir, Turkey Selçuk J. Appl. Math. Vol. 10. No. 1. pp. 107-10, 009 Selçuk Journal of Applied Mathematics Computing the Tenacity of Some Graphs Vecdi Aytaç Computer Engineering Department, Ege University 35100, Bornova

More information

Hamilton cycles and closed trails in iterated line graphs

Hamilton cycles and closed trails in iterated line graphs Hamilton cycles and closed trails in iterated line graphs Paul A. Catlin, Department of Mathematics Wayne State University, Detroit MI 48202 USA Iqbalunnisa, Ramanujan Institute University of Madras, Madras

More information

1.3 Vertex Degrees. Vertex Degree for Undirected Graphs: Let G be an undirected. Vertex Degree for Digraphs: Let D be a digraph and y V (D).

1.3 Vertex Degrees. Vertex Degree for Undirected Graphs: Let G be an undirected. Vertex Degree for Digraphs: Let D be a digraph and y V (D). 1.3. VERTEX DEGREES 11 1.3 Vertex Degrees Vertex Degree for Undirected Graphs: Let G be an undirected graph and x V (G). The degree d G (x) of x in G: the number of edges incident with x, each loop counting

More information

Laplacian Integral Graphs with Maximum Degree 3

Laplacian Integral Graphs with Maximum Degree 3 Laplacian Integral Graphs with Maximum Degree Steve Kirkland Department of Mathematics and Statistics University of Regina Regina, Saskatchewan, Canada S4S 0A kirkland@math.uregina.ca Submitted: Nov 5,

More information

On two conjectures about the proper connection number of graphs

On two conjectures about the proper connection number of graphs On two conjectures about the proper connection number of graphs Fei Huang, Xueliang Li, Zhongmei Qin Center for Combinatorics and LPMC arxiv:1602.07163v3 [math.co] 28 Mar 2016 Nankai University, Tianjin

More information

Paul Erdős and Graph Ramsey Theory

Paul Erdős and Graph Ramsey Theory Paul Erdős and Graph Ramsey Theory Benny Sudakov ETH and UCLA Ramsey theorem Ramsey theorem Definition: The Ramsey number r(s, n) is the minimum N such that every red-blue coloring of the edges of a complete

More information

The Alon-Saks-Seymour and Rank-Coloring Conjectures

The Alon-Saks-Seymour and Rank-Coloring Conjectures The Alon-Saks-Seymour and Rank-Coloring Conjectures Michael Tait Department of Mathematical Sciences University of Delaware Newark, DE 19716 tait@math.udel.edu April 20, 2011 Preliminaries A graph is a

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian

A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian Annelies Heus Master s thesis under supervision of dr. D. Gijswijt University of Amsterdam, Faculty of Science

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

Some Results on Paths and Cycles in Claw-Free Graphs

Some Results on Paths and Cycles in Claw-Free Graphs Some Results on Paths and Cycles in Claw-Free Graphs BING WEI Department of Mathematics University of Mississippi 1 1. Basic Concepts A graph G is called claw-free if it has no induced subgraph isomorphic

More information

The Binding Number of Trees and K(1,3)-free Graphs

The Binding Number of Trees and K(1,3)-free Graphs The Binding Number of Trees and K(1,3)-free Graphs Wayne Goddard 1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 Abstract The binding number of a graph G is defined

More information

Matthews-Sumner Conjecture and Equivalences

Matthews-Sumner Conjecture and Equivalences University of Memphis June 21, 2012 Forbidden Subgraphs Definition A graph G is H-free if G contains no induced copy of the graph H as a subgraph. More generally, we say G is F-free for some family of

More information

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set P.N. Balister E. Győri R.H. Schelp April 28, 28 Abstract A graph G is strongly set colorable if V (G) E(G) can be assigned distinct nonempty

More information

Hamilton-Connected Indices of Graphs

Hamilton-Connected Indices of Graphs Hamilton-Connected Indices of Graphs Zhi-Hong Chen, Hong-Jian Lai, Liming Xiong, Huiya Yan and Mingquan Zhan Abstract Let G be an undirected graph that is neither a path nor a cycle. Clark and Wormald

More information

Supereulerian planar graphs

Supereulerian planar graphs Supereulerian planar graphs Hong-Jian Lai and Mingquan Zhan Department of Mathematics West Virginia University, Morgantown, WV 26506, USA Deying Li and Jingzhong Mao Department of Mathematics Central China

More information

Every 3-connected, essentially 11-connected line graph is hamiltonian

Every 3-connected, essentially 11-connected line graph is hamiltonian Every 3-connected, essentially 11-connected line graph is hamiltonian Hong-Jian Lai, Yehong Shao, Hehui Wu, Ju Zhou October 2, 25 Abstract Thomassen conjectured that every 4-connected line graph is hamiltonian.

More information

Measures of Vulnerability The Integrity Family

Measures of Vulnerability The Integrity Family Measures of Vulnerability The Integrity Family Wayne Goddard University of Pennsylvania 1 Abstract In this paper a schema of graphical parameters is proposed. Based on the parameter integrity introduced

More information

Group connectivity of certain graphs

Group connectivity of certain graphs Group connectivity of certain graphs Jingjing Chen, Elaine Eschen, Hong-Jian Lai May 16, 2005 Abstract Let G be an undirected graph, A be an (additive) Abelian group and A = A {0}. A graph G is A-connected

More information

The Complexity of Toughness in Regular Graphs

The Complexity of Toughness in Regular Graphs The Complexity of Toughness in Regular Graphs D Bauer 1 J van den Heuvel 2 A Morgana 3 E Schmeichel 4 1 Department of Mathematical Sciences Stevens Institute of Technology, Hoboken, NJ 07030, USA 2 Centre

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

Isolated Toughness and Existence of [a, b]-factors in Graphs

Isolated Toughness and Existence of [a, b]-factors in Graphs Isolated Toughness and Existence of [a, ]-factors in Graphs Yinghong Ma 1 and Qinglin Yu 23 1 Department of Computing Science Shandong Normal University, Jinan, Shandong, China 2 Center for Cominatorics,

More information

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set P.N. Balister E. Győri R.H. Schelp November 8, 28 Abstract A graph G is strongly set colorable if V (G) E(G) can be assigned distinct

More information

Properly colored Hamilton cycles in edge colored complete graphs

Properly colored Hamilton cycles in edge colored complete graphs Properly colored Hamilton cycles in edge colored complete graphs N. Alon G. Gutin Dedicated to the memory of Paul Erdős Abstract It is shown that for every ɛ > 0 and n > n 0 (ɛ), any complete graph K on

More information

On a lower bound on the Laplacian eigenvalues of a graph

On a lower bound on the Laplacian eigenvalues of a graph On a lower bound on the Laplacian eigenvalues of a graph Akihiro Munemasa (joint work with Gary Greaves and Anni Peng) Graduate School of Information Sciences Tohoku University May 22, 2016 JCCA 2016,

More information

Testing Equality in Communication Graphs

Testing Equality in Communication Graphs Electronic Colloquium on Computational Complexity, Report No. 86 (2016) Testing Equality in Communication Graphs Noga Alon Klim Efremenko Benny Sudakov Abstract Let G = (V, E) be a connected undirected

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

The Matrix-Tree Theorem

The Matrix-Tree Theorem The Matrix-Tree Theorem Christopher Eur March 22, 2015 Abstract: We give a brief introduction to graph theory in light of linear algebra. Our results culminates in the proof of Matrix-Tree Theorem. 1 Preliminaries

More information

Advanced Combinatorial Optimization September 24, Lecture 5

Advanced Combinatorial Optimization September 24, Lecture 5 18.438 Advanced Combinatorial Optimization September 24, 2009 Lecturer: Michel X. Goemans Lecture 5 Scribe: Yehua Wei In this lecture, we establish the connection between nowhere-zero (nwz) k-flow and

More information

Ring Sums, Bridges and Fundamental Sets

Ring Sums, Bridges and Fundamental Sets 1 Ring Sums Definition 1 Given two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) we define the ring sum G 1 G 2 = (V 1 V 2, (E 1 E 2 ) (E 1 E 2 )) with isolated points dropped. So an edge is in G 1 G

