We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time.

Size: px
Start display at page:

Download "We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time."

Transcription

1 9 Tough Graphs and Hamilton Cycles We would like a theorem that says A graph G is hamiltonian if and only if G has property Q, where Q can be checked in polynomial time. However in the early 1970 s it was discovered that it is NPcomplete to determine if a graph G has a Hamilton cycle. Hence there is no easy necessary and sufficient condition for a graph to be hamiltonian. Much of the research on Hamilton cycles has focused on finding sufficient conditions for a graph to be hamiltonian. The first and easiest such condition is in the theorem below. Theorem 9.1 (Dirac 1952) Let G be a graph on n 3 verteces. If every vertex is adjacent to at least n/2 vertices, then G is hamiltonian. Note: This condition is best possible, i.e., if (n 1)/2 is substituted for n in Dirac s Thm., it is no longer true. 128

2 Example: Let G = K t,t+1. Then n = 2t + 1 and each vertex has degree at least t = (n 1)/2, but G is not hamiltonian. Note: In G above, if t vertices are removed from G, the graph falls apart into t + 1 components. The graph is not tough enough. Maybe if the graph was more tightly put together it would be forced to be hamiltonian. This motivates the definition of toughness. Let ω(g) denote the number of components of a graph G. S Definition: A graph G is t-tough if t for every ω(g S) subset S of the vertex set V (G) of G with ω(g S) > 1. The toughness of G, denoted τ(g), is the maximum value of t for which G is t-tough (taking τ(k n ) =, for all n 1). To better understand the definition, see the examples. 129

3 Examples: G 1 : t(g 1 ) = 1/4 G 2 : t(g 2 ) = 2/3 G 3 : t(g 3 ) = 1 P : t(p ) = 4/3 130

4 Note: Every hamiltonian graph is 1-tough. However the Petersen graph shows that not every 1-tough graph is hamiltonian. In fact, t(p ) = 4/3. Conjecture:(Chvátal 1973) There exists a finite number t 0 such that τ(g) t 0 G is hamiltonian. Question: Is this true, and if so, what is the smallest value of t 0? 131

5 Definition: A 2-factor of a graph G is a subgraph in which every vertex has degree 2. Note: This means that every hamiltonian graph has a 2-factor, but not every graph with a 2-factor is hamiltonian. Example: A disconnected graph consisting of two disjoint triangles has a 2-factor, but is clearly not hamiltonian. There are also examples that are connected. Example: The Petersen graph P has a 2-factor, but is not hamiltonian. Theorem 9.2 (Chvátal 1973) For every ɛ > 0 there exist (3/2 ɛ) - tough graphs with no 2-factor. Theorem 9.3 (Chvátal 1973) There exist infinitely many 3/2 - tough nonhamiltonian graphs. Maybe all graphs with τ(g) > 3/2 are hamiltonian. 132

6 Theorem 9.4 (Thomassen) There exist infinitely many nonhamiltonian graphs G with τ(g) > 3/2. The next result led to the 2-tough conjecture. Theorem 9.5 (Enomoto, Jackson, Katerinis, Saito 1985) All 2-tough graphs have 2-factors. Furthermore, for any ɛ > 0, there exists a (2 ɛ) - tough graph with no 2-factor. Note: This means that the smallest possible value of t 0 such that all t 0 - tough graphs are hamiltonian is t 0 = 2. In addition, there were many other reasons why the following became a very intriguing conjecture. Conjecture: τ(g) 2 G is hamiltonian. Suppose this conjecture is true. It was hoped that at least the hypothesis could be checked in polynomial time. This is the case in theorems like Dirac s Theorem. 133

7 Unfortunately, it s not true for toughness. Theorem 9.6 (Bauer, Hakimi, Schmeichel 1990) For any rational t > 0, it is NP-hard to determine if a graph is t-tough. Nevertheless, there was still a lot of interest in the 2-tough conjecture. Theorem 9.7 (Bauer, Broersma, Veldman 2000) For any ɛ > 0 there exists a (9/4 ɛ) - tough nonhamiltonian graph. See figure. Note: It is still not known if there exists a finite constant t 0 such that every t 0 -tough graph is hamiltonian. 134

