Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Size: px
Start display at page:

Download "Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse"

Transcription

1 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit Discrt-tim sigal ] th DFT is giv by aalysis quatio):,,,, ] ) for X L 6.) ad th ivrs DFT IDFT) is giv by sythsis quatio):,,,, ) ] for X L 6.) Proof: ) ] ]. ). p p p p p p X Sum both sids ovr to -: ) ) ] ] ]. ). p p p p p p p p p X 6.3) Usig th proprty: p p p ) 6.4) 6.3) sums to ]., divisio by yilds 6.).

2 . Ths two quatios form DFT pair.. Thy hav both -poit rsolutio both i th discrt-tim domai ad discrt-frqucy domai. 3. Always th scalig factor / is associatd with th sythsis quatio ivrs DFT). 4. X ) is priodic i or quivaltly i Ω / ; that is X ) X Ω ) X Ω ) X )) X ) 6.5) 5. ] dtrmid from 6.) is also priodic i ; ] ] 6.6) Eampl 6.: Comput th DFT of th followig two squcs: h ] {,3,, } ad ] {,,, } whr 4 4 Lt us us this iformatio i 6.) to comput DFT valus: H ) 3 h ] for,,,3 6.

3 ]. ]. ] ] 3) 3]. ]. ] ] ) 5 3]. ]. ] ] ) 3] ] ] ] ) / 9 3 / 3 3 / 3 / h h h h H h h h h H h h h h H h h h h H Similarly, 3 3]. ]. ] ] 3) 3]. ]. ] ] ) 3 3]. ]. ] ] ) 3] ] ] ] ) / 9 3 / 3 3 / 3 / X X X X atch for th cougat symmtry of trms; i.., compl harmoics com i pairs. 6. Matri Rprstatio of DFT Lt us writ th variabls ivolvd i matri form: T ]], ], ], L ad / :,,,, ]. ) for X L 6.7) Th th wight matri is simply: ) ) ) L M L M M L L 6.8) which is ormally rfrrd as DFT matri ad th rsultig trasform vctor bcoms: X X X X T. )], ), ), L 6.9) ] ] 6.a)

4 T 6.b) * ; whr * stads for th compl cougat. 6.c) ith ths w ca writ th ivrs DFT IDFT) as follows: ] X ). for,,, L, 6.a) *. X. X 6.b) * *... I with I : idtity matri 6.) 6.3 Rlatio Btw DFT ad z-trasforms Lt us r-writ th DFT dfiitio: X ) ] X Ω) Ω ] Ω Ω ) Th DFT of ] is its DTFT valuatd at qually spacd poits i th rag, ). For a squc for which both th DTFT ad th z-trasform ist, w s that: X ) X z). z 6.4) Eampl 6.: Cosidr a discrt-tim puls sigal T] u ) T ] u 3) T] whr T. s. a) Us a si-poit DFT to comput X ). b) Comput th IDFT of X ). Lt us start th sampls at t. th th si sampls of th priodic tsio would b ],,,,,]. Th th script is simply:

5 % Eampl 6. % Part a),,,,,]; siz,); T.; stm); Xfft); dispx); MagabsX); PhasaglX); % Plots; figur; plot,mag,'*'); figur; plot,phas,''); Aswrs>> Colums through i i Colums 5 through i.5.866i % Part b) rifftx); figur; stmr); Iput sigal is actly rcovrd by mas of a full DFT ad IDFT procss. 6.5

6 Eampl 6.3: Cosidr th discrt-tim rprstatio of a cosi sigal: X ) A. ] A. Cos ).5. A. ). A ) ) A ) 6.6 ) ) A ) A ) A A ) ) for,,, L, ) ) First trm is wh ad it is A / for. Scod trm is wh ad it is A / for. A Fial rsult bcoms: X ) δ ) δ ))] whr th first trm rprsts th positiv frqucy trm ad th othr o is th mirror imag as pctd. ow lt us try to implmt that usig DFT with 48-poits ad 7-poit of sampld vrsios: % Eampl 6.3 Sampld Cosi with 48 48; ::-]; ; M 3; cos*pi*/m); X fft); magx absx); PhasX aglx); % Plots ais 3 4]); ais; stm); labl'');ylabl')'); titl'squc ) cos*pi*/3) for 48'); grid; figur; ais,47,,8]); plot,magx,'o'); % ow try it with 7; ::-]; ; M 3; cos*pi*/m); X fft); magx absx); PhasX aglx); % Plots ais 3 4]); ais; stm); labl'');ylabl')'); titl'squc ) cos*pi*/3) for 7'); grid; figur; ais,47,,8]); plot,magx,'o');

