Math Vector Calculus II

Size: px
Start display at page:

Download "Math Vector Calculus II"

Transcription

1 Math Vector Calculus II Review Notes Vectors We assume the reader is familiar with all the basic concepts regarding vectors and vector arithmetic, such as addition/subtraction of vectors in R n, scalar multiplication, the triangle and parallelogram laws, etc. So we begin our review with some other operations that are important. Recall: A unit vector (a vector of length 1) is denoted with a hat on top such as û. The coordinate unit vectors in engineering notation for R 3 (or R 2 ) are î = (1, 0, 0) (or (1, 0)) ĵ = (0, 1, 0) (or (0, 1)) ˆk = (0, 0, 1). To translate between the notations we use a, b, c = aî + bĵ + cˆk (or a, b = aî + bĵ). Dot Product The dot product of two vectors u = u 1, u 2,..., u n and v = v 1, v 2,..., v n is a scalar given by u v = n u i v i. i=1 Homework for the reader: Compute some random dot products.

2 Basic properties of the dot product (verification is left as homework to the reader): (1) u v = v u. (2) u (v + w) = u v + u w. (3) u u > 0 if and only if u 0. u u = 0 if and only if u = 0. (4) u u = u 2. Using the Law of Cosines (draw a triangle!): u v 2 = u 2 + v 2 2 u v cos θ (u v) (u v) = u u + v v 2 u v cos θ 2u v = 2 u v cos θ u v = u v cos θ. Geometric interpretation of the dot product: u v = u v cos θ. Moreover, two vectors in R n are orthogonal (perpendicular) if and only if their dot product is zero! (Note: Two vectors in R n are parallel if and only if they are scalar multiples of each other.)

3 Orthogonal Projections: The orthogonal projection of u onto v 0, denoted p = proj v (u), is defined as the scalar multiple of v that is orthogonal to u p as seen here: u cos θ So proj v (u) = ( u cos θ)(ˆv) = v = v The component of u along v is ( u cos θ) = u v the projection, denoted comp v (u). u v cos θ v 2 v = v ( u v ) v. v v, the signed magnitude (aka length) of Homework for the reader: Find the projection of (2, 4) onto (5, 1). Find the projection of (1, 2, 3) onto (1, 1, 1).

4 Cross Product The dot product, takes two vectors in R n and produces a scalar. The cross product takes two vectors in R 3 and produces another vector in R 3 that is perpendicular to both input vectors and in a direction determined by the right-hand rule. Let u = (u 1, u 2, u 3 ) and v = (v 1, v 2, v 3 ). Then the cross product given by: u v = (u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ). There is a method using a matrix determinant:. u v = det î ĵ ˆk u 1 u 2 u 3 v 1 v 2 v 3 Really, the most efficient way to calculate a cross product is to use the following template: (u 1, u 2, u 3 ) x (v 1, v 2, v 3 ) = (u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ). Homework for the reader: Perform some random cross products! vectors are embedded in 3-space. Do one where 2-dim.

5 The following derivation is shown in the notes, but we will not spend the time in class to verify the steps (that s homework for the reader). u v 2 = (u 2 v 3 u 3 v 2 ) 2 + (u 3 v 1 u 1 v 3 ) 2 + (u 1 v 2 u 2 v 1 ) 2 u v 2 = u 2 2v 2 3 2u 2 v 2 u 3 v 3 + u 2 3v u 2 3v 2 1 2u 1 v 1 u 3 v 3 + u 2 1v u 2 1v 2 2 2u 1 v 1 u 2 v 2 + u 2 2v 2 1 u v 2 = u 2 1v u 2 2v u 2 3v u 2 1v u 2 2v u 2 3v u 2 1v u 2 2v u 2 3v 2 3 (u v) 2 u v 2 = (u u u 2 3)(v v v 2 3) (u v) 2 u v 2 = u 2 v 2 u 2 v 2 cos 2 θ u v 2 = u 2 v 2 (1 cos 2 θ) u v 2 = u 2 v 2 sin 2 θ u v = u v sin θ. Properties of the cross product (homework for the reader): (1) u v = v u, (2) (c 1 u) (c 2 v) = c 1 c 2 (u v), (3) u (v + w) = u v + u w. Geometrically, the cross product is perpendicular to both inputs. Its direction is given by the right-hand rule. Also, u v = u v sin θ gives the area of the parallelogram spanned by u, v. Furthermore, the volume of the parallelepiped spanned by u, v, w is u (v w) = u v w (sin θ) cos α where θ is the angle between v, w and α is the angle between u and v w. Homework for the reader: Find the area of the parallelogram with vertices (1, 2), (5, 4), (3, 9), (7, 11). Find the volume of the parallelepiped spanned by the vectors (0, 1, 2), (3, 1, 5), (1, 1, 1).