8 n = 42 G: t(g) = 2 - NOT HAMILTONIAN 135

9 G - NOT HAMILTONIAN G : t(g ) = 4(2t + 1) + t 2(2t + 1) + 1 = 9t + 4 4t

10 Definition: A graph G is chordal if it contains no induced cycle of length at least four. Theorem 9.8 (Bauer, Katona, Kratsch, Veldman 2000) Let G be a 3 2-tough chordal graph. Then G has a 2-factor. Note: Graphs in Chvátal s 1973 paper show that this result is best possible. Recently Chen, Jacobson, Kézdy and Lehel (1997) have shown that every 18-tough chordal graph on n 3 vertices is hamiltonian. We believe a stronger result is true; namely that every 2-tough chordal graph is hamiltonian. We also believe that for every ɛ > 0 there exists a (2 ɛ)-tough chordal nonhamiltonian graph. We have already taken a step in this direction. Theorem 9.9 For every ɛ > 0 there exists a ( 7 4 ɛ)-tough chordal nontraceable graph. 137

11 H - CHORDAL AND NOT HAMILTONIAN H: t(h) = 3(2t + 1) + t 2(2t + 1) + 1 = 7t + 3 4t

12 Conjecture: If G is a maximum planar graph with τ(g) = 3, then G has a 2-factor. 2 Why is this interesting? Let ɛ > 0. Note 1: If τ(g) = ɛ, then the conjecture is true. This follows from the fact that a ( connected. + ɛ)-tough graph must be Theorem 9.10 (Tutte 1956) Every 4-connected planar graph is hamiltonian. Note 2: If τ(g) = 3 2 ɛ, then the conjecture is false. In 1999, P. Owens found a collection of maximum planar ( 3 2 ɛ)-tough nonhamiltonian graphs. Upon inspection, it was clear that these graphs have no 2-factor. 139

13 Two questions 1. Are all ( 3 )-tough maximum planar graphs hamiltonian? 2 2. Do all ( 3 )-tough planar graphs have a 2-factor? 2 Note: If our conjecture is false, the answer to each question is No. If our conjecture is true,???????????????? Note: There exist ( 3 )-tough planar nonhamiltonian graphs

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences

University of Twente. Faculty of Mathematical Sciences. Toughness and hamiltonicity in k-trees. University for Technical and Social Sciences Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

Chordality and 2-Factors in Tough Graphs

Chordality and 2-Factors in Tough Graphs Chordality and -Factors in Tough Graphs D. Bauer 1 G. Y. Katona D. Kratsch 3 H. J. Veldman 4 1 Department of Mathematical Sciences, Stevens Institute of Technology Hooken, NJ 07030, U.S.A. Mathematical

More information

Toughness and prism-hamiltonicity of P 4 -free graphs

Toughness and prism-hamiltonicity of P 4 -free graphs Toughness and prism-hamiltonicity of P 4 -free graphs M. N. Ellingham Pouria Salehi Nowbandegani Songling Shan Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240

More information

The Complexity of Toughness in Regular Graphs

The Complexity of Toughness in Regular Graphs The Complexity of Toughness in Regular Graphs D Bauer 1 J van den Heuvel 2 A Morgana 3 E Schmeichel 4 1 Department of Mathematical Sciences Stevens Institute of Technology, Hoboken, NJ 07030, USA 2 Centre

More information

Matthews-Sumner Conjecture and Equivalences

Matthews-Sumner Conjecture and Equivalences University of Memphis June 21, 2012 Forbidden Subgraphs Definition A graph G is H-free if G contains no induced copy of the graph H as a subgraph. More generally, we say G is F-free for some family of

More information

The Complexity of Recognizing Tough Cubic Graphs

The Complexity of Recognizing Tough Cubic Graphs The Complexity of Recognizing Tough Cubic Graphs D. auer 1 J. van en Heuvel 2 A. Morgana 3 E. Schmeichel 4 1 Department of Mathematical Sciences, Stevens Institute of Technology Hoboken, NJ 07030, U.S.A.

More information

Toughness, connectivity and the spectrum of regular graphs

Toughness, connectivity and the spectrum of regular graphs Outline Toughness, connectivity and the spectrum of regular graphs Xiaofeng Gu (University of West Georgia) Joint work with S.M. Cioabă (University of Delaware) AEGT, August 7, 2017 Outline Outline 1 Toughness

More information

Toughness and spanning trees in K 4 -minor-free graphs

Toughness and spanning trees in K 4 -minor-free graphs Toughness and spanning trees in K 4 -minor-free graphs M. N. Ellingham Songling Shan Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240 mark.ellingham@vanderbilt.edu

More information

Tough graphs and hamiltonian circuits

Tough graphs and hamiltonian circuits Discrete Mathematics 306 (2006) 910 917 www.elsevier.com/locate/disc Tough graphs and hamiltonian circuits V. Chvátal Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada Abstract

