K-HYPERPLANE HINGE- MINIMAX CLASSIFIER. Margarita Osadchy, Tamir Hazan, Daniel Keren University of Haifa

Size: px
Start display at page:

Download "K-HYPERPLANE HINGE- MINIMAX CLASSIFIER. Margarita Osadchy, Tamir Hazan, Daniel Keren University of Haifa"

Transcription

1 K-HYPERPANE HINGE- MINIMAX CASSIFIER Margarita Osadchy amir Hazan aniel Keren University of Haifa

2 Goal Non-linear binary classifier Imbalanced data sets Fast Scalable Natural Applications Object etection Fraud etection

3 Relatively small number of samples Infinitely many training samples SVM: the zero-one loss is upper bounded by the hinge loss. n n i ma0 y i [Vapnik 000 Zhang 00 Bartlett & Mendelson 003 Bousquet et al. 004 Kalade et al 009] i Minima: the zero-one risk is upper bounded by the orstcase risk among all data distributions Z sup Pr z 0 z~ Z [anckriet et al. 003; Honorio & Jaakkola 04]

4 Imbalanced problems Hinge Risk Minima Negative set - very large number of samples Positive set small number of samples Hinge Minima Classifier

5 Hinge-Minima inear Classifier }] [ma{0 0/ y E Hinge risk bound: H Hinge risk bound for the positive class: + }] [ma{0 H E Minima risk bound for the negative class: - 0 Pr sup ~ Z M ] [ ] [ ~ ~ y y E E 0 Pr sup ~ 0/ z Z z z z Minima risk bound: M z z ] [ ] [ ~ ~ z z y z y z y z E z E } { ~ sign y y R y d ]] [ [ 0/ y y E z y M H MH

6 MH H M ECCV 0 Applied linear classifier to vision problems. Generalized to kernel classifier ith a fied number of support vectors. Faster than SVM But computing non-linear support vectors is still epensive

7 Intersection of K Hyperplanes f if otherise 0 Klivans & Servedio 004; Arriaga & Vempala 999 Computationally costly for a large number of negative eamples

8 Intersection of K Hyperplanes otherise 0 if f 0/ M H 0 Pr sup ~ Z M K i i H } ma{0 E MH

9 M sup Pr 0 ~ Z? 0 is conve set et Zμ Σ be all distributions ith knon mean μ and covariance Σ. For K fied hypeplanes i... K Marshall & Olkin 960 i sup Pr 0 Z ~ d d inf 0.

10 Eample 3 3 * * arg min. ~ is a matri ith columns that satisfy * 0 ~

11 M sup Pr 0 ~ Z? et Zμ Σ be all distributions ith knon mean μ and covariance Σ. For K fied hypeplanes i... K sup Pr 0 Z ~ d * et arg min and ~ be a matri ith columns that satisfy * 0 e shoed that d d i inf 0. ~ ~ ~ ~ d

12 Epected Risk for y=- 0 Pr sup ~ Z M ~ ~ ~ ~

13 Uniform Generalization Bound e shoed: Confidence MH O K H M log/ S S m Empirical estimation of H Empirical estimation of M raining set size

14 Proof Sketch. Sho. Sho m K O H S H log/ Etension of the Rademacher compleity to d K R m K O M S M log/ Sho for K= Follos the same steps for K>

15 For K= ˆ ˆ ˆ ˆ ˆ ˆ ˆ e sho: ˆ ˆ ˆ α bounds the minimal eigenvalue of Σ

16 For K= cont. Using Bernstein inequality for vectors [Gross 0Candes & Plan 0] for 3 log/ mˆ / 4 3log/ mˆ / 4 mˆ is the number of negative eamples

17 For K= cont. M S mˆ m sup ~ Z ˆ ˆ Pr 0 Estimate E y~ [ y ] by its empirical mean m ˆ / m and use Hoeffding inequality to bound its deviation from. Combining all together: ith the probability error of 3δ for m log M M s c 3 log/ / 4 m log/ m c / /

18 Algorithm Minimizes the bound Conve optimization for K= min K ma{0 } sup Pr 0 i i ~ Z ˆ ˆ Approimation Algorithm Find K hyperplanes in a greedy ay using conve optimization for a single hyperlane. Iteratively refine the K hyperplanes. Hard to compute

19 Approimation Algorithm- Greedy Phase

20 Approimation Algorithm- Greedy step

21 Approimation Algorithm- Greedy step

22 Approimation Algorithm- Greedy step

23 Approimation Algorithm Greedy phase K=5: K= K= K=3 K=4 K=5

24 Approimation Algorithm Refinement phase Keep K- hyperlanes fied find the Kth hyperplane

25 Approimation Iterative Algorithm Refinement phase Keep K- hyperlanes fied find the Kth hyperplane

26 Approimation Iterative Algorithm Refinement phase Keep K- hyperlanes fied find the Kth hyperplane

27 Approimation Algorithm K=5 Refinement phase 5 iterations

28 Eperiments: Synthetic ata est the robustness to imbalance in data d points equally partitioned into train validation and test

29 Eperiments: etters ata Set UCI Machine earning Repository [Murphy & Aha994] 6-dimensional feature 6 letters in the English alphabet.