6 Lines and Curves A function from one variable to many is a vector-valued function. Such a function has a form v(t) = (x 1 (t), x 2 (t),..., x n (t)). The graph of the outputs gives a 1-dimensional curve in n-dimensional space. The curve is a line if each component function x i (t) is linear. For example, graph r(t) = cos t, sin t. It s the unit circle traversed counterclockwise. What about the graph of u(t) = t, t 2? It s the parabola y = x 2 traversed left-to-right. What about the graph of l(t) = 1+t, 2t, 1+3t? It s the line through the point (1, 0, 1) in the direction of the vector v = 1, 2, 3. Unit Tangent Vector: When v (t) exists and is nonzero, it is a tangent vector to the graph of v(t) and we can define the unit tangent vector: T(t) = v (t) v (t). Rules for derivatives (proofs are left to the reader): Let u, v be vector-valued functions of t, let f be a scalar-valued differentiable function of t, and let c be a constant vector. (1) (2) (3) (4) (5) d (c) = 0. dt d dt (u(t) + v(t)) = u (t) + v (t). d dt (f(t)u(t)) = f (t)u(t) + f(t)u (t). d dt (u(t) v(t)) = u (t) v(t) + u(t) v (t). d dt (u(t) v(t)) = u (t) v(t) + u(t) v (t).

7 Arc Length The arc-length is the integral of the speed with respect to time along the path (treating the path as the nice trajectory of an object). Suppose that r(t) = (x 1 (t), x 2 (t),..., x n (t)) represents a trajectory and each component function is differentiable. The the arc-length L of the curve between r(a) and r(b) is given by the following integral: L = b r (t) dt = b a a (x 1 (t)) 2 + (x 2(t)) (x n(t)) 2 dt. Homework for the reader: Calculate the arc length of r(t) = (cos (2πt), sin (2πt), t) from (1, 0, 0) to (1, 0, 1). Polar coordinates: One can use coordinates (r, θ) to describe points in the xy-plane, where r is the distance to the origin and θ is an angle measured counter-clockwise from the positive x-axis. In terms of the standard, rectangular coordinates (x, y), and x = r cos θ and y = r sin θ. r 2 = x 2 + y 2 and tan (θ) = y x or θ = ±π matching the sign of y. 2

8 Cylindrical and Spherical Coordinates This picture helps visualize cylindrical and spherical coordinates: Cylindrical coordinates: (r, θ, z) where (r, θ) are polar coordinates for the xy-plane. Note: Whenever convenient, one can permute the role of z with either x, y. From rectangular to cylindrical: r 2 = x 2 + y 2, tan (θ) = y x or ±π, and z = z. 2 From cylindrical to rectangular: x = r cos θ, y = r sin θ, z = z.

9 Spherical coordinates: (ρ, θ, φ) where ρ is the distance to the origin, θ is the polar angle made in the xy-plane, and φ is the angle the point regarded as a vector makes with the positive z axis. From rectangular to spherical: ρ 2 = x 2 +y 2 +z 2, tan (θ) = y x or ±π, and φ = cos 1 z 2 x. 2 +y 2 +z 2 From spherical to rectangular: x = ρ sin φ cos θ, y = ρ sin φ sin θ, and z = ρ cos φ. From cylindrical to spherical: ρ 2 = r 2 + z 2, θ = θ, and φ = cos 1 From spherical to cylindrical: r = ρ sin φ, θ = θ, and z = ρ cos φ. z r. 2 +z 2

10 Parameterizations and Arc-Length (aka Unit-Speed) What is the difference between the trajectories r 1 = (cos t, sin t) and r 2 = (cos 2πt, sin 2πt)? Both parameterize the unit circle. Use the second one if you are in a hurry... As t goes from 0 to 2π, r 1 goes through the unit circle once. So t is equal to the arc length from r 1 (0) to r 1 (t). We call such a parametrization an arc-length parametrization or a unit speed parametrization. This is not the case for r 2 as it goes through 2π units of arc length as t goes from 0 to 1. Let r(t) be a path. Consider the arc-length function for the arc length from r(0) to r(t): s(t) = t 0 r (x) dx. If s(t) can be solved for the inverse function t(s), then by substitution, we get r(t(s)) and thus it can be parameterized by its own arc-length s. Homework for the reader: Find an arc-length parametrization for r(t) = (3 cos t, 3 sin t, t). Find one for r(t) = (4t, 3t, 2t 3/2 )

11 Directional Derivatives and the Gradient Suppose z = f(x, y) and you want to know how z changes at the point (x 0, y 0 ) with respect to a direction (within the domain) given by a unit vector û = (a, b) (so a 2 + b 2 = 1). Then the derivative of f with respect to the direction given by û is given by f(x 0 + ha, y 0 + hb) f(x 0, y 0 ) Dûf(x 0, y 0 ) = lim. h 0 h Definition: The gradient of f(x 1, x 2,..., x n ) is given by f = f x1, f x2,..., f xn. A nice formula for directional derivatives: Dûf(x 0, y 0 ) = f(x 0, y 0 ) (a, b). So the directional derivative is just the dot product of the gradient and a unit vector! All of this generalizes. The directional derivative of f(x 1, x 2,..., x n ) at (a 1, a 2,..., a n ) in the direction of the n-dimensional unit vector û is given by Dûf = f(a 1, a 2,..., a n ) û. Homework for the reader: Let f(x, y) = x 3 y 2 + tan 1 (xy). Find the directional derivative of f(x, y) at the point (1, 3) in the direction of the vector < 3, 4 >.

12 For what direction is Dûf(x 0, y 0 ) at a maximum? By the dot product identity, Dûf(x 0, y 0 ) = f(x 0, y 0 ) û cos θ = f(x 0, y 0 ) cos θ. So it is at a maximum when θ = 0. That occurs when û is in the direction of the gradient f(x 0, y 0 ). Moreover, this maximum directional derivative is equal to the magnitude of the gradient. So the gradient points in the direction of maximum increase (negative gradient points in the direction of maximum decrease) and its length is that rate of increase (or decrease). Homework for the reader: Find the direction of maximum increase for the function f(x, y, z) = xy 2 z 3 at the point (2, 2, 1). What is the maximum rate of increase? Furthermore, in a direction orthogonal to the gradient of a function f(x 1, x 2,..., x n ), the directional derivative is zero. Such a direction must then be along/parallel to a level set of the function (because the function does not change in that direction). Key idea regarding the gradient: The gradient at a point P is orthogonal to the level set of f at P, pointing the direction of maximum increase, with length equal to that maximum rate of increase.

13 Differential Areas and Volumes; Change of Variables Recall the following differential areas and volumes for double and triple integrals: Rectangular: da = dxdy = dydx and dv = dxdydz (in all 6 orders). Polar/Cylindrical: da = rdrdθ and dv = rdrdθdz. Spherical: dv = ρ 2 sin (φ)dρdφdθ. These are just examples of a more general idea: A change of variables in a double integral is a transformation that relates two sets of variables, (u, v) and (x, y), where the region R in the xy-plane corresponds to a region S in the uv-plane. Suppose x = g(u, v) and y = h(u, v) defines transformation where g, h have continuous first order partials over S and is one-to-one on the interior of S. The Jacobian determinant is computed in the following way: J(u, v) = (x, y) (u, v) = det x u y u x v y v = x y u v x y v u. Homework for the reader: Calculate the Jacobian determinant for x = r cos θ,y = r sin θ...

