Worksheet 1.4: Geometry of the Dot and Cross Products

Size: px
Start display at page:

Download "Worksheet 1.4: Geometry of the Dot and Cross Products"

Transcription

1 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products From the Toolbox (what you need from previous classes): Basic algebra and trigonometry: be able to solve quadratic equations, know the cosine and sine, and inverse cosine functions. Vectors: Angle-bracket and î, ĵ, ˆk notation; computing vector magnitude; computing the dot and cross products of two vectors. The dot product is used to measure angles between vectors. The cross product is used to measure the area of parallelograms spanned by two vectors, and to produce a vector normal to a plane containing two vectors. In this worksheet, you will: Use the dot product to measure angles between vectors, with a special focus on perpendicular (orthogonal) vectors. Use the cross product to measure the area of parallelograms and triangles, and to find normal vectors to planes. Definitions Dot Product (Geometric Definition): v w = v w cos θ Cross Product (Geometric Definition): Magnitude: v w = v w sin θ = area of the parallelogram spanned by v and w Direction determined by the right-hand rule, and orthogonal to both v and w

2 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 1 Model 1: The Dot Product & Angles Diagram 1A: a = 6 b = 3 a b = 9 Diagram 1B: Diagram 1C: u = 1, 1, 1 v = 1, 1, 2 Geometric Definition of the Dot Product: v w = v w cos θ Critical Thinking Questions In this section, you will use the dot product to compute angles between vectors. (Q1) In Diagram 1A: What are the magnitudes of the vectors a and b? a = b =

3 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 2 (Q2) In Diagram 1A: What is the value of the dot product a b? a b = (Q3) Use the geometric definition of the dot product and your answers from (Q1) and (Q2) to find cos θ, where θ is the angle between a and b in Diagram 1A. (Simplify your answer.) cos θ = (Q4) Using your answer from (Q3), find the angle θ between a and b in Diagram 1A. Answer in both degrees and in radians. (Give exact answers for both.) θ = or θ = (radians) (Q5) Using the same ideas as in (Q3) and (Q4), write a general formula that can be used for computing the angle θ between the two arbitrary vectors v and w in Diagram 1B. ( Arbitrary vectors means you don t have an explicit algebraic form).) Formula: θ = (Q6) In Diagram 1C: Sketch and label the x-, y-, and z-coordinate axes (3-space), then add the vectors u = 1, 1, 1 and v = 1, 1, 2 to your sketch. ( Q7) In Diagram 1C: Use your sketch to estimate the angle θ between u and v, using degrees (we use radians for derivatives and integrals, but degrees are usually easier to visualize). How confident are you that your estimate is a good one? ( Q8) Now, use the formula from (Q5) to compute the angle θ between the vectors u and v in Diagram 1C. Compare this to your answer in (Q7): how good was your estimate? ( Q9) For the triangle that has sides u and v in Diagram 1C, find the measures of all three angles.

4 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 3 Model 2: The Dot Product & Orthogonality Diagram 2A: î = 1, 0, 0 ĵ = 0, 1, 0 ˆk = 0, 0, 1 Pair of Vectors Angle Between Vectors Dot Product of Vectors î, ĵ θ î, ĵ = 90 î ĵ = î, ˆk θ î, ˆk = î ˆk = 1, 0, 0 0, 0, 1 = 0 ĵ, ˆk θ ĵ, ˆk = ĵ ˆk = Diagram 2B: u = 0, 2 v = 1, 1 w = 2, 2 Pair of Vectors Angle Between Vectors Dot Product of Vectors u, v θ u,v = 45 u v = u, w θ u,w = u w = 0, 2 2, 2 = 4 v, w θ v,w = v w =