More information

Forbidden induced subgraphs for toughness

Forbidden induced subgraphs for toughness (with G. Sueiro) Keio University Definition of Toughness ω(g) = # of components in G Definition A graph G is said to be t-tough S V (G): cutset of G, t ω(g S) S τ(g) = max{ t G is t-tough} : toughness

More information

arxiv: v2 [math.co] 7 Jan 2016

arxiv: v2 [math.co] 7 Jan 2016 Global Cycle Properties in Locally Isometric Graphs arxiv:1506.03310v2 [math.co] 7 Jan 2016 Adam Borchert, Skylar Nicol, Ortrud R. Oellermann Department of Mathematics and Statistics University of Winnipeg,

More information

Toughness and Vertex Degrees

Toughness and Vertex Degrees Toughness and Vertex Degrees D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030, U.S.A. H.J. Broersma School of Engineering and Computing Sciences Durham University

More information

Cycles in 4-Connected Planar Graphs

Cycles in 4-Connected Planar Graphs Cycles in 4-Connected Planar Graphs Guantao Chen Department of Mathematics & Statistics Georgia State University Atlanta, GA 30303 matgcc@panther.gsu.edu Genghua Fan Institute of Systems Science Chinese

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian

A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian A study of necessary and sufficient conditions for vertex transitive graphs to be Hamiltonian Annelies Heus Master s thesis under supervision of dr. D. Gijswijt University of Amsterdam, Faculty of Science

More information

RESEARCH PROBLEMS FROM THE 18TH WORKSHOP 3IN edited by Mariusz Meszka

RESEARCH PROBLEMS FROM THE 18TH WORKSHOP 3IN edited by Mariusz Meszka Opuscula Mathematica Vol. 30 No. 4 2010 http://dx.doi.org/10.7494/opmath.2010.30.4.527 RESEARCH PROBLEMS FROM THE 18TH WORKSHOP 3IN1 2009 edited by Mariusz Meszka Abstract. A collection of open problems

More information

The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index

The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index The Chvátal-Erdős condition for supereulerian graphs and the hamiltonian index Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV 6506, U.S.A. Huiya Yan Department of Mathematics

More information

Supereulerian planar graphs

Supereulerian planar graphs Supereulerian planar graphs Hong-Jian Lai and Mingquan Zhan Department of Mathematics West Virginia University, Morgantown, WV 26506, USA Deying Li and Jingzhong Mao Department of Mathematics Central China

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 3: Shortest paths and other stuff Christian Rieck Shortest paths: Dijkstra s algorithm 2 Dijkstra s algorithm

More information

Long cycles in 3-cyclable graphs

Long cycles in 3-cyclable graphs Long cycles in 3-cyclable graphs D. Bauer 1 L. McGuire 1 H. Trommel 2 H. J. Veldman 2 1 Department of Mathematical Sciences, Stevens Institute of Technology Hoboken, NJ 07030, USA 2 Faculty of Applied

More information

Tree-width. September 14, 2015

Tree-width. September 14, 2015 Tree-width Zdeněk Dvořák September 14, 2015 A tree decomposition of a graph G is a pair (T, β), where β : V (T ) 2 V (G) assigns a bag β(n) to each vertex of T, such that for every v V (G), there exists

More information

Isolated Toughness and Existence of [a, b]-factors in Graphs

Isolated Toughness and Existence of [a, b]-factors in Graphs Isolated Toughness and Existence of [a, ]-factors in Graphs Yinghong Ma 1 and Qinglin Yu 23 1 Department of Computing Science Shandong Normal University, Jinan, Shandong, China 2 Center for Cominatorics,

More information

Hamiltonian claw-free graphs

Hamiltonian claw-free graphs Hamiltonian claw-free graphs Hong-Jian Lai, Yehong Shao, Ju Zhou and Hehui Wu August 30, 2005 Abstract A graph is claw-free if it does not have an induced subgraph isomorphic to a K 1,3. In this paper,

More information

9-Connected Claw-Free Graphs Are Hamilton-Connected

9-Connected Claw-Free Graphs Are Hamilton-Connected Journal of Combinatorial Theory, Series B 75, 167173 (1999) Article ID jctb.1998.1871, available online at http:www.idealibrary.com on 9-Connected Claw-Free Graphs Are Hamilton-Connected Stephan Brandt

More information

arxiv: v1 [cs.dm] 12 Jun 2016

arxiv: v1 [cs.dm] 12 Jun 2016 A Simple Extension of Dirac s Theorem on Hamiltonicity Yasemin Büyükçolak a,, Didem Gözüpek b, Sibel Özkana, Mordechai Shalom c,d,1 a Department of Mathematics, Gebze Technical University, Kocaeli, Turkey

More information

Some Results on Paths and Cycles in Claw-Free Graphs

Some Results on Paths and Cycles in Claw-Free Graphs Some Results on Paths and Cycles in Claw-Free Graphs BING WEI Department of Mathematics University of Mississippi 1 1. Basic Concepts A graph G is called claw-free if it has no induced subgraph isomorphic

More information

Spanning 2-trails from degree sum conditions

Spanning 2-trails from degree sum conditions This is a preprint of an article accepted for publication in the Journal of Graph Theory c 2004(?) (copyright owner as specified in the Journal) Spanning 2-trails from degree sum conditions M. N. Ellingham

More information

Nonhamiltonian 3-connected cubic planar graphs

Nonhamiltonian 3-connected cubic planar graphs Nonhamiltonian -connected cubic planar graphs R. E. L. Aldred, S. Bau, D. A. Holton Department of Mathematics and Statistics University of Otago P.O. Box 56, Dunedin, New Zealand raldred@maths.otago.ac.nz

More information

Cycle Spectra of Hamiltonian Graphs

Cycle Spectra of Hamiltonian Graphs Cycle Spectra of Hamiltonian Graphs Kevin G. Milans, Dieter Rautenbach, Friedrich Regen, and Douglas B. West July, 0 Abstract We prove that every graph consisting of a spanning cycle plus p chords has

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Cycles through 23 vertices in 3-connected cubic planar graphs

Cycles through 23 vertices in 3-connected cubic planar graphs Cycles through 23 vertices in 3-connected cubic planar graphs R. E. L. Aldred, S. Bau and D. A. Holton Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand.

More information

The Toughness of Cubic Graphs

The Toughness of Cubic Graphs The Toughness of Cubic Graphs Wayne Goddard Department of Mathematics University of Pennsylvania Philadelphia PA 19104 USA wgoddard@math.upenn.edu Abstract The toughness of a graph G is the minimum of

More information

Ringing the Changes II

Ringing the Changes II Ringing the Changes II Cayley Color Graphs Let G be a group and H a subset of G. We define a Cayley digraph (directed graph) by: Each element of G is a vertex of the digraph Γ and an arc is drawn from

More information

Types of triangle and the impact on domination and k-walks

Types of triangle and the impact on domination and k-walks Types of triangle and the impact on domination and k-walks Gunnar Brinkmann Applied Mathematics, Computer Science and Statistics Krijgslaan 8 S9 Ghent University B9 Ghent gunnar.brinkmann@ugent.be Kenta

More information

The Complexity of Computing the Sign of the Tutte Polynomial

The Complexity of Computing the Sign of the Tutte Polynomial The Complexity of Computing the Sign of the Tutte Polynomial Leslie Ann Goldberg (based on joint work with Mark Jerrum) Oxford Algorithms Workshop, October 2012 The Tutte polynomial of a graph G = (V,

More information

arxiv: v2 [math.co] 25 Jul 2016

arxiv: v2 [math.co] 25 Jul 2016 Partitioning a graph into a cycle and a sparse graph Alexey Pokrovskiy arxiv:1607.03348v [math.co] 5 Jul 016 ETH Zürich, Zürich, Switzerland Keywords: Partitioning graphs, Ramsey theory, cycles. July 6,

More information

Rigidity of Graphs and Frameworks

Rigidity of Graphs and Frameworks School of Mathematical Sciences Queen Mary, University of London England DIMACS, 26-29 July, 2016 Bar-and-Joint Frameworks A d-dimensional bar-and-joint framework is a pair (G, p), where G = (V, E) is

More information

On representable graphs

On representable graphs On representable graphs Sergey Kitaev and Artem Pyatkin 3rd November 2005 Abstract A graph G = (V, E) is representable if there exists a word W over the alphabet V such that letters x and y alternate in

More information

On Rank of Graphs. B. Tayfeh-Rezaie. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

On Rank of Graphs. B. Tayfeh-Rezaie. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran On Rank of Graphs B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (A joint work with E. Ghorbani and A. Mohammadian) Trieste, September 2012 Theorem

More information

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Computación, Facultad de Ciencias

More information

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS FLORIAN PFENDER Abstract. Let T be the line graph of the unique tree F on 8 vertices with degree sequence (3, 3, 3,,,,, ), i.e. T is a chain

More information

The structure of bull-free graphs I three-edge-paths with centers and anticenters

The structure of bull-free graphs I three-edge-paths with centers and anticenters The structure of bull-free graphs I three-edge-paths with centers and anticenters Maria Chudnovsky Columbia University, New York, NY 10027 USA May 6, 2006; revised March 29, 2011 Abstract The bull is the