14 Theorem (the proof is beyond the scope of this course...) Under the preceding assumptions and the assumption that f is continuous on R... f(x, y)da = R S f(g(u, v), h(u, v)) (x, y) (u, v) da. Note that (x,y) (u,v) measures the magnification or reduction of a differential area in the uvplane compared to the transformed differential area in the xy-plane... Exercises left for the reader: 1) Compute (x + y) 2 da x + y 1 using a nice change of variables... [DRAW REGION!] Hint: u = x + y and v = x y. 2) Compute R y 2 da where R is the region in the first quadrant bounded by xy = 1, xy = 4, y x = 1 and y x = 3... [DRAW REGION!] Hint: u = xy and v = y x.

15 In 3 variables... Suppose x = g(u, v, w), y = h(u, v, w) and z = l(u, v, w) is a transformation of a solid B in uvw-space into a solid E in xyz-space that on the interior is one-to-one and has continuous partials. The Jacobian determinant is computed in the following way: J(u, v, w) = (x, y, z) (u, v, w) = det x u y u z u x v y v z v x w y w z w. Calculate the Jacobian determinant for x = ρ sin φ cos θ, y = ρ sin φ cos θ, and z = ρ cos φ... of course we have seen this before! Theorem (the proof is beyond the scope of this course...) Under the preceding assumptions and the assumption that f is continuous on E... f(x, y, z)dv = E B f(g(u, v, w), h(u, v, w), l(u, v, w)) (x, y, z) (u, v, w) dv. Note that (x,y,z) (u,v,w) measures the magnification or reduction of a differential volume in the uvw-space compared to the corresponding differential volume in the xyz-space... Homework for the reader: Use a change of variables to calculate the volume bounded by the ellipsoid: x 2 a + y2 2 b + z2 2 c = 1. 2 Hint: Use x = au, y = bv, and z = cw.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

Topic 5.6: Surfaces and Surface Elements

Topic 5.6: Surfaces and Surface Elements Math 275 Notes Topic 5.6: Surfaces and Surface Elements Textbook Section: 16.6 From the Toolbox (what you need from previous classes): Using vector valued functions to parametrize curves. Derivatives of

More information

Math 212-Lecture Integration in cylindrical and spherical coordinates

Math 212-Lecture Integration in cylindrical and spherical coordinates Math 22-Lecture 6 4.7 Integration in cylindrical and spherical coordinates Cylindrical he Jacobian is J = (x, y, z) (r, θ, z) = cos θ r sin θ sin θ r cos θ = r. Hence, d rdrdθdz. If we draw a picture,

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Vector Calculus. Dr. D. Sukumar

Vector Calculus. Dr. D. Sukumar Vector Calculus Dr. D. Sukumar Space co-ordinates Change of variable Cartesian co-ordinates < x < Cartesian co-ordinates < x < < y < Cartesian co-ordinates < x < < y < < z < Cylindrical Cylindrical Cylindrical

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

Introduction to Vector Calculus

Introduction to Vector Calculus Introduction to Vector Calculus Phillip Zenor Department of Mathematics Auburn University Edward E. Slaminka Department of Mathematics Auburn University Donald Thaxton Department of Physics Auburn University

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Worksheet 1.4: Geometry of the Dot and Cross Products

Worksheet 1.4: Geometry of the Dot and Cross Products Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products From the Toolbox (what you need from previous classes): Basic algebra and trigonometry: be able to solve quadratic equations,

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions MATH 55 Applied Honors Calculus III Winter 11 Midterm 1 Review Solutions 11.1: #19 Particle starts at point ( 1,, traces out a semicircle in the counterclockwise direction, ending at the point (1,. 11.1:

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

Name: ID: Math 233 Exam 1. Page 1

Name: ID: Math 233 Exam 1. Page 1 Page 1 Name: ID: This exam has 20 multiple choice questions, worth 5 points each. You are allowed to use a scientific calculator and a 3 5 inch note card. 1. Which of the following pairs of vectors are