7 labl'');ylabl' X) '); titl'magitud of DFT for 48'); grid; figur; ais,47,-,]); plot,phasx,'*'); labl'');ylabl' X) '); titl'phas of DFT for 48'); grid;ais; labl'');ylabl' X) '); titl'magitud of DFT for 48');grid; figur; ais,47,-,]); plot,phasx,'*'); labl'');ylabl' X) '); titl'phas of DFT for 7'); grid;ais; 6.7

8 Ev though w wr pctig two harmoics w hav dd up plots ds som plaatio: Sampld sigals ar bcomig mor li a cotiuous sigal as icrass. Magitud plots ar ot locatd at two harmoics but pad ovr th frqucy rag, which is calld Laag i th busiss. Symmtry is rspct to th ctr of th plots rathr tha -sidd spctral halvs, which is du to th priodic bhavior of th DFT. Liarity: 6.4 Proprtis of DFT DFT { a. ] b y ]} a. X ) b. Y ) 6.5) Tim-Shift: For ay ral itgr, 6.8

9 6.9 ). ].. ]. ]. ]} { ) X m m DFT m m > < > < 6.6) Eampl 6.4: Cosidr th followig squc:

10 6. Eampl 6.5: Cosidr th followig squc for: 5 whr ± ± Othrwis X,,, ) ~ / / L

11 Lt us ow chag it to: 6.

12 Circular Priodic) Covolutio: Y ) X ). H ) y ] IDFT{ Y )} { m h m). Y ). m }. X ). X ). H ). h m]. m] m Eampl 6.6: Prform th priodic circular) covolutio of two squcs i Eampl 6.: h ] {,3,, } ad ] {,,, } Th output is th product of th two sts foud arlir: Y ) X ). H ) Y ) X ). H ) 3 Y ) X ). H ) Y 3) X 3). H 3) 3 Th IDFT would yild th output i discrt-tim domai: y) Y ) Y ) Y ) Y 3)] 6 4 / y) Y ) Y ). Y) Y 3) 4 3 y) Y ) Y ). Y ) Y 3) 4 3 / 3 y3) Y ) Y ). Y ) Y3) 4 3 / / ] 7 ] 6 9 / ] 5 6.7) 6.8) 6.

13 Rcall: Eampl 3.8: Cosidr th followig systm ad sigal squcs: ] {,,, } h ] {,3,, } Ths two squcs hav a commo priod of 4 sampls. It is ot difficult to s that th output squc y ] will b agai 4 sampls log i th itrval 3 ad rpat itslf. Lt us vrify that with a circular covolutio tabl. 3 ] - -] - -] - -3] - h]] - h]-] h]-] - - h3]-3] -4 - y c ] Th last row or th output is: y] y c 4] { 6,6,7, 5}, which idtical to th aswr w got i Chaptr 3. Liar Covolutio Usig DFT: As i all prvious trasforms, th rspos of a discrt LTI systm with a impuls rspos h ], th output du to ay iput ] is giv by th liar covolutio of th two squcs. Howvr, th product: X ). H ) corrspods to a priodic covolutio. Eampl 6.7: Prform liar covolutio of two discrt fuctios as show i th matlab tt blow. 6.3

14 %Eampl 6.7 % Liar covolutio of two-discrt fiit pulss -4:; zrossiz)); hzrossiz)); 5:9)ossiz5:9))); h5:7)ossiz5:7))); ais-4,,,]) subplot3),plot,,'o');grid; titl'iput Sigal'); labl''); ylabl')'); subplot3),plot,h,'o');grid; titl'impuls Rspos'); labl''); ylabl'h)'); %covolutio ycovh,); subplot33),plot,y5:9),'*');grid; titl'output Sigal'); labl''); ylabl'y)'); %Cas: lss tha zro figur; subplot3);plot,,'o');grid; labl''); ylabl')'); hzrossiz)); h:3)ossiz:3))); subplot3);plot,h,'o');grid; labl''); ylabl'h-)'); gtt'cas : < '); paus; %Cas: << hzrossiz)); h4:6)ossiz4:6))); subplot33);plot,h,'o');grid; labl''); ylabl'h-)'); gtt'cas : < < '); paus %Cas: 3 <<4 h3zrossiz)); h36:8)ossiz6:8))); figur; subplot3);plot,h3,'o');grid; labl''); ylabl'h-)'); gtt'cas 3: < < 4'); paus %Cas: 4 4<<6 h4zrossiz)); h48:)ossiz8:))); subplot3);plot,h4,'o');grid; labl''); ylabl'h-)'); gtt'cas 4: 4< < 6'); paus; %Cas: 5 6< h5zrossiz)); h53:5)ossiz3:5))); subplot33);plot,h5,'o');grid; labl''); ylabl'h-)'); gtt'cas 5: >6'); 6.4