More information

CYCLE STRUCTURES IN GRAPHS. Angela K. Harris. A thesis submitted to the. University of Colorado Denver. in partial fulfillment

CYCLE STRUCTURES IN GRAPHS. Angela K. Harris. A thesis submitted to the. University of Colorado Denver. in partial fulfillment CYCLE STRUCTURES IN GRAPHS by Angela K. Harris Master of Science, University of South Alabama, 003 A thesis submitted to the University of Colorado Denver in partial fulfillment of the requirements for

More information

arxiv: v1 [math.co] 22 Jan 2018

arxiv: v1 [math.co] 22 Jan 2018 arxiv:1801.07025v1 [math.co] 22 Jan 2018 Spanning trees without adjacent vertices of degree 2 Kasper Szabo Lyngsie, Martin Merker Abstract Albertson, Berman, Hutchinson, and Thomassen showed in 1990 that

More information

This is a repository copy of Chromatic index of graphs with no cycle with a unique chord.

This is a repository copy of Chromatic index of graphs with no cycle with a unique chord. This is a repository copy of Chromatic index of graphs with no cycle with a unique chord. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74348/ Article: Machado, RCS, de

More information

Spanning Paths in Infinite Planar Graphs

Spanning Paths in Infinite Planar Graphs Spanning Paths in Infinite Planar Graphs Nathaniel Dean AT&T, ROOM 2C-415 600 MOUNTAIN AVENUE MURRAY HILL, NEW JERSEY 07974-0636, USA Robin Thomas* Xingxing Yu SCHOOL OF MATHEMATICS GEORGIA INSTITUTE OF

More information

Maximizing the number of independent sets of a fixed size

Maximizing the number of independent sets of a fixed size Maximizing the number of independent sets of a fixed size Wenying Gan Po-Shen Loh Benny Sudakov Abstract Let i t (G be the number of independent sets of size t in a graph G. Engbers and Galvin asked how

More information

Group flow, complex flow, unit vector flow, and the (2+)-flow conjecture

Group flow, complex flow, unit vector flow, and the (2+)-flow conjecture Downloaded from orbit.dtu.dk on: Jan 14, 2019 Group flow, complex flow, unit vector flow, and the (2+)-flow conjecture Thomassen, Carsten Published in: Journal of Combinatorial Theory. Series B Link to

More information

A Note on Total Excess of Spanning Trees

A Note on Total Excess of Spanning Trees A Note on Total Excess of Spanning Trees Yukichika Ohnishi Katsuhiro Ota Department of Mathematics, Keio University Hiyoshi, Kohoku-ku, Yokohama, 3-85 Japan and Kenta Ozeki National Institute of Informatics

More information

A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees

A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees Downloaded from orbit.dtu.dk on: Sep 02, 2018 A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees Perrett, Thomas Published in: Discrete Mathematics Link to article, DOI:

More information

Hamiltonicity of maximal planar graphs and planar triangulations

Hamiltonicity of maximal planar graphs and planar triangulations Hamiltonicity of maximal planar graphs and planar triangulations Von der Fakultät für Mathematik, Informatik und aturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung

More information

Advanced Combinatorial Optimization September 22, Lecture 4

Advanced Combinatorial Optimization September 22, Lecture 4 8.48 Advanced Combinatorial Optimization September 22, 2009 Lecturer: Michel X. Goemans Lecture 4 Scribe: Yufei Zhao In this lecture, we discuss some results on edge coloring and also introduce the notion

More information

The Lefthanded Local Lemma characterizes chordal dependency graphs

The Lefthanded Local Lemma characterizes chordal dependency graphs The Lefthanded Local Lemma characterizes chordal dependency graphs Wesley Pegden March 30, 2012 Abstract Shearer gave a general theorem characterizing the family L of dependency graphs labeled with probabilities

More information

List-coloring the Square of a Subcubic Graph

List-coloring the Square of a Subcubic Graph List-coloring the Square of a Subcubic Graph Daniel W. Cranston University of Illinois Urbana-Champaign, USA Seog-Jin Kim Konkuk University Seoul, Korea February 1, 2007 Abstract The square G 2 of a graph

More information

Finding many edge-disjoint Hamiltonian cycles in dense graphs

Finding many edge-disjoint Hamiltonian cycles in dense graphs Finding many edge-disjoint Hamiltonian cycles in dense graphs Stephen G. Hartke Department of Mathematics University of Nebraska Lincoln www.math.unl.edu/ shartke2 hartke@math.unl.edu Joint work with Tyler