More information

12.1. Cartesian Space

12.1. Cartesian Space 12.1. Cartesian Space In most of your previous math classes, we worked with functions on the xy-plane only meaning we were working only in 2D. Now we will be working in space, or rather 3D. Now we will

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2) Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1 MATH 12 CLASS 23 NOTES, NOV 11 211 Contents 1. Change of variables: the Jacobian 1 1. Change of variables: the Jacobian So far, we have seen three examples of situations where we change variables to help

More information

1 Vectors and the Scalar Product

1 Vectors and the Scalar Product 1 Vectors and the Scalar Product 1.1 Vector Algebra vector in R n : an n-tuple of real numbers v = a 1, a 2,..., a n. For example, if n = 2 and a 1 = 1 and a 2 = 1, then w = 1, 1 is vector in R 2. Vectors

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Math 461 Homework 8. Paul Hacking. November 27, 2018

Math 461 Homework 8. Paul Hacking. November 27, 2018 Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F :

More information

Vector calculus background

Vector calculus background Vector calculus background Jiří Lebl January 18, 2017 This class is really the vector calculus that you haven t really gotten to in Calc III. Let us start with a very quick review of the concepts from

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. Multiple Choice.(6 pts) Find smmetric equations of the line L passing through the point (, 5, ) and perpendicular to the plane x + 3 z = 9. (a) x = + 5 3 = z (c) (x ) + 3( 3) (z ) = 9 (d) (e) x = 3 5 =

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let Math 461 Homework 8 Paul Hacking November 27, 2018 S 2 = {(x, y, z) x 2 +y 2 +z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F : S

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Brief Review of Vector Algebra

Brief Review of Vector Algebra APPENDIX Brief Review of Vector Algebra A.0 Introduction Vector algebra is used extensively in computational mechanics. The student must thus understand the concepts associated with this subject. The current

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

Brief Review of Exam Topics

Brief Review of Exam Topics Math 32A Discussion Session Week 3 Notes October 17 and 19, 2017 We ll use this week s discussion session to prepare for the first midterm. We ll start with a quick rundown of the relevant topics, and

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Vectors & Coordinate Systems

Vectors & Coordinate Systems Vectors & Coordinate Systems Antoine Lesage Landry and Francis Dawson September 7, 2017 Contents 1 Motivations & Definition 3 1.1 Scalar field.............................................. 3 1.2 Vector

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

Solutions to the Final Exam, Math 53, Summer 2012

Solutions to the Final Exam, Math 53, Summer 2012 olutions to the Final Exam, Math 5, ummer. (a) ( points) Let be the boundary of the region enclosedby the parabola y = x and the line y = with counterclockwise orientation. alculate (y + e x )dx + xdy.

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

Vector Calculus handout

Vector Calculus handout Vector Calculus handout The Fundamental Theorem of Line Integrals Theorem 1 (The Fundamental Theorem of Line Integrals). Let C be a smooth curve given by a vector function r(t), where a t b, and let f

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

Problem Solving 1: Line Integrals and Surface Integrals

Problem Solving 1: Line Integrals and Surface Integrals A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Worksheet 1.7: Introduction to Vector Functions - Position

Worksheet 1.7: Introduction to Vector Functions - Position Boise State Math 275 (Ultman) Worksheet 1.7: Introduction to Vector Functions - Position From the Toolbox (what you need from previous classes): Cartesian Coordinates: Coordinates of points in general,

More information

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003 SOLUTIONS TO SECOND PRACTICE EXAM Math a, Spring 3 Problem ) ( points) Circle for each of the questions the correct letter. No justifications are needed. Your score will be C W where C is the number of

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018 APPM 2350 Section Exam 1 140 points Wednesday September 26, 6:00pm 7:30pm, 2018 ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section/time (4) your instructor

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

MULTIVARIABLE CALCULUS

MULTIVARIABLE CALCULUS MULTIVARIABLE CALCULUS JOHN QUIGG Contents 13.1 Three-Dimensional Coordinate Systems 2 13.2 Vectors 3 13.3 The Dot Product 5 13.4 The Cross Product 6 13.5 Equations of Lines and Planes 7 13.6 Cylinders