30 Eperiments: Scene Recognition 397 categories of the SUN data base [Xiao et al. 00]. Features: BO of dense HOG ith 300 ords he data is divided into 50 training and 50 test images in 0 folds.

31 QUESIONS HANK YOU!

Max-Margin Ratio Machine

Max-Margin Ratio Machine JMLR: Workshop and Conference Proceedings 25:1 13, 2012 Asian Conference on Machine Learning Max-Margin Ratio Machine Suicheng Gu and Yuhong Guo Department of Computer and Information Sciences Temple University,

More information

Learning with Rejection

Learning with Rejection Learning with Rejection Corinna Cortes 1, Giulia DeSalvo 2, and Mehryar Mohri 2,1 1 Google Research, 111 8th Avenue, New York, NY 2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York,

More information

1 Kernel methods & optimization

1 Kernel methods & optimization Machine Learning Class Notes 9-26-13 Prof. David Sontag 1 Kernel methods & optimization One eample of a kernel that is frequently used in practice and which allows for highly non-linear discriminant functions

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

MRC: The Maximum Rejection Classifier for Pattern Detection. With Michael Elad, Renato Keshet

MRC: The Maximum Rejection Classifier for Pattern Detection. With Michael Elad, Renato Keshet MRC: The Maimum Rejection Classifier for Pattern Detection With Michael Elad, Renato Keshet 1 The Problem Pattern Detection: Given a pattern that is subjected to a particular type of variation, detect

More information

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

MACHINE LEARNING. Support Vector Machines. Alessandro Moschitti

MACHINE LEARNING. Support Vector Machines. Alessandro Moschitti MACHINE LEARNING Support Vector Machines Alessandro Moschitti Department of information and communication technology University of Trento Email: moschitti@dit.unitn.it Summary Support Vector Machines

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS Justin Dauwels Dept. of Information Technology and Electrical Engineering ETH, CH-8092 Zürich, Switzerland dauwels@isi.ee.ethz.ch

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Noise Removal? The Evolution Of Pr(x) Denoising By Energy Minimization. ( x) An Introduction to Sparse Representation and the K-SVD Algorithm

Noise Removal? The Evolution Of Pr(x) Denoising By Energy Minimization. ( x) An Introduction to Sparse Representation and the K-SVD Algorithm Sparse Representation and the K-SV Algorithm he CS epartment he echnion Israel Institute of technology Haifa 3, Israel University of Erlangen - Nürnberg April 8 Noise Removal? Our story begins with image

More information

Improved Algorithms for Confidence-Rated Prediction with Error Guarantees

Improved Algorithms for Confidence-Rated Prediction with Error Guarantees Improved Algorithms for Confidence-Rated Prediction with Error Guarantees Kamalika Chaudhuri Chicheng Zhang Department of Computer Science and Engineering University of California, San Diego 95 Gilman

More information

Linear Discriminant Functions

Linear Discriminant Functions Linear Discriminant Functions Linear discriminant functions and decision surfaces Definition It is a function that is a linear combination of the components of g() = t + 0 () here is the eight vector and

More information

EECS 545 Project Progress Report Sparse Kernel Density Estimates B.Gopalakrishnan, G.Bellala, G.Devadas, K.Sricharan

EECS 545 Project Progress Report Sparse Kernel Density Estimates B.Gopalakrishnan, G.Bellala, G.Devadas, K.Sricharan EECS 545 Project Progress Report Sparse Kernel Density Estimates B.Gopalakrishnan, G.Bellala, G.Devadas, K.Sricharan Introduction Density estimation forms the backbone for numerous machine learning algorithms

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Predicting the Probability of Correct Classification

Predicting the Probability of Correct Classification Predicting the Probability of Correct Classification Gregory Z. Grudic Department of Computer Science University of Colorado, Boulder grudic@cs.colorado.edu Abstract We propose a formulation for binary

More information

Solving Classification Problems By Knowledge Sets

Solving Classification Problems By Knowledge Sets Solving Classification Problems By Knowledge Sets Marcin Orchel a, a Department of Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland Abstract We propose

More information

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x)

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x) 0 x x x CSE 559A: Computer Vision For Binary Classification: [0, ] f (x; ) = σ( x) = exp( x) + exp( x) Output is interpreted as probability Pr(y = ) x are the log-odds. Fall 207: -R: :30-pm @ Lopata 0

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Issues and Techniques in Pattern Classification

Issues and Techniques in Pattern Classification Issues and Techniques in Pattern Classification Carlotta Domeniconi www.ise.gmu.edu/~carlotta Machine Learning Given a collection of data, a machine learner eplains the underlying process that generated

More information

Learning From Data Lecture 7 Approximation Versus Generalization

Learning From Data Lecture 7 Approximation Versus Generalization Learning From Data Lecture 7 Approimation Versus Generalization The VC Dimension Approimation Versus Generalization Bias and Variance The Learning Curve M. Magdon-Ismail CSCI 4100/6100 recap: The Vapnik-Chervonenkis

More information

Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities ; CU- CS

Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities ; CU- CS University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science Spring 5-1-23 Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities

More information

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment Enhancing Generalization Capability of SVM Classifiers ith Feature Weight Adjustment Xizhao Wang and Qiang He College of Mathematics and Computer Science, Hebei University, Baoding 07002, Hebei, China

More information

Kernel-Based Principal Component Analysis (KPCA) and Its Applications. Nonlinear PCA

Kernel-Based Principal Component Analysis (KPCA) and Its Applications. Nonlinear PCA Kernel-Based Principal Component Analysis (KPCA) and Its Applications 4//009 Based on slides originaly from Dr. John Tan 1 Nonlinear PCA Natural phenomena are usually nonlinear and standard PCA is intrinsically

More information

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013 Learning Theory Ingo Steinwart University of Stuttgart September 4, 2013 Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 1 / 62 Basics Informal Introduction Informal Description

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM Due: Monday, April 11, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to

More information

Data Dependent Risk Bounds for Hierarchical Mixture of Experts Classifiers

Data Dependent Risk Bounds for Hierarchical Mixture of Experts Classifiers Data Dependent Risk Bounds for Hierarchical Miture of Eperts Classifiers Arik Azran and Ron Meir Department of Electrical Engineering Technion, Haifa 3200 Israel arik@t.technion.ac.il rmeir@ee.technion.ac.il

More information

Robust Support Vector Machine Training via Convex Outlier Ablation

Robust Support Vector Machine Training via Convex Outlier Ablation Robust Support Vector Machine Training via Convex Outlier Ablation Linli Xu University of Waterloo l5xu@cs.uaterloo.ca Koby Crammer University of Pennsylvania crammer@cis.upenn.edu Dale Schuurmans University

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee Support Vector Machine Industrial AI Lab. Prof. Seungchul Lee Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories /

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Risk Minimization Barnabás Póczos What have we seen so far? Several classification & regression algorithms seem to work fine on training datasets: Linear

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos Empirical Risk and True Risk 2 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical

More information

Empirical Risk Minimization

Empirical Risk Minimization Empirical Risk Minimization Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Introduction PAC learning ERM in practice 2 General setting Data X the input space and Y the output space

More information

VC dimension and Model Selection

VC dimension and Model Selection VC dimension and Model Selection Overview PAC model: review VC dimension: Definition Examples Sample: Lower bound Upper bound!!! Model Selection Introduction to Machine Learning 2 PAC model: Setting A

More information

ROBUST LINEAR DISCRIMINANT ANALYSIS WITH A LAPLACIAN ASSUMPTION ON PROJECTION DISTRIBUTION

ROBUST LINEAR DISCRIMINANT ANALYSIS WITH A LAPLACIAN ASSUMPTION ON PROJECTION DISTRIBUTION ROBUST LINEAR DISCRIMINANT ANALYSIS WITH A LAPLACIAN ASSUMPTION ON PROJECTION DISTRIBUTION Shujian Yu, Zheng Cao, Xiubao Jiang Department of Electrical and Computer Engineering, University of Florida 0

More information

Sparse Algorithms are not Stable: A No-free-lunch Theorem

Sparse Algorithms are not Stable: A No-free-lunch Theorem Sparse Algorithms are not Stable: A No-free-lunch Theorem Huan Xu Shie Mannor Constantine Caramanis Abstract We consider two widely used notions in machine learning, namely: sparsity algorithmic stability.

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis Lecture Recalls of probability theory Massimo Piccardi University of Technology, Sydney,

More information

Machine Learning: Fisher s Linear Discriminant. Lecture 05

Machine Learning: Fisher s Linear Discriminant. Lecture 05 Machine Learning: Fisher s Linear Discriinant Lecture 05 Razvan C. Bunescu chool of Electrical Engineering and Coputer cience bunescu@ohio.edu Lecture 05 upervised Learning ask learn an (unkon) function

More information

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence Chao Zhang The Biodesign Institute Arizona State University Tempe, AZ 8587, USA Abstract In this paper, we present

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Convex Optimization in Classification Problems

Convex Optimization in Classification Problems New Trends in Optimization and Computational Algorithms December 9 13, 2001 Convex Optimization in Classification Problems Laurent El Ghaoui Department of EECS, UC Berkeley elghaoui@eecs.berkeley.edu 1

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Type II variational methods in Bayesian estimation

Type II variational methods in Bayesian estimation Type II variational methods in Bayesian estimation J. A. Palmer, D. P. Wipf, and K. Kreutz-Delgado Department of Electrical and Computer Engineering University of California San Diego, La Jolla, CA 9093

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Hilbert Space Methods in Learning

Hilbert Space Methods in Learning Hilbert Space Methods in Learning guest lecturer: Risi Kondor 6772 Advanced Machine Learning and Perception (Jebara), Columbia University, October 15, 2003. 1 1. A general formulation of the learning problem

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Evaluation of Support Vector Machines and Minimax Probability. Machines for Weather Prediction. Stephen Sullivan

Evaluation of Support Vector Machines and Minimax Probability. Machines for Weather Prediction. Stephen Sullivan Generated using version 3.0 of the official AMS L A TEX template Evaluation of Support Vector Machines and Minimax Probability Machines for Weather Prediction Stephen Sullivan UCAR - University Corporation

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 2: Introduction to statistical learning theory. 1 / 22 Goals of statistical learning theory SLT aims at studying the performance of

More information

MATH 829: Introduction to Data Mining and Analysis Support vector machines

MATH 829: Introduction to Data Mining and Analysis Support vector machines 1/10 MATH 829: Introduction to Data Mining and Analysis Support vector machines Dominique Guillot Departments of Mathematical Sciences University of Delaware March 11, 2016 Hyperplanes 2/10 Recall: A hyperplane

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Minimax risk bounds for linear threshold functions

Minimax risk bounds for linear threshold functions CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 3 Minimax risk bounds for linear threshold functions Lecturer: Peter Bartlett Scribe: Hao Zhang 1 Review We assume that there is a probability

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Fast Rates for Estimation Error and Oracle Inequalities for Model Selection

Fast Rates for Estimation Error and Oracle Inequalities for Model Selection Fast Rates for Estimation Error and Oracle Inequalities for Model Selection Peter L. Bartlett Computer Science Division and Department of Statistics University of California, Berkeley bartlett@cs.berkeley.edu

More information

Statistical Learning Learning From Examples

Statistical Learning Learning From Examples Statistical Learning Learning From Examples We want to estimate the working temperature range of an iphone. We could study the physics and chemistry that affect the performance of the phone too hard We

More information

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 11

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 11 EEC 686/785 Modeling & Performance Evaluation of Computer Systems Lecture Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org (based on Dr. Raj Jain s lecture

More information

Learning Linear Detectors

Learning Linear Detectors Learning Linear Detectors Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Detection versus Classification Bayes Classifiers Linear Classifiers Examples of Detection 3 Learning: Detection

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples From Last Meeting Studied Fisher Linear Discrimination - Mathematics - Point Cloud view - Likelihood view - Toy eamples - Etensions (e.g. Principal Discriminant Analysis) Polynomial Embedding Aizerman,

More information

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization H. Brendan McMahan Google, Inc. Abstract We prove that many mirror descent algorithms for online conve optimization

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Sharp Generalization Error Bounds for Randomly-projected Classifiers

Sharp Generalization Error Bounds for Randomly-projected Classifiers Sharp Generalization Error Bounds for Randomly-projected Classifiers R.J. Durrant and A. Kabán School of Computer Science The University of Birmingham Birmingham B15 2TT, UK http://www.cs.bham.ac.uk/ axk

More information

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1 Introduction to Machine Learning Introduction to ML - TAU 2016/7 1 Course Administration Lecturers: Amir Globerson (gamir@post.tau.ac.il) Yishay Mansour (Mansour@tau.ac.il) Teaching Assistance: Regev Schweiger

More information

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs L0: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

The maximum margin classifier. Machine Learning and Bayesian Inference. Dr Sean Holden Computer Laboratory, Room FC06