15 6.5

16 ow th qustio: Ca w us DFT to prform liar covolutio, i.. covolutio of two diffrt siz fuctios?. Assum that h ] has lgth M ad ] has lgth ; M <.. Zro-pad both to th lgth K Ma{ M, } to form augmtd squcs: ha ]; a ] ad prform a K-poit priodic covolutio to yild: y P ]. 3. y P ] is a K-poit squc whras, th liar covolutio y L ] of ths squcs would hav b L-poits log whr L M. For K L, both y P ] ad y L ] would b idtical. For K < L, y P ] would corrspod to th squc obtaid by addig i tim-aliasig) th last L K valus of y L ] to th first L K poits. Thus, th first L K poits y P ] will OT corrspods to y L ], whil th ramig K L would b th sam i both squcs. y L ]. 6.6

17 Eampl 6.8: Prform th circular covolutio as liar covolutio with aliasig ampl from my TU, Sigapor Class ots): 6.7

18 6.8

19 6.9

20 Eampl 6.9: Suppos ] ] u ] u 6] 6.

21 Coclusio: h L P, tim-aliasig i th priodic covolutio of two-fiit lgth discrt sigals ca b avoidd. 6.

22 Eampl 6.: Prform liar covolutio for P<L of two squcs show i th pictur. Lt us ow calculat L poit priodic covolutio: 6.

23 6.5 Fast Fourir Trasform FFT) FFT sic its itroductio by Cooly-Tuy almost a half ctury ago has b playig historically sustaid sigificat rol i th dvlopmt of DSP sic it is th most widly usd fast algorithm i solvig may girig challgs, dsigig filtrs, prformig spctral aalysis, stimatio, ois cacllatio ad bchmar tstig dvics ad systms, tc. Also, it is also vry radily usabl for computig th ivrs trasforms. Cosidr th dfiitio of DFT i 6.) ) X ] ]{ Cos ) Si To apprciat its computatioal fficicy lt us dfi: 6.3 )} for,,, L,

24 OP Compl Multiply Compl Add Cos Multiply Si Multiply Compl Add Compl Accumulat To comput -Poit DFT w d OPS. Cooly-Tuy basic FFT algorithm rquirs. log OPS. 6.) m m DFT OPs Cooly-Tuy FFT OPs FFT Savigs 4 5% % % % % % % % % % 99% savigs i computatioal complity is uhard of i ay othr fast algorithm i scic. Ev for rasoabl ad frqutly obsrvd FTT sizs of 8 or 56-poits FFT w ar i th 9% savigs rag. Dcimatio-i-Tim Algorithm DIT): Lt us divid ] ito two subsqucs, ach with lgth /, by groupig th v idd sampls ad th odd-idd sampls. Th 6.7) ca b writt as: X ) ]. ]. odd ]. v Lt r i th first ad r i th scod sum: X ) / r / r r]. g r]. r r / r ]. r Ths / poit trms uss th fact that /. r h r]. r r ) 6.4 with with g r] r] h r] r ] 6.) 6.)

25 . / / ) 6.3) with this w ca writ 6.) as: X ) G ). H ) for,,, L, 6.4) whr G ) ad H ) rprst / poit DFTs of th corrspodig squcs i th tim-domai, rspctivly.. Sic G ) ad H ) ar priodic with a priod /, w ca writ th last quatio as: X ) G ). H ) ad for,,, L, 6.5) / X ) G ). H ) This last prssio ca b illustratd by a sigal-flow graph calld Buttrfly. r. whr. It is clar from abov that th sigal at ay od is th sum of all brachs trig th od. This buttrfly is tru for ay particular valu of i a giv rag. It ca b applid rpatdly to comput th largr ordr FFT tass as it is do blow for a 8-poit FFT. X ) G ) 8. H ) ) ) X G. ) 8 H X ) G ) 8. H ) 3 X 3) G 3) 8. H 3) But: G ) G4) ; G ) G5) ; G ) G6) ; G 3) G7) H 6. ) X 7) G 3) 7 X 4) G4). H 4) G). ) X 5) G ) 8. H ) X 6) G ) 8 H. 3) 8 H 5 6.5

26 Sic / 4 is v, w ca r-itrat th procss agai: G ) G ) ad H ) / r / 4 l / 4 l g r]. r gl]. hl]. / 4 /4 / gl]. / gl ]. l / l / l l / l / /4 l l gl ]. l / 4 hl ]. l l / l / l ) / 6.6) 6.6

27 6.7

28 Usig th spcial cas for a two-poit buttrfly, w obtai th full 8-poit FFT procss: 6.8

29 It is clar from abov ampls that th iput squc has to b orgaizd i such a way that th output frqucy trms appar i a propr squtial mar. Th tchiqu to achiv this systmatically is calld I-Plac FFT or bit-shufflig. 6.9

30 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 6.3

31 6.3 Dcimatio-i-Frqucy Algorithm DIF): It is obtaid by dividig th output squc ) X, ach with lgth /, by groupig th v idd sampls ad th odd-idd sampls. Th 6.7) ca b rwritt this tim: / /. / / / ].. ]. ]. ]. ) X 6.7) Sic ) /. w ca writ th last prssio as: / )). ) ] ) X ow lt us us th similar formulatio as i DIT cas: ]). ] ] ] ] ] whr h ad g 6.8) As w did i th prvious cas, w dtrmi th two /-poit DFTs )} ), { H G by computig th v ad odd valus sparatly by formig:

32 g ] g ] g ] 4 ad h ] h ] h ] 4 ad 6.9a) 4 ] h ] h ]). / 6.9b) 4 g ] g ] g ]). / h ad 6.3

33 Rplacig th last stag with buttrflis w hav th fial 8-poit FFT-DIF. 6.33

34 This tim th output squc is OT i propr ordr. As i th DIT cas, w d to prform bit-shufflig or i-plac FFT at th output stag. 6.6 Spctrum Estimatio ad idowig Usig FFT A larg maority of ral-lif sigals ar aalog sigals ad th qustio bcoms how ca w bfit from th computatioal fficicy of FFT for ths sigals.. Th first stp i th procss is to sampl a aalog sigal a t) at a uiform rat, hopfully fastr tha th yquist rat i ordr to avoid aliasig. Lt th samplig puls b a idal impuls trai: p T t) δ t T) 6.3) ad th rsultig sampld squc ad th trm-by-trm Fourir trasform bcom: S t) a t). pt t) ad X S w) X a w mws ) 6.3) T m Th last prssio has ifiitly may trms. If th sigal is bad-limitd th w ca succd. 6.34

35 Etractd with prmissio from Th Fourir Trasform by Omar Brigham, Prtic-Hall, 987.). Th scod stp i th procss is to isolat th sampld sigal i a fiit-widow by multiplyig with a widow fuctio w t). Th lgth siz) of th widow T is rlatd to th umbr of data poits ad th samplig itrval via T. T. Th simplst widow from is a rctagular o as show i c). Th fuctio ad its Fourir trasform ar dfid by: T T T if T Si wt / ) w t) t < T ad R w) T. 6.3) Othrwis wt / w R Th shift of T / from th origi is itroducd to avoid havig data sampls at th dgs of th widow. Th rsultig Fourir trasform is show i d) or as i t pictur. 6.35

36 3. Th fial stp is to sampl th umbr of frqucy poits at qual itrvals i th frqucy-domai. Th spacig btw sampls is w S / / T. Sic th sampld sigal i tim-domai is obtaid by multiplicatio th th samplig i frqucydomai will b modld as th multiplicatio of: X S w) * R w) by th impuls trai i th frqucydomai: PT w) w m ) δ, which has a ivrs FT: p T t) δ t mt ). Th rsult will T m T m b th priodic tsio of th sigal S t). w R t) with priod T. figur g). So, th origial sigal is rplacd by its priodic tsio. For a gral aalog sigal th spctrum obtaid by DFT is somwhat diffrt from th tru spctrum. Thr ar two rrors i th procss:. Th aliasig rror du to samplig if ot proprly pr-filtrd bfor samplig. 6.36

37 . Th widowig itroducs rippls ito th spctrum du to th covolutio opratio causig th sigal compot to sprad ovr or la ito othr frqucis. For o laag, th FT of th widow fuctio must b a dlta fuctio, which is ot. So, widowig causs laag. To miimiz spctral laag, w d to choos a widow which is clos to a dlta fuctio as possibl. Th rctagular fuctio is ot. Th discrt vrsio of th rctagular widow is prssd by: < Si Ω / ) Ω w R ] ad th frqucy rspos: ). R Ω 6.33) Othrwis Si Ω / ) 6.37