5 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 4 Critical Thinking Questions In this section, you will use the dot product to determine when two vectors are orthogonal. (Q10) In Diagram 2A: The angles between the three pairs of vectors are all the same. Write down this angle on the table in Diagram 2A. (Q11) In Diagram 2A: The dot products between the three pairs of vectors are all the same. Write down this dot product on the table in Diagram 2A. (Q12) In Diagram 2B: Sketch and label the vectors u = 0, 2, v = 1, 1, w = 2, 2 on the coordinate axes, and complete the table. (Q13) From the table in Diagram 2B: Which vectors are perpendicular? (Q14) From the table in Diagram 2B: Which vectors have a dot product equal to zero? (Q15) Based on the results of questions (Q10-14), complete the following statement. Statement: If two vectors a and b are perpendicular, then a b =. (Q16) Use the geometric definition of the dot product, a b = a b cos θ, to explain why the statement in (Q15) is true for all pairs of perpendicular vectors. Definition: Two vectors v and w are orthogonal if v w = 0. (Q17) For every pair in the set of vectors: v = 1, 1, 2, w = 1, 1, 1, u = 3, 1, 1, 0 = 0, 0, 0 compute the dot product to determine which pairs are orthogonal. Dot Product: v w = v u = v 0 = w u = w 0 = u 0 = Orthogonal? Y / N Y / N Y / N Y / N Y / N Y / N (Q18) The following statement is true, but incomplete. Complete the statement. (Hint: Look at the geometric definition of the dot product, and (Q17).) Statement: If two vectors are orthogonal, then they are perpendicular (the angle between them is 90 ), or...

6 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 5 ( Q19) For a = a 1, a 2, a 3 and b = b1, b 2, b 3, show that a b is orthogonal to a by computing (a b) a. Model 3: The Cross Product Diagram 3A: v w = 6 ˆk v w = 6 Diagram 3B: a b = 2 î ĵ + 5 ˆk a b = 30 Critical Thinking Questions In this section, you will use the cross product to measure the area, and to find vectors normal to planes. (Q20) In Diagrams 3A and 3B, sketch the parallelograms spanned by the pairs of vectors v and w, and a and b.

7 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 6 Recall: The magnitude of the cross product of two vectors is the area of the parallelogram spanned by the two vectors. (Q21) What are the areas of the parallelograms you sketched in (Q20)? Area of parallelogram spanned by v and w (Diagram 3A): Area of parallelogram spanned by a and b (Diagram 3B): (Q22) In Diagrams 3A and 3B, sketch the triangles that have two sides formed by the pairs of vectors v and w, and a and b. What are the areas of these triangles? Area of triangle with sides v and w (Diagram 3A): Area of triangle with sides a and b (Diagram 3B): Definition: A vector that is perpendicular to a plane is called a normal vector to the plane. It is orthogonal to every vector in the plane. Two non-parallel, non-zero vectors v and w determine a plane (in the same way that three non-collinear points determine a plane). The cross product v w is orthogonal to both v and w, so it is normal to the plane determined by v and w. (Q23) In Diagram 3A: The xy-plane contains the vectors v and w, so the cross product v w is normal to the xy-plane. The unit vector in the direction of v w is. (Q24) In Diagram 3B: The vector a b is normal to the plane P containing a and b. Sketch a vector that gives the direction of a b (don t worry about the magnitude, just the direction). ( Q25) Every plane in R 3 has two unit normal vectors (vectors that are perpendicular to the plane, with magnitude equal to one). Find the two unit normal vectors to the plane P in Diagram 3B. ( Q26) Which of the two vectors R = 4 î 2 ĵ + 10 ˆk and S = 2 î ĵ + 7 ˆk is normal to the plane P in Diagram 3B? Explain how you determined this.

8 Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products 7 ( Q27) Sketch two vectors F and G so that F G = 10 ˆk. Summary The dot product can be used to find the between two vectors. If v and w are perpendicular, then v w =. If v w = 0, we say that v and w are. If v and w are orthogonal, then either: The angle between them is θ =, or: v = or w =. The cross product of two vectors is to both of the original vectors. This means the cross product of two (non-zero, non-parallel) vectors is to the plane containing the vectors. The magnitude v w is the of the spanned by v and w. To determine whether two vectors are perpendicular, use the. To find a vector that is perpendicular to two vectors, use the. To find the area of a parallelogram or triangle, use the.

Worksheet 1.3: Introduction to the Dot and Cross Products

Worksheet 1.3: Introduction to the Dot and Cross Products Boise State Math 275 (Ultman Worksheet 1.3: Introduction to the Dot and Cross Products From the Toolbox (what you need from previous classes Trigonometry: Sine and cosine functions. Vectors: Know what

More information

Vector equations of lines in the plane and 3-space (uses vector addition & scalar multiplication).

Vector equations of lines in the plane and 3-space (uses vector addition & scalar multiplication). Boise State Math 275 (Ultman) Worksheet 1.6: Lines and Planes From the Toolbox (what you need from previous classes) Plotting points, sketching vectors. Be able to find the component form a vector given

More information

Worksheet 1.7: Introduction to Vector Functions - Position

Worksheet 1.7: Introduction to Vector Functions - Position Boise State Math 275 (Ultman) Worksheet 1.7: Introduction to Vector Functions - Position From the Toolbox (what you need from previous classes): Cartesian Coordinates: Coordinates of points in general,

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Worksheet 4.2: Introduction to Vector Fields and Line Integrals

Worksheet 4.2: Introduction to Vector Fields and Line Integrals Boise State Math 275 (Ultman) Worksheet 4.2: Introduction to Vector Fields and Line Integrals From the Toolbox (what you need from previous classes) Know what a vector is. Be able to sketch vectors. Be

More information

Worksheet 1.1: Introduction to Vectors

Worksheet 1.1: Introduction to Vectors Boise State Math 275 (Ultman) Worksheet 1.1: Introduction to Vectors From the Toolbox (what you need from previous classes) Know how the Cartesian coordinates a point in the plane (R 2 ) determine its

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

32 +( 2) ( 4) ( 2)

32 +( 2) ( 4) ( 2) Math 241 Exam 1 Sample 2 Solutions 1. (a) If ā = 3î 2ĵ+1ˆk and b = 4î+0ĵ 2ˆk, find the sine and cosine of the angle θ between [10 pts] ā and b. We know that ā b = ā b cosθ and so cosθ = ā b ā b = (3)(

More information

Dr. Allen Back. Sep. 8, 2014

Dr. Allen Back. Sep. 8, 2014 in R 3 Dr. Allen Back Sep. 8, 2014 in R 3 in R 3 Def: For f (x, y), the partial derivative with respect to x at p 0 = (x 0, y 0 ) is f x = lim f (x 0 + h, y 0 ) f (x 0, y 0 ) h 0 h or f x = lim f (p 0

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Frank Luna, September 6, 009 Solutions to Part I Chapter 1 1. Let u = 1, and v = 3, 4. Perform the following computations and

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Dot Product August 2013

Dot Product August 2013 Dot Product 12.3 30 August 2013 Dot product. v = v 1, v 2,..., v n, w = w 1, w 2,..., w n The dot product v w is v w = v 1 w 1 + v 2 w 2 + + v n w n n = v i w i. i=1 Example: 1, 4, 5 2, 8, 0 = 1 2 + 4

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

Math 276, Spring 2007 Additional Notes on Vectors

Math 276, Spring 2007 Additional Notes on Vectors Math 276, Spring 2007 Additional Notes on Vectors 1.1. Real Vectors. 1. Scalar Products If x = (x 1,..., x n ) is a vector in R n then the length of x is x = x 2 1 + + x2 n. We sometimes use the notation

More information

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2 MATH 12 CLASS 2 NOTES, SEP 23 2011 Contents 1. Dot product: definition, basic properties 1 2. Dot product: determining the angle between two vectors 2 Quick links to definitions/theorems Dot product definition

More information

Dr. Allen Back. Sep. 10, 2014

Dr. Allen Back. Sep. 10, 2014 Dr. Allen Back Sep. 10, 2014 The chain rule in multivariable calculus is in some ways very simple. But it can lead to extremely intricate sorts of relationships (try thermodynamics in physical chemistry...