More information

Relationship between Maximum Flows and Minimum Cuts

Relationship between Maximum Flows and Minimum Cuts 128 Flows and Connectivity Recall Flows and Maximum Flows A connected weighted loopless graph (G,w) with two specified vertices x and y is called anetwork. If w is a nonnegative capacity function c, then

More information

On a Conjecture of Thomassen

On a Conjecture of Thomassen On a Conjecture of Thomassen Michelle Delcourt Department of Mathematics University of Illinois Urbana, Illinois 61801, U.S.A. delcour2@illinois.edu Asaf Ferber Department of Mathematics Yale University,

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo AALBORG UNIVERSITY Total domination in partitioned graphs by Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo R-2007-08 February 2007 Department of Mathematical Sciences Aalborg University Fredrik

More information

Tough graphs and hamiltonian circuits

Tough graphs and hamiltonian circuits Discrete Mathematics 306 (2006) 910 917 www.elsevier.com/locate/disc Tough graphs and hamiltonian circuits V. Chvátal Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada Abstract

More information

The super line graph L 2

The super line graph L 2 Discrete Mathematics 206 (1999) 51 61 www.elsevier.com/locate/disc The super line graph L 2 Jay S. Bagga a;, Lowell W. Beineke b, Badri N. Varma c a Department of Computer Science, College of Science and

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Graphs with large maximum degree containing no odd cycles of a given length

Graphs with large maximum degree containing no odd cycles of a given length Graphs with large maximum degree containing no odd cycles of a given length Paul Balister Béla Bollobás Oliver Riordan Richard H. Schelp October 7, 2002 Abstract Let us write f(n, ; C 2k+1 ) for the maximal

More information

Toughness and Vertex Degrees

Toughness and Vertex Degrees Toughness and Vertex Degrees D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030, U.S.A. H.J. Broersma School of Engineering and Computing Sciences Durham University

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

THE ROBUST COMPONENT STRUCTURE OF DENSE REGULAR GRAPHS AND APPLICATIONS

THE ROBUST COMPONENT STRUCTURE OF DENSE REGULAR GRAPHS AND APPLICATIONS THE ROBUST COMPONENT STRUCTURE OF DENSE REGULAR GRAPHS AND APPLICATIONS DANIELA KÜHN, ALLAN LO, DERYK OSTHUS AND KATHERINE STADEN Abstract. In this paper, we study the large-scale structure of dense regular

More information

Balanced bipartitions of graphs

Balanced bipartitions of graphs 2010.7 - Dedicated to Professor Feng Tian on the occasion of his 70th birthday Balanced bipartitions of graphs Baogang Xu School of Mathematical Science, Nanjing Normal University baogxu@njnu.edu.cn or

More information

Uniquely Hamiltonian Graphs

Uniquely Hamiltonian Graphs Uniquely Hamiltonian Graphs Benedikt Klocker Algorithms and Complexity Group Institute of Computer Graphics and Algorithms TU Wien Retreat Talk Uniquely Hamiltonian Graphs Benedikt Klocker 2 Basic Definitions

More information

On Rank of Graphs. B. Tayfeh-Rezaie. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

On Rank of Graphs. B. Tayfeh-Rezaie. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran On Rank of Graphs B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (A joint work with E. Ghorbani and A. Mohammadian) Trieste, September 2012 Theorem

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Toughness and spanning trees in K 4 -minor-free graphs

Toughness and spanning trees in K 4 -minor-free graphs Toughness and spanning trees in K 4 -minor-free graphs M. N. Ellingham Songling Shan Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240 mark.ellingham@vanderbilt.edu

More information

Distance Connectivity in Graphs and Digraphs

Distance Connectivity in Graphs and Digraphs Distance Connectivity in Graphs and Digraphs M.C. Balbuena, A. Carmona Departament de Matemàtica Aplicada III M.A. Fiol Departament de Matemàtica Aplicada i Telemàtica Universitat Politècnica de Catalunya,

More information

Connectivity of graphs with given girth pair

Connectivity of graphs with given girth pair Discrete Mathematics 307 (2007) 155 162 www.elsevier.com/locate/disc Connectivity of graphs with given girth pair C. Balbuena a, M. Cera b, A. Diánez b, P. García-Vázquez b, X. Marcote a a Departament

More information

Topics in Graph Theory

Topics in Graph Theory Topics in Graph Theory September 4, 2018 1 Preliminaries A graph is a system G = (V, E) consisting of a set V of vertices and a set E (disjoint from V ) of edges, together with an incidence function End

More information

Every 3-connected, essentially 11-connected line graph is Hamiltonian

Every 3-connected, essentially 11-connected line graph is Hamiltonian Journal of Combinatorial Theory, Series B 96 (26) 571 576 www.elsevier.com/locate/jctb Every 3-connected, essentially 11-connected line graph is Hamiltonian Hong-Jian Lai a, Yehong Shao b, Hehui Wu a,

More information

On the second Laplacian eigenvalues of trees of odd order

On the second Laplacian eigenvalues of trees of odd order Linear Algebra and its Applications 419 2006) 475 485 www.elsevier.com/locate/laa On the second Laplacian eigenvalues of trees of odd order Jia-yu Shao, Li Zhang, Xi-ying Yuan Department of Applied Mathematics,

More information

Monochromatic and Rainbow Colorings

Monochromatic and Rainbow Colorings Chapter 11 Monochromatic and Rainbow Colorings There are instances in which we will be interested in edge colorings of graphs that do not require adjacent edges to be assigned distinct colors Of course,

More information

Hamiltonicity in Connected Regular Graphs

Hamiltonicity in Connected Regular Graphs Hamiltonicity in Connected Regular Graphs Daniel W. Cranston Suil O April 29, 2012 Abstract In 1980, Jackson proved that every 2-connected k-regular graph with at most 3k vertices is Hamiltonian. This

More information

Regular factors of regular graphs from eigenvalues

Regular factors of regular graphs from eigenvalues Regular factors of regular graphs from eigenvalues Hongliang Lu Center for Combinatorics, LPMC Nankai University, Tianjin, China Abstract Let m and r be two integers. Let G be a connected r-regular graph

More information

Integrity in Graphs: Bounds and Basics

Integrity in Graphs: Bounds and Basics Integrity in Graphs: Bounds and Basics Wayne Goddard 1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 USA and Henda C. Swart Department of Mathematics, University of

More information

arxiv: v1 [math.co] 13 May 2016

arxiv: v1 [math.co] 13 May 2016 GENERALISED RAMSEY NUMBERS FOR TWO SETS OF CYCLES MIKAEL HANSSON arxiv:1605.04301v1 [math.co] 13 May 2016 Abstract. We determine several generalised Ramsey numbers for two sets Γ 1 and Γ 2 of cycles, in

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

HAMILTON CYCLES IN CAYLEY GRAPHS

HAMILTON CYCLES IN CAYLEY GRAPHS Hamiltonicity of (2, s, 3)- University of Primorska July, 2011 Hamiltonicity of (2, s, 3)- Lovász, 1969 Does every connected vertex-transitive graph have a Hamilton path? Hamiltonicity of (2, s, 3)- Hamiltonicity

More information

9-Connected Claw-Free Graphs Are Hamilton-Connected

9-Connected Claw-Free Graphs Are Hamilton-Connected Journal of Combinatorial Theory, Series B 75, 167173 (1999) Article ID jctb.1998.1871, available online at http:www.idealibrary.com on 9-Connected Claw-Free Graphs Are Hamilton-Connected Stephan Brandt

More information

The non-bipartite graphs with all but two eigenvalues in

The non-bipartite graphs with all but two eigenvalues in The non-bipartite graphs with all but two eigenvalues in [ 1, 1] L.S. de Lima 1, A. Mohammadian 1, C.S. Oliveira 2 1 Departamento de Engenharia de Produção, Centro Federal de Educação Tecnológica Celso

More information

The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences. Dedicated to professor Tian Feng on the occasion of his 70 birthday