More information

A shorter proof of Thomassen s theorem on Tutte paths in plane graphs

A shorter proof of Thomassen s theorem on Tutte paths in plane graphs A shorter proof of Thomassen s theorem on Tutte paths in plane graphs Kenta Ozeki National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan and JST, ERATO, Kawarabayashi

More information

Graphs with large maximum degree containing no odd cycles of a given length

Graphs with large maximum degree containing no odd cycles of a given length Graphs with large maximum degree containing no odd cycles of a given length Paul Balister Béla Bollobás Oliver Riordan Richard H. Schelp October 7, 2002 Abstract Let us write f(n, ; C 2k+1 ) for the maximal

More information

arxiv: v1 [math.co] 27 Aug 2015

arxiv: v1 [math.co] 27 Aug 2015 arxiv:1508.06934v1 [math.co] 27 Aug 2015 TRIANGLE-FREE UNIQUELY 3-EDGE COLORABLE CUBIC GRAPHS SARAH-MARIE BELCASTRO AND RUTH HAAS Abstract. This paper presents infinitely many new examples of triangle-free

More information

AALBORG UNIVERSITY. Connected factors in graphs - a survey. To appear in Graphs and Combinatorics Vol 21, 1-26 (2005)

AALBORG UNIVERSITY. Connected factors in graphs - a survey. To appear in Graphs and Combinatorics Vol 21, 1-26 (2005) AALBORG UNIVERSITY Connected factors in graphs - a survey To appear in Graphs and Combinatorics Vol 21, 1-26 (2005) by Mekkia Kouider and Preben Dahl Vestergaard R-2005-25 June 2005 Department of Mathematical

More information

Eulerian Subgraphs in Graphs with Short Cycles

Eulerian Subgraphs in Graphs with Short Cycles Eulerian Subgraphs in Graphs with Short Cycles Paul A. Catlin Hong-Jian Lai Abstract P. Paulraja recently showed that if every edge of a graph G lies in a cycle of length at most 5 and if G has no induced

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases)

Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases) Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases) Hong-Jian Lai, Ping Li and Yanting Liang Department of Mathematics West Virginia University Morgantown, WV p. 1/30 Notation G: = connected graph

More information

The super line graph L 2

The super line graph L 2 Discrete Mathematics 206 (1999) 51 61 www.elsevier.com/locate/disc The super line graph L 2 Jay S. Bagga a;, Lowell W. Beineke b, Badri N. Varma c a Department of Computer Science, College of Science and

More information

HAMBURGER BEITRÄGE ZUR MATHEMATIK

HAMBURGER BEITRÄGE ZUR MATHEMATIK HAMBURGER BEITRÄGE ZUR MATHEMATIK Heft 8 Degree Sequences and Edge Connectivity Matthias Kriesell November 007 Degree sequences and edge connectivity Matthias Kriesell November 9, 007 Abstract For each

More information

HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH

HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH MICHAEL J. FERRARA, MICHAEL S. JACOBSON UNIVERSITY OF COLORADO DENVER DENVER, CO 8017 ANGELA HARRIS UNIVERSITY OF WISCONSIN-WHITEWATER WHITEWATER, WI

More information

Uniquely Hamiltonian Graphs

Uniquely Hamiltonian Graphs Uniquely Hamiltonian Graphs Benedikt Klocker Algorithms and Complexity Group Institute of Computer Graphics and Algorithms TU Wien Retreat Talk Uniquely Hamiltonian Graphs Benedikt Klocker 2 Basic Definitions

More information

RECAP: Extremal problems Examples

RECAP: Extremal problems Examples RECAP: Extremal problems Examples Proposition 1. If G is an n-vertex graph with at most n edges then G is disconnected. A Question you always have to ask: Can we improve on this proposition? Answer. NO!

More information

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu** 4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN Robin Thomas* Xingxing Yu** School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332, USA May 1991, revised 23 October 1993. Published

More information

Hamiltonicity in Connected Regular Graphs

Hamiltonicity in Connected Regular Graphs Hamiltonicity in Connected Regular Graphs Daniel W. Cranston Suil O April 29, 2012 Abstract In 1980, Jackson proved that every 2-connected k-regular graph with at most 3k vertices is Hamiltonian. This

More information

Relating minimum degree and the existence of a k-factor

Relating minimum degree and the existence of a k-factor Relating minimum degree and the existence of a k-factor Stephen G Hartke, Ryan Martin, and Tyler Seacrest October 6, 010 Abstract A k-factor in a graph G is a spanning regular subgraph in which every vertex

More information

On the Path-width of Planar Graphs

On the Path-width of Planar Graphs On the Path-width of Planar Graphs Omid Amini 1,2 Florian Huc 1 Stéphane Pérennes 1 FirstName.LastName@sophia.inria.fr Abstract In this paper, we present a result concerning the relation between the path-with