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition VECTORS Vectors in 2- D and 3- D in Euclidean space or flatland are easy compared to vectors in non- Euclidean space. In Cartesian coordinates we write a component of a vector as where the index i stands

More information

Math Vector Calculus II

Math Vector Calculus II Math 255 - Vector Calculus II Review Notes Vectors We assume the reader is familiar with all the basic concepts regarding vectors and vector arithmetic, such as addition/subtraction of vectors in R n,

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

Solutions to Selected Questions from Denis Sevee s Vector Geometry. (Updated )

Solutions to Selected Questions from Denis Sevee s Vector Geometry. (Updated ) Solutions to Selected Questions from Denis Sevee s Vector Geometry. (Updated 24--27) Denis Sevee s Vector Geometry notes appear as Chapter 5 in the current custom textbook used at John Abbott College for

More information

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for CHAPTER 4 VECTORS Before we go any further, we must talk about vectors. They are such a useful tool for the things to come. The concept of a vector is deeply rooted in the understanding of physical mechanics

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk Vector Operations Vector Operations ME 202 Multiplication by a scalar Addition/subtraction Scalar multiplication (dot product) Vector multiplication (cross product) 1 2 Graphical Operations Component Operations

More information

Name: ID: Math 233 Exam 1. Page 1

Name: ID: Math 233 Exam 1. Page 1 Page 1 Name: ID: This exam has 20 multiple choice questions, worth 5 points each. You are allowed to use a scientific calculator and a 3 5 inch note card. 1. Which of the following pairs of vectors are

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

Chapter 3. The Scalar Product. 3.1 The scalar product using coördinates

Chapter 3. The Scalar Product. 3.1 The scalar product using coördinates Chapter The Scalar Product The scalar product is a way of multiplying two vectors to produce a scalar (real number) Let u and v be nonzero vectors represented by AB and AC C v A θ u B We define the angle

More information

Vectors. J.R. Wilson. September 28, 2017

Vectors. J.R. Wilson. September 28, 2017 Vectors J.R. Wilson September 28, 2017 This chapter introduces vectors that are used in many areas of physics (needed for classical physics this year). One complication is that a number of different forms

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

Vectors. J.R. Wilson. September 27, 2018

Vectors. J.R. Wilson. September 27, 2018 Vectors J.R. Wilson September 27, 2018 This chapter introduces vectors that are used in many areas of physics (needed for classical physics this year). One complication is that a number of different forms

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product The Cross Product MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Introduction Recall: the dot product of two vectors is a scalar. There is another binary operation on vectors

More information

12.3 Dot Products, 12.4 Cross Products

12.3 Dot Products, 12.4 Cross Products 12.3 Dot Products, 12.4 Cross Products How do we multiply vectors? How to multiply vectors is not at all obvious, and in fact, there are two different ways to make sense of vector multiplication, each

More information

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ).

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ). Problem 1. Let p 1 be the point having polar coordinates r = 1 and θ = π. Let p 2 be the point having polar coordinates r = 1 and θ = π/2. Find the Euclidean distance between p 1 and p 2. The relationship

More information

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution Math 20, Exam, Practice Fall 2009 Problem Solution. Let A = (,,2), B = (0,,), C = (2,,). (a) Find the vector equation of the plane through A, B, C. (b) Find the area of the triangle with these three vertices.

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

Topic 5.2: Introduction to Vector Fields

Topic 5.2: Introduction to Vector Fields Math 75 Notes Topic 5.: Introduction to Vector Fields Tetbook Section: 16.1 From the Toolbo (what you need from previous classes): Know what a vector is. Be able to sketch a vector using its component

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Vectors & Coordinate Systems

Vectors & Coordinate Systems Vectors & Coordinate Systems Antoine Lesage Landry and Francis Dawson September 7, 2017 Contents 1 Motivations & Definition 3 1.1 Scalar field.............................................. 3 1.2 Vector

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Section 13.4 The Cross Product

Section 13.4 The Cross Product Section 13.4 The Cross Product Multiplying Vectors 2 In this section we consider the more technical multiplication which can be defined on vectors in 3-space (but not vectors in 2-space). 1. Basic Definitions

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering- 2016 Engineering Mechanics Statics 2. Force Vectors; Operations on Vectors Dr. Rami Zakaria MECHANICS, UNITS, NUMERICAL CALCULATIONS & GENERAL PROCEDURE FOR ANALYSIS Today

More information

Math Requirements for applicants by Innopolis University

Math Requirements for applicants by Innopolis University Math Requirements for applicants by Innopolis University Contents 1: Algebra... 2 1.1 Numbers, roots and exponents... 2 1.2 Basics of trigonometry... 2 1.3 Logarithms... 2 1.4 Transformations of expressions...