The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences. Dedicated to professor Tian Feng on the occasion of his 70 birthday The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences Xiao-Dong ZHANG Ü À Shanghai Jiao Tong University xiaodong@sjtu.edu.cn Dedicated to professor Tian Feng on the occasion of his

More information

Advanced Combinatorial Optimization Updated February 18, Lecture 5. Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009)

Advanced Combinatorial Optimization Updated February 18, Lecture 5. Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009) 18.438 Advanced Combinatorial Optimization Updated February 18, 2012. Lecture 5 Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009) In this lecture, we establish the connection between nowhere-zero k-flows

More information

UNIVERSALLY OPTIMAL MATRICES AND FIELD INDEPENDENCE OF THE MINIMUM RANK OF A GRAPH. June 20, 2008

UNIVERSALLY OPTIMAL MATRICES AND FIELD INDEPENDENCE OF THE MINIMUM RANK OF A GRAPH. June 20, 2008 UNIVERSALLY OPTIMAL MATRICES AND FIELD INDEPENDENCE OF THE MINIMUM RANK OF A GRAPH LUZ M. DEALBA, JASON GROUT, LESLIE HOGBEN, RANA MIKKELSON, AND KAELA RASMUSSEN June 20, 2008 Abstract. The minimum rank

More information

Conjectures and Questions in Graph Reconfiguration

Conjectures and Questions in Graph Reconfiguration Conjectures and Questions in Graph Reconfiguration Ruth Haas, Smith College Joint Mathematics Meetings January 2014 The Reconfiguration Problem Can one feasible solution to a problem can be transformed

More information

HOMEWORK #2 - MATH 3260

HOMEWORK #2 - MATH 3260 HOMEWORK # - MATH 36 ASSIGNED: JANUARAY 3, 3 DUE: FEBRUARY 1, AT :3PM 1) a) Give by listing the sequence of vertices 4 Hamiltonian cycles in K 9 no two of which have an edge in common. Solution: Here is

More information

CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM

CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM Discussiones Mathematicae Graph Theory 26 (2006 ) 335 342 8 9 13th WORKSHOP 3in1 GRAPHS 2004 Krynica, November 11-13, 2004 CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM Evelyne Flandrin, Hao Li, Antoni Marczyk

More information

Note on Highly Connected Monochromatic Subgraphs in 2-Colored Complete Graphs

Note on Highly Connected Monochromatic Subgraphs in 2-Colored Complete Graphs Georgia Southern University From the SelectedWorks of Colton Magnant 2011 Note on Highly Connected Monochromatic Subgraphs in 2-Colored Complete Graphs Shinya Fujita, Gunma National College of Technology

More information

arxiv: v1 [math.co] 28 Oct 2016

arxiv: v1 [math.co] 28 Oct 2016 More on foxes arxiv:1610.09093v1 [math.co] 8 Oct 016 Matthias Kriesell Abstract Jens M. Schmidt An edge in a k-connected graph G is called k-contractible if the graph G/e obtained from G by contracting

More information

arxiv: v2 [math.co] 7 Jan 2016

arxiv: v2 [math.co] 7 Jan 2016 Global Cycle Properties in Locally Isometric Graphs arxiv:1506.03310v2 [math.co] 7 Jan 2016 Adam Borchert, Skylar Nicol, Ortrud R. Oellermann Department of Mathematics and Statistics University of Winnipeg,

More information

The 3-rainbow index of graph operations

The 3-rainbow index of graph operations The 3-rainbow index of graph operations TINGTING LIU Tianjin University Department of Mathematics 300072 Tianjin CHINA ttliu@tju.edu.cn YUMEI HU Tianjin University Department of Mathematics 300072 Tianjin

More information

Some Nordhaus-Gaddum-type Results

Some Nordhaus-Gaddum-type Results Some Nordhaus-Gaddum-type Results Wayne Goddard Department of Mathematics Massachusetts Institute of Technology Cambridge, USA Michael A. Henning Department of Mathematics University of Natal Pietermaritzburg,