More information

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Journal of Combinatorial Theory, Series B 72, 104109 (1998) Article No. TB971794 Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Carsten Thomassen Department of Mathematics,

More information

Hamiltonian decomposition of prisms over cubic graphs

Hamiltonian decomposition of prisms over cubic graphs Hamiltonian decomposition of prisms over cubic graphs Moshe Rosenfeld, Ziqing Xiang To cite this version: Moshe Rosenfeld, Ziqing Xiang. Hamiltonian decomposition of prisms over cubic graphs. Discrete

More information

Multi-coloring and Mycielski s construction

Multi-coloring and Mycielski s construction Multi-coloring and Mycielski s construction Tim Meagher Fall 2010 Abstract We consider a number of related results taken from two papers one by W. Lin [1], and the other D. C. Fisher[2]. These articles

More information

Extremal graphs for some problems on cycles in graphs

Extremal graphs for some problems on cycles in graphs Extremal graphs for some problems on cycles in graphs Klas Markström Abstract. This paper contain a collection of extremal graphs for somequestionsoncyclesingraphs.thegraphshavebeenfoundby exhaustive computer

More information

arxiv: v1 [cs.dm] 29 Oct 2012

arxiv: v1 [cs.dm] 29 Oct 2012 arxiv:1210.7684v1 [cs.dm] 29 Oct 2012 Square-Root Finding Problem In Graphs, A Complete Dichotomy Theorem. Babak Farzad 1 and Majid Karimi 2 Department of Mathematics Brock University, St. Catharines,

More information

On Barnette's Conjecture. Jens M. Schmidt

On Barnette's Conjecture. Jens M. Schmidt On Barnette's Conjecture Jens M. Schmidt Hamiltonian Cycles Def. A graph is Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle that contains every vertex exactly once. William R. Hamilton 3-Connectivity

More information

Minimum degree conditions for the existence of fractional factors in planar graphs

Minimum degree conditions for the existence of fractional factors in planar graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(3) (2018), Pages 536 548 Minimum degree conditions for the existence of fractional factors in planar graphs P. Katerinis Department of Informatics, Athens

More information

Genetic Theory of Cubic Graphs

Genetic Theory of Cubic Graphs Hamiltonian Cycle, Traveling Salesman and Related Optimization Problems Workshop, 2012 Joint work with: Vladimir Ejov, Jerzy Filar, Michael Haythorpe Earlier works containing ideas that can be seen as

More information

On Graph Contractions and Induced Minors

On Graph Contractions and Induced Minors On Graph Contractions and Induced Minors Pim van t Hof, 1, Marcin Kamiński 2, Daniël Paulusma 1,, Stefan Szeider, 3, and Dimitrios M. Thilikos 4, 1 School of Engineering and Computing Sciences, Durham

More information

MINIMALLY NON-PFAFFIAN GRAPHS

MINIMALLY NON-PFAFFIAN GRAPHS MINIMALLY NON-PFAFFIAN GRAPHS SERGUEI NORINE AND ROBIN THOMAS Abstract. We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-pfaffian graphs minimal with respect

More information

Computing Sharp 2-factors in Claw-free Graphs

Computing Sharp 2-factors in Claw-free Graphs Computing Sharp 2-factors in Claw-free Graphs Hajo Broersma and Daniël Paulusma Department of Computer Science, Durham University, DH1 3LE Durham, United Kingdom, {hajo.broersma,daniel.paulusma}@durham.ac.uk

More information

Two Approaches for Hamiltonian Circuit Problem using Satisfiability

Two Approaches for Hamiltonian Circuit Problem using Satisfiability Two Approaches for Hamiltonian Circuit Problem using Satisfiability Jaya Thomas 1, and Narendra S. Chaudhari 2 1,2 Department of Computer science & Engineering, Indian Institute of Technology, M-Block

More information

Pancyclicity of 4-connected {Claw, Generalized Bull} - free Graphs

Pancyclicity of 4-connected {Claw, Generalized Bull} - free Graphs Pancyclicity of 4-connected {Claw, Generalized Bull} - free Graphs Michael Ferrara 1 Silke Gehrke 2 Ronald Gould 2 Colton Magnant 3 Jeffrey Powell 4 November 7, 2012 Abstract A graph G is pancyclic if

More information

Spanning connectedness and Hamiltonian thickness of graphs and interval graphs

Spanning connectedness and Hamiltonian thickness of graphs and interval graphs Spanning connectedness and Hamiltonian thickness of graphs and interval graphs Peng Li, Yaokun Wu To cite this version: Peng Li, Yaokun Wu. Spanning connectedness and Hamiltonian thickness of graphs and