38 Lt us compar th prformac of a popular sigificatly fficit) widow Hammig) agaist a rctagular widow of 6.33). Th tim-domai bhavior of a Hammig widow is giv by: H ] Cos Th widows ad thir spctra ar show blow: 6.34) 6.38

39 Obsrvatios: Sic th tails of th widow taprs off to zro i a smooth fashio, th d ffcts ar avoidd o Gibbs phomo.) Both magitud spctra hibit LP charactristics. Rctagular widow has approimatly -3 db for th first sid lob ad sttls dow to about -3 db i th log ru. Hammig widow has th first sid lob at -5 db ad it sttls dow to -48 db i th log ru. So, drastically suprior to th rctagular widow. Hammig widow as th spctrum idicats ca b usd as a LO-PASS filtr by itslf. I othr words, ta a squc ad subct it to a Hammig widow ad th t rsult is a low-pass filtrig actio! So, w hav dsigd a LPF without goig through a digital filtr dsig procss! Th most critical factor to b watchd for is th frqucy rsolutio, which stads for th spacig btw frqucy sampls i th widow. If th rsolutio is too low, w may miss critical iformatio du to scarcity If th rsolutio is too high th th computatioal cost icrass to ma it impractical i may applicatios. Th frqucy rsolutio is dfid by: ws w 6.35) T T To improv th rsolutio, w d to us a logr data squc if possibl, othrwis w pad it with zros. Eampl 6.: Compar th DFT DFT) spctra of Hammig widow for 3,64,

40 6.4

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

Discrete Fourier Series and Transforms

Discrete Fourier Series and Transforms Lctur 4 Outi: Discrt Fourir Sris ad Trasforms Aoucmts: H 4 postd, du Tus May 8 at 4:3pm. o at Hs as soutios wi b avaiab immdiaty. Midtrm dtais o t pag H 5 wi b postd Fri May, du foowig Fri (as usua) Rviw

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation viw of STFT Digital Spch Procssig Lctur Short-Tim Fourir Aalysis Mthods - Filtr Ba Dsig j j ˆ m ˆ. X x[ m] w[ ˆ m] ˆ i fuctio of ˆ loos li a tim squc i fuctio of ˆ loos li a trasform j ˆ X dfid for ˆ 3,,,...;

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement Practical Spectral Aaysis (cotiue) (from Boaz Porat s book) Frequecy Measuremet Oe of the most importat applicatios of the DFT is the measuremet of frequecies of periodic sigals (eg., siusoidal sigals),

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Problem Set #2 Due: Friday April 20, 2018 at 5 PM. 1 EE102B Spring 2018 Signal Procssing and Linar Systms II Goldsmith Problm St #2 Du: Friday April 20, 2018 at 5 PM. 1. Non-idal sampling and rcovry of idal sampls by discrt-tim filtring 30 pts) Considr

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, 999.. uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN Jo Dattorro, Summr 998 Fractioal Samplig usig th sychroous Shah with applicatio to LIER PSE FIR FILER DESIG bstract W ivstigat th fudamtal procss of samplig usig a impuls trai, calld th shah fuctio [Bracwll],

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

The University of Manchester Analogue & Digital Filters 2003 Section D5: More on FIR digital filter design.

The University of Manchester Analogue & Digital Filters 2003 Section D5: More on FIR digital filter design. Th Uivrsity of achstr Aalogu & Digital Filtrs 3 Sctio D5: or o FIR digital filtr dsig. D5..Bacgroud: As w hav s bfor, a FIR digital filtr of ordr may b implmtd by programmig th sigal-flow graph show blow.

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

KISS: A Bit Too Simple. Greg Rose

KISS: A Bit Too Simple. Greg Rose KI: A Bit Too impl Grg Ros ggr@qualcomm.com Outli KI radom umbr grator ubgrators Efficit attack N KI ad attack oclusio PAGE 2 O approach to PRNG scurity "A radom umbr grator is lik sx: Wh it's good, its

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction Introduction Introduction to Mdical aging Lctur 4: Fourir Thory Thory dvlopd by Josph Fourir (768-83) Th Fourir transform of a signal s() yilds its frquncy spctrum S(k) Klaus Mullr s() forward transform

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

A. Basics of Discrete Fourier Transform

A. Basics of Discrete Fourier Transform A. Basics of Discrete Fourier Trasform A.1. Defiitio of Discrete Fourier Trasform (8.5) A.2. Properties of Discrete Fourier Trasform (8.6) A.3. Spectral Aalysis of Cotiuous-Time Sigals Usig Discrete Fourier

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information