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Vectors Year 12 Term 1

Vectors Year 12 Term 1 Vectors Year 12 Term 1 1 Vectors - A Vector has Two properties Magnitude and Direction - A vector is usually denoted in bold, like vector a, or a, or many others. In 2D - a = xı + yȷ - a = x, y - where,

More information

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018 APPM 2350 Section Exam 1 140 points Wednesday September 26, 6:00pm 7:30pm, 2018 ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section/time (4) your instructor

More information

F F. proj cos( ) v. v proj v

F F. proj cos( ) v. v proj v Geometric Definition of Dot Product 1.2 The Dot Product Suppose you are pulling up on a rope attached to a box, as shown above. How would you find the force moving the box towards you? As stated above,

More information

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1)

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Math 20C Multivariable Calculus Lecture 1 1 Coordinates in space Slide 1 Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Vector calculus studies derivatives and

More information

Further Mathematics Summer work booklet

Further Mathematics Summer work booklet Further Mathematics Summer work booklet Further Mathematics tasks 1 Skills You Should Have Below is the list of the skills you should be confident with before starting the A-Level Further Maths course:

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

CHAPTER 4. APPLICATIONS AND REVIEW IN TRIGONOMETRY

CHAPTER 4. APPLICATIONS AND REVIEW IN TRIGONOMETRY CHAPTER 4. APPLICATIONS AND REVIEW IN TRIGONOMETRY In the present chapter we apply the vector algebra and the basic properties of the dot product described in the last chapter to planar geometry and trigonometry.

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and Trig Identities An identity is an equation that is true for all values of the variables. Examples of identities might be obvious results like Part 4, Trigonometry Lecture 4.8a, Trig Identities and Equations

More information

Physics 170 Lecture 5. Dot Product: Projection of Vector onto a Line & Angle Between Two Vectors

Physics 170 Lecture 5. Dot Product: Projection of Vector onto a Line & Angle Between Two Vectors Phys 170 Lecture 5 1 Physics 170 Lecture 5 Dot Product: Projection of Vector onto a Line & Angle etween Two Vectors Phys 170 Lecture 5 2 Mastering Engineering Introduction to M.E. and Assignment 1 moved

More information

2) If a=<2,-1> and b=<3,2>, what is a b and what is the angle between the vectors?

2) If a=<2,-1> and b=<3,2>, what is a b and what is the angle between the vectors? CMCS427 Dot product review Computing the dot product The dot product can be computed via a) Cosine rule a b = a b cos q b) Coordinate-wise a b = ax * bx + ay * by 1) If a b, a and b all equal 1, what s

More information

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is The Cross Product 1-1-2018 The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is v w = (v 2 w 3 v 3 w 2 )î+(v 3 w 1 v 1 w 3 )ĵ+(v 1 w 2 v 2 w 1 )ˆk = v 1 v 2 v 3 w 1 w 2 w 3. Strictly speaking,

More information

Dear Future CALCULUS Student,

Dear Future CALCULUS Student, Dear Future CALCULUS Student, I am looking forward to teaching the AP Calculus AB class this coming year and hope that you are looking forward to the class as well. Here a few things you need to know prior

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS LECTURE : CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS MA1111: LINEAR ALGEBRA I, MICHAELMAS 016 1. Finishing up dot products Last time we stated the following theorem, for which I owe you

More information

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4 Topic 2-2: Derivatives of Vector Functions Textbook: Section 13.2, 13.4 Warm-Up: Parametrization of Circles Each of the following vector functions describe the position of an object traveling around the

More information

Lecture 1.4: Inner products and orthogonality

Lecture 1.4: Inner products and orthogonality Lecture 1.4: Inner products and orthogonality Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics M.

More information

YEAR 12 - Mathematics Pure (C1) Term 1 plan

YEAR 12 - Mathematics Pure (C1) Term 1 plan Week YEAR 12 - Mathematics Pure (C1) Term 1 plan 2016-2017 1-2 Algebra Laws of indices for all rational exponents. Use and manipulation of surds. Quadratic functions and their graphs. The discriminant

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Topic 5.6: Surfaces and Surface Elements

Topic 5.6: Surfaces and Surface Elements Math 275 Notes Topic 5.6: Surfaces and Surface Elements Textbook Section: 16.6 From the Toolbox (what you need from previous classes): Using vector valued functions to parametrize curves. Derivatives of

More information

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar J. Peraire Dynamics 16.07 Fall 2004 Version 1.1 REVIEW - Vectors By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making

More information

5.7 Justifying the Laws

5.7 Justifying the Laws SECONDARY MATH III // MODULE 5 The Pythagorean theorem makes a claim about the relationship between the areas of the three squares drawn on the sides of a right triangle: the sum of the area of the squares

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean. A. Definitions: 1.

Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean. A. Definitions: 1. Name Date Period Notes Formal Geometry Chapter 8 Right Triangles and Trigonometry 8.1 Geometric Mean A. Definitions: 1. Geometric Mean: 2. Right Triangle Altitude Similarity Theorem: If the altitude is

More information

7.1 Projections and Components

7.1 Projections and Components 7. Projections and Components As we have seen, the dot product of two vectors tells us the cosine of the angle between them. So far, we have only used this to find the angle between two vectors, but cosines

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Math 108A: August 21, 2008 John Douglas Moore Our goal in these notes is to explain a few facts regarding linear systems of equations not included in the first few chapters

More information

MATH 12 CLASS 4 NOTES, SEP

MATH 12 CLASS 4 NOTES, SEP MATH 12 CLASS 4 NOTES, SEP 28 2011 Contents 1. Lines in R 3 1 2. Intersections of lines in R 3 2 3. The equation of a plane 4 4. Various problems with planes 5 4.1. Intersection of planes with planes or

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

CHAPTER 10 VECTORS POINTS TO REMEMBER

CHAPTER 10 VECTORS POINTS TO REMEMBER For more important questions visit : www4onocom CHAPTER 10 VECTORS POINTS TO REMEMBER A quantity that has magnitude as well as direction is called a vector It is denoted by a directed line segment Two

More information

MAC Module 5 Vectors in 2-Space and 3-Space II

MAC Module 5 Vectors in 2-Space and 3-Space II MAC 2103 Module 5 Vectors in 2-Space and 3-Space II 1 Learning Objectives Upon completing this module, you should be able to: 1. Determine the cross product of a vector in R 3. 2. Determine a scalar triple

More information

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017 Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017 Since we didn t get a chance to discuss parametrized lines last week, we may spend some time discussing those before moving on to the dot

More information

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS.

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS. STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF 2017 - DRAFT SYLLABUS Subject :Mathematics Class : XI TOPIC CONTENT Unit 1 : Real Numbers - Revision : Rational, Irrational Numbers, Basic Algebra

More information

1 Vector algebra in R 3.

1 Vector algebra in R 3. ECE 298JA VC #1 Version 3.03 November 14, 2017 Fall 2017 Univ. of Illinois Due Mon, Dec 4, 2017 Prof. Allen Topic of this homework: Vector algebra and fields in R 3 ; Gradient and scalar Laplacian operator;

More information

BUILT YOU. ACT Pathway. for

BUILT YOU. ACT Pathway. for BUILT for YOU 2016 2017 Think Through Math s is built to equip students with the skills and conceptual understandings of high school level mathematics necessary for success in college. This pathway progresses

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 214 (R1) Winter 2008 Intermediate Calculus I Solutions to Problem Set #8 Completion Date: Friday March 14, 2008 Department of Mathematical and Statistical Sciences University of Alberta Question 1.

More information

The Gram-Schmidt Process 1

The Gram-Schmidt Process 1 The Gram-Schmidt Process In this section all vector spaces will be subspaces of some R m. Definition.. Let S = {v...v n } R m. The set S is said to be orthogonal if v v j = whenever i j. If in addition

More information

MATH1014. Semester 1 Administrative Overview. Neil Montgomery calculus

MATH1014. Semester 1 Administrative Overview. Neil Montgomery calculus MATH1014 Semester 1 Administrative Overview Lecturers: Scott Morrison linear algebra scott.morrison@anu.edu.au Neil Montgomery calculus neil.montgomery@anu.edu.au Dr Scott Morrison (ANU) MATH1014 Notes

More information