More information

Dominator Colorings and Safe Clique Partitions

Dominator Colorings and Safe Clique Partitions Dominator Colorings and Safe Clique Partitions Ralucca Gera, Craig Rasmussen Naval Postgraduate School Monterey, CA 994, USA {rgera,ras}@npsedu and Steve Horton United States Military Academy West Point,

More information

Every 3-connected, essentially 11-connected line graph is hamiltonian

Every 3-connected, essentially 11-connected line graph is hamiltonian Every 3-connected, essentially 11-connected line graph is hamiltonian Hong-Jian Lai, Yehong Shao, Hehui Wu, Ju Zhou October 2, 25 Abstract Thomassen conjectured that every 4-connected line graph is hamiltonian.

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 18 February 16, 2018 February 16, 2018 CS21 Lecture 18 1 Outline the complexity class NP 3-SAT is NP-complete NP-complete problems: independent set, vertex cover,

More information

Branching. Teppo Niinimäki. Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science

Branching. Teppo Niinimäki. Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science Branching Teppo Niinimäki Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science 1 For a large number of important computational problems

More information

A counterexample to the pseudo 2-factor isomorphic graph conjecture

A counterexample to the pseudo 2-factor isomorphic graph conjecture A counterexample to the pseudo 2-factor isomorphic graph conjecture Jan Goedgebeur a,1 arxiv:1412.3350v2 [math.co] 27 May 2015 Abstract a Department of Applied Mathematics, Computer Science & Statistics

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

Densest/Heaviest k-subgraph on Interval Graphs, Chordal Graphs and Planar Graphs

Densest/Heaviest k-subgraph on Interval Graphs, Chordal Graphs and Planar Graphs 1 / 25 Densest/Heaviest k-subgraph on Interval Graphs, Chordal Graphs and Planar Graphs Presented by Jian Li, Fudan University Mar 2007, HKUST May 8, 2006 2 / 25 Problem Definition: Densest k-subgraph

More information

P versus NP. Math 40210, Fall November 10, Math (Fall 2015) P versus NP November 10, / 9

P versus NP. Math 40210, Fall November 10, Math (Fall 2015) P versus NP November 10, / 9 P versus NP Math 40210, Fall 2015 November 10, 2015 Math 40210 (Fall 2015) P versus NP November 10, 2015 1 / 9 Properties of graphs A property of a graph is anything that can be described without referring

More information

Strongly 2-connected orientations of graphs

Strongly 2-connected orientations of graphs Downloaded from orbit.dtu.dk on: Jul 04, 2018 Strongly 2-connected orientations of graphs Thomassen, Carsten Published in: Journal of Combinatorial Theory. Series B Link to article, DOI: 10.1016/j.jctb.2014.07.004

More information

1 Hamiltonian properties

1 Hamiltonian properties 1 Hamiltonian properties 1.1 Hamiltonian Cycles Last time we saw this generalization of Dirac s result, which we shall prove now. Proposition 1 (Ore 60). For a graph G with nonadjacent vertices u and v

More information

Infinite circuits in infinite graphs

Infinite circuits in infinite graphs Infinite circuits in infinite graphs Henning Bruhn Universität Hamburg R. Diestel, A. Georgakopoulos, D. Kühn, P. Sprüssel, M. Stein Henning Bruhn (U Hamburg) Infinite circuits Haifa 08 1 / 25 Locally

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Kenjiro Takazawa RIMS, Kyoto University ISMP 2015 Pittsburgh July 13, 2015 1 Overview G = (V,E): Bipartite, Simple M E: Square-free

More information

1 Notation. 2 Sergey Norin OPEN PROBLEMS

1 Notation. 2 Sergey Norin OPEN PROBLEMS OPEN PROBLEMS 1 Notation Throughout, v(g) and e(g) mean the number of vertices and edges of a graph G, and ω(g) and χ(g) denote the maximum cardinality of a clique of G and the chromatic number of G. 2

More information

Computing the Hull Number of Chordal and Distance-Hereditary Graphs. LIMOS - Université Blaise Pascal SOFSEM 2013

Computing the Hull Number of Chordal and Distance-Hereditary Graphs. LIMOS - Université Blaise Pascal SOFSEM 2013 Computing the Hull Number of Chordal and Distance-Hereditary Graphs Mamadou M. Kanté Lhouari Nourine LIMOS - Université Blaise Pascal SOFSEM 20 Betweenness Relations A betweenness on a ground set V is

More information