More information

Cycle lengths in sparse graphs

Cycle lengths in sparse graphs Cycle lengths in sparse graphs Benny Sudakov Jacques Verstraëte Abstract Let C(G) denote the set of lengths of cycles in a graph G. In the first part of this paper, we study the minimum possible value

More information

Nordhaus-Gaddum Theorems for k-decompositions

Nordhaus-Gaddum Theorems for k-decompositions Nordhaus-Gaddum Theorems for k-decompositions Western Michigan University October 12, 2011 A Motivating Problem Consider the following problem. An international round-robin sports tournament is held between

More information

Two Laplacians for the distance matrix of a graph

Two Laplacians for the distance matrix of a graph Two Laplacians for the distance matrix of a graph Mustapha Aouchiche and Pierre Hansen GERAD and HEC Montreal, Canada CanaDAM 2013, Memorial University, June 1013 Aouchiche & Hansen CanaDAM 2013, Memorial

More information

Cubic Cayley graphs and snarks

Cubic Cayley graphs and snarks Cubic Cayley graphs and snarks University of Primorska UP FAMNIT, Feb 2012 Outline I. Snarks II. Independent sets in cubic graphs III. Non-existence of (2, s, 3)-Cayley snarks IV. Snarks and (2, s, t)-cayley

More information

arxiv: v1 [math.co] 28 Oct 2015

arxiv: v1 [math.co] 28 Oct 2015 Noname manuscript No. (will be inserted by the editor) A note on the Ramsey number of even wheels versus stars Sh. Haghi H. R. Maimani arxiv:1510.08488v1 [math.co] 28 Oct 2015 Received: date / Accepted:

More information

The minimum G c cut problem

The minimum G c cut problem The minimum G c cut problem Abstract In this paper we define and study the G c -cut problem. Given a complete undirected graph G = (V ; E) with V = n, edge weighted by w(v i, v j ) 0 and an undirected

More information

Distance between two k-sets and Path-Systems Extendibility

Distance between two k-sets and Path-Systems Extendibility Distance between two k-sets and Path-Systems Extendibility December 2, 2003 Ronald J. Gould (Emory University), Thor C. Whalen (Metron, Inc.) Abstract Given a simple graph G on n vertices, let σ 2 (G)

More information

In this paper, we will investigate oriented bicyclic graphs whose skew-spectral radius does not exceed 2.

In this paper, we will investigate oriented bicyclic graphs whose skew-spectral radius does not exceed 2. 3rd International Conference on Multimedia Technology ICMT 2013) Oriented bicyclic graphs whose skew spectral radius does not exceed 2 Jia-Hui Ji Guang-Hui Xu Abstract Let S(Gσ ) be the skew-adjacency

More information

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov Abstract For a graph G, let χ(g) denote its chromatic number and σ(g) denote

More information

THE STRUCTURE AND EXISTENCE OF 2-FACTORS IN ITERATED LINE GRAPHS

THE STRUCTURE AND EXISTENCE OF 2-FACTORS IN ITERATED LINE GRAPHS Discussiones Mathematicae Graph Theory 27 (2007) 507 526 THE STRUCTURE AND EXISTENCE OF 2-FACTORS IN ITERATED LINE GRAPHS Michael Ferrara Department of Theoretical and Applied Mathematics The University

More information

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E.

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E. Nowhere zero flow Definition: A flow on a graph G = (V, E) is a pair (D, f) such that 1. D is an orientation of G. 2. f is a function on E. 3. u N + D (v) f(uv) = w ND f(vw) for every (v) v V. Example:

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A. Spielman September 19, 2018 7.1 Overview In today s lecture we will justify some of the behavior we observed when using eigenvectors

More information

Some spectral inequalities for triangle-free regular graphs

Some spectral inequalities for triangle-free regular graphs Filomat 7:8 (13), 1561 1567 DOI 198/FIL138561K Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat Some spectral inequalities for triangle-free

More information

An upper bound for the minimum rank of a graph

An upper bound for the minimum rank of a graph An upper bound for the minimum rank of a graph Avi Berman Shmuel Friedland Leslie Hogben Uriel G. Rothblum Bryan Shader April 3, 2008 Abstract For a graph G of order n, the minimum rank of G is defined

More information