The maximum margin classifier. Machine Learning and Bayesian Inference. Dr Sean Holden Computer Laboratory, Room FC06 Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC06 Suggestion: why not drop all this probability nonsense and just do this: 2 Telephone etension 63725 Email: sbh@cl.cam.ac.uk

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Linear Support Vector Machine Kernelized SVM Kernels 2 From ERM to RLM Empirical Risk Minimization in the binary

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami A Modified ν-sv Method For Simplified Regression A Shilton apsh@eemuozau), M Palanisami sami@eemuozau) Department of Electrical and Electronic Engineering, University of Melbourne, Victoria - 3 Australia

More information

Support Vector Machines. Machine Learning Fall 2017

Support Vector Machines. Machine Learning Fall 2017 Support Vector Machines Machine Learning Fall 2017 1 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost 2 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost Produce

More information

Support Vector Machines with a Reject Option

Support Vector Machines with a Reject Option Support Vector Machines with a Reject Option Yves Grandvalet, 2, Alain Rakotomamonjy 3, Joseph Keshet 2 and Stéphane Canu 3 Heudiasyc, UMR CNRS 6599 2 Idiap Research Institute Université de Technologie

More information

Improved Algorithms for Confidence-Rated Prediction with Error Guarantees

Improved Algorithms for Confidence-Rated Prediction with Error Guarantees Improved Algorithms for Confidence-Rated Prediction with Error Guarantees Kamalika Chaudhuri Chicheng Zhang Department of Computer Science and Engineering University of California, San Diego 95 Gilman

More information

Generalization Bounds and Stability

Generalization Bounds and Stability Generalization Bounds and Stability Lorenzo Rosasco Tomaso Poggio 9.520 Class 9 2009 About this class Goal To recall the notion of generalization bounds and show how they can be derived from a stability

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Deep Boosting MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Model selection. Deep boosting. theory. algorithm. experiments. page 2 Model Selection Problem:

More information

arxiv: v1 [cs.cv] 11 May 2015 Abstract

arxiv: v1 [cs.cv] 11 May 2015 Abstract Training Deeper Convolutional Networks with Deep Supervision Liwei Wang Computer Science Dept UIUC lwang97@illinois.edu Chen-Yu Lee ECE Dept UCSD chl260@ucsd.edu Zhuowen Tu CogSci Dept UCSD ztu0@ucsd.edu

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal In this class we continue our journey in the world of RKHS. We discuss the Mercer theorem which gives

More information

Statistical Decision Theory and Bayesian Analysis Chapter1 Basic Concepts. Outline. Introduction. Introduction(cont.) Basic Elements (cont.

Statistical Decision Theory and Bayesian Analysis Chapter1 Basic Concepts. Outline. Introduction. Introduction(cont.) Basic Elements (cont. Statistical Decision Theory and Bayesian Analysis Chapter Basic Concepts 939 Outline Introduction Basic Elements Bayesian Epected Loss Frequentist Risk Randomized Decision Rules Decision Principles Misuse

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 In the previous lecture, e ere introduced to the SVM algorithm and its basic motivation

More information

N-bit Parity Neural Networks with minimum number of threshold neurons

N-bit Parity Neural Networks with minimum number of threshold neurons Open Eng. 2016; 6:309 313 Research Article Open Access Marat Z. Arslanov*, Zhazira E. Amirgalieva, and Chingiz A. Kenshimov N-bit Parity Neural Netorks ith minimum number of threshold neurons DOI 10.1515/eng-2016-0037

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

Stochastic gradient descent and robustness to ill-conditioning

Stochastic gradient descent and robustness to ill-conditioning Stochastic gradient descent and robustness to ill-conditioning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Aymeric Dieuleveut, Nicolas Flammarion,

More information

Computational and Statistical Learning theory

Computational and Statistical Learning theory Computational and Statistical Learning theory Problem set 2 Due: January 31st Email solutions to : karthik at ttic dot edu Notation : Input space : X Label space : Y = {±1} Sample : (x 1, y 1,..., (x n,

More information

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 A. Kernels 1. Let X be a finite set. Show that the kernel

More information

Large Relative Margin and Applications. Pannagadatta K. Shivaswamy

Large Relative Margin and Applications. Pannagadatta K. Shivaswamy Large Relative Margin and Applications Pannagadatta K. Shivaswamy Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

More information

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion Semi-supervised ictionary Learning Based on Hilbert-Schmidt Independence Criterion Mehrdad J. Gangeh 1, Safaa M.A. Bedawi 2, Ali Ghodsi 3, and Fakhri Karray 2 1 epartments of Medical Biophysics, and Radiation

More information