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Peter Alfeld Math , Fall 2005

Peter Alfeld Math , Fall 2005 WeBWorK assignment due 9/2/05 at :59 PM..( pt) Consider the parametric equation x = 2(cosθ + θsinθ) y = 2(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 7 6 π? 2.( pt) Let a = (-2 4 2) and

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

Mo, 12/03: Review Tu, 12/04: 9:40-10:30, AEB 340, study session

Mo, 12/03: Review Tu, 12/04: 9:40-10:30, AEB 340, study session Math 2210-1 Notes of 12/03/2018 Math 2210-1 Fall 2018 Review Remaining Events Fr, 11/30: Starting Review. No study session today. Mo, 12/03: Review Tu, 12/04: 9:40-10:30, AEB 340, study session We, 12/05:

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Substitutions in Multiple Integrals

Substitutions in Multiple Integrals Substitutions in Multiple Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Substitutions in Multiple Integrals April 10, 2017 1 / 23 Overview In the lecture, we discuss how to evaluate

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm.

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. Bring a calculator and something to write with. Also, you will be allowed to bring in one 8.5 11 sheet of paper

More information

CALCULUS III THE CHAIN RULE, DIRECTIONAL DERIVATIVES, AND GRADIENT

CALCULUS III THE CHAIN RULE, DIRECTIONAL DERIVATIVES, AND GRADIENT CALCULUS III THE CHAIN RULE, DIRECTIONAL DERIVATIVES, AND GRADIENT MATH 20300 DD & ST2 prepared by Antony Foster Department of Mathematics (office: NAC 6-273) The City College of The City University of

More information

Vector Calculus. Lecture Notes

Vector Calculus. Lecture Notes Vector Calculus Lecture Notes Adolfo J. Rumbos c Draft date November 23, 211 2 Contents 1 Motivation for the course 5 2 Euclidean Space 7 2.1 Definition of n Dimensional Euclidean Space........... 7 2.2

More information

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma This is an archive of past Calculus IV exam questions. You should first attempt the questions without looking

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions:

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions: Math 226 homeworks, Fall 2016 General Info All homeworks are due mostly on Tuesdays, occasionally on Thursdays, at the discussion section. No late submissions will be accepted. If you need to miss the

More information

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ).

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ). Problem 1. Let p 1 be the point having polar coordinates r = 1 and θ = π. Let p 2 be the point having polar coordinates r = 1 and θ = π/2. Find the Euclidean distance between p 1 and p 2. The relationship

More information

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Calculus Vector Principia Mathematica Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Defining a vector Vectors in the plane A scalar is a quantity that can be represented by a

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Multivariable Calculus Midterm 2 Solutions John Ross

Multivariable Calculus Midterm 2 Solutions John Ross Multivariable Calculus Midterm Solutions John Ross Problem.: False. The double integral is not the same as the iterated integral. In particular, we have shown in a HW problem (section 5., number 9) that

More information

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Frank Luna, September 6, 009 Solutions to Part I Chapter 1 1. Let u = 1, and v = 3, 4. Perform the following computations and

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Math 153 Calculus III Notes

Math 153 Calculus III Notes Math 153 Calculus III Notes 10.1 Parametric Functions A parametric function is a where x and y are described by a function in terms of the parameter t: Example 1 (x, y) = {x(t), y(t)}, or x = f(t); y =

More information

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text. Math 275, section 002 (Ultman) Spring 2011 MIDTERM 2 REVIEW The second midterm will be held in class (1:40 2:30pm) on Friday 11 March. You will be allowed one half of one side of an 8.5 11 sheet of paper

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 234 final exam mainly consists of standard response questions where students

More information

Calculus with Analytic Geometry 3 Fall 2018

Calculus with Analytic Geometry 3 Fall 2018 alculus with Analytic Geometry 3 Fall 218 Practice Exercises for the Final Exam I present here a number of exercises that could serve as practice for the final exam. Some are easy and straightforward;

More information