Chapter 4 - The Fourier Series

Size: px
Start display at page:

Download "Chapter 4 - The Fourier Series"

Transcription

1 M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word procssor usd to crat this maual.). Usig MATLAB plot ach sum of complx siusoids ovr th tim priod idicatd. (a) x t sic t ()= =, 5ms < t < 5ms Th MATLAB program ca xactly follow th mathmatical procss i th quatio. For xampl: f = ; T = /f ; fmax = *f ; Tmi = /fmax ; dt = Tmi/ ; t = -.5:dt:.5 ; x = t* ; for = -:, x = x + sic(/)*xp(**pi**t) ; d x = ral(x/) ; plot(t,x,'') ; (Although th vctor, x, should b ral, it may hav som vry small, but o-zro imagiary parts bcaus of roud-off i th calculatios. That is why th ral commad is usd i th xt-to-last li.) x(t) -5 5 t (ms) Solutios 4-

2 M. J. Robrts - 8/8/4 9 + (b) x()= t sic sic 4 =9 t, ms < t < ms. Show by dirct aalytical itgratio that th itgral of th fuctio, is zro ovr th itrval, < t <. ()= g t Asi t Bsi 4t () = g tdt AB si tsi 4tdt Usig si( x) si( y)= cos( x y) cos x + y [ ] AB g() tdt= [ cos( t4t) cos( t+ 4t) ] dt, AB g() tdt= cos( t) cos( t) dt [ ] = AB si t si t () = g tdt AB si si si si = ()=( + ) + ( ). Covrt th fuctio, g t dos ot appar. 4 t 4 t Two vry importat trigoomtric idtitis to rmmbr ar, to a quivalt form i which cos( x)= +, si( x)= x x x x Solutios 4-

3 M. J. Robrts - 8/8/4 4. Usig MATLAB plot ths products ovr th tim rag idicatd ad obsrv i ach cas that th t ara udr th product is zro. (a) x()= t si( t) cos( 4 t), < t < 4 (b) x t si t cos 4 t, < t < ()= (c) x()= t si( t) cos( 4 t), < t < ()= () () (d) x t x t x t whr of ad x () t is a v, 5%-duty-cycl squar wav with a fudamtal priod 4 scods ad a avrag valu of zro x () t is a odd, 5%-duty-cycl squar wav with a fudamtal priod of 4 scods ad a avrag valu of zro x(t) 4 t - ()= () () () x t x t x t ()= () ad x ()= t rct t comb whr x t rct t comb t 5. A si fuctio ca b writt as si( ft)= 4. f t f t t 8 8 Solutios 4-

4 M. J. Robrts - 8/8/4 This is a vry simpl complx CT i which th harmoic fuctio is oly o-zro at two harmoic umbrs, + ad. Vrify that w ca writ th harmoic fuctio dirctly as X[ ]= ( δ[ + ]δ [ ] ). ( ) Writ th quivalt xprssios for si f t ad show that th harmoic fuctio is th complx cougat of th prvious o for si( f t). If th harmoic fuctio is corrct this quality should hold: ft ft ( f ) t si( ft )= = X[ ] = ( δ[ + ]δ[ ] ) = f t = Fiish simplifyig ad s whthr it dos.. For ach sigal, fid a complx CT which is valid for all tim, plot th magitud ad phas of th harmoic fuctio vrsus harmoic umbr,, th covrt th aswrs to th trigoomtric form of th harmoic fuctio. ()= () (a) x t 4rct 4t comb t This form is i Appdix E. But lt s do o dirctly from th dfiitio. 8 ( f ) t t t X[ ]= x() t dt = rct( t) dt = dt T 4 T 4 4 Fiish ad chc your aswr agaist Appdix E. t (b) x()= t 4rct( 4t) comb (c) A priodic sigal which is dscribd ovr o fudamtal priod by ()= x t () < sg t, t, < t < Solutios 4-4

5 M. J. Robrts - 8/8/4 7. Usig th CT tabl of trasforms ad th CT proprtis, fid th CT harmoic fuctio of ach of ths priodic sigals usig th tim itrval, T F, idicatd. (a) x()= t si( t), T F = (b) x()= t cos ( ( t. 5) ), T F = 5 I this cas, th rprstatio tim is th sam as th fudamtal priod. From Appdix E, cos( ft ) ( δ[ ]+ δ[ + ] ), TF T = Liarity Proprty: cos( t) δ[ ]+ δ[ + ], TF = T = 5 Tim Shiftig Proprty: cos ( ( t. 5) ) ( δ[ ]+ δ[ + ] ).5, T = F T = 5 ft = 5 = 4 cos ( ( t. 5) ) ( δ[ ]+ δ[ + ] ), T = F T = 5 Usig th quivalc proprty of th impuls, w ca writ g [ ] [ ]= [ ] A g A δ δ[ ], δ[ ]+ δ[ + ]= δ [ ] + δ + [ ] cos ( ( t. 5) ) δ[ + ]δ ( [ ]) From Appdix E, si( t) δ[ + ]δ (c) x t 4cos 5 t, T F = 5 ()= ( [ ]), TF = T =, T = F T = 5 5 Solutios 4-5

6 M. J. Robrts - 8/8/4 f = 5 T = TF =5T 5 Us th tabl try, T F = mt cos( ft) δ[ m]+ δ + m m a itgr ( [ ]) (d) x t d dt t ()= TF = T = 5 Start with, T F = 5 f t δ F = = 5 [ ], T T from Appdix E. Th apply th drivativ proprty of th CT. t () x()= t rct() t comb 4, T F = 4 (f) x()= t rct() t comb() t, T F = Us th fact thatsic= δ [ ]. (g) x()= t tri() t comb() t, T F = 8. If a priodic sigal, x(), t has a fudamtal priod of scods ad its harmoic fuctio is X[ ]= 4sic, with a rprstatio priod of scods, what is th harmoic fuctio of z()= t x( 4t) usig th sam rprstatio priod, scods? Solutios 4-

7 M. J. Robrts - 8/8/4 X, Usig th tim-scalig proprty, Z[ ]= a a itgr a,, othrwis X, sic, Z[ ]= a itgr 4 a itgr = , othrwis, othrwis This ca b writt mor compactly as Z[ ]= 4sic comb [ ] A priodic sigal, x(), t has a fudamtal priod of 4 ms ad its harmoic fuctio is X[ ]= 5 δ[ ]+ δ [ + ], with a rprstatio priod of 4 ms. Fid th itgral of x(). t Start with Liarity cos( ft ) ( δ[ ]+ δ[ + ] ), T = T = F 4ms cos( 5t) 5 δ[ ]+ δ[ + ], T T F = = 4ms Th us th itgratio proprty.. If X[ ] is th harmoic fuctio ovr o fudamtal priod of a uit-amplitud 5%-duty-cycl squar wav with a avrag valu of zro ad a fudamtal priod of µs, fid a xprssio cosistig of oly ral-valud fuctios for th sigal whos harmoic fuctio is X[ ]+ X[ + ]. Fid th tim-domai fuctio which corrspods to th CT harmoic fuctio, X [ ], th apply th frqucy-shiftig (harmoic-umbr-shiftig) proprty. Solutios 4-7

8 M. J. Robrts - 8/8/4. Fid th harmoic fuctio for a si wav of th gral form, Asi( f t). Th, usig Parsval s thorm, fid its sigal powr ad vrify that it is th sam as th sigal powr foud dirctly from th fuctio itslf. ( [ ]) A f t A si( ) δ[ + ]δ, T T F = P x T T T A A = A ( f t) dt= ( ftdt ) = [ ( ft) ] dt T si T si T cos 4 By Parsval s thorm, T T T A P = x P A A A x = ( δ[ + ]δ [ ] ) = ( + )= 4. Chc. =. Show for a cosi ad a si that th CT harmoic fuctios hav th proprty, For a cosi, X[ ]= X * [ ]. X[ ]= δ[ ]+ δ + ( [ ]) X[ ]= ( δ[ ]+ δ[ + ] )= ( δ[ + ]+ δ [ ] )= X[ ]= X * [ ]. Chc.. Fid ad stch th tim fuctios associatd with ths harmoic fuctios assumig T F =. (a) X[ ]= [ ]+ [ ]+ + (b) X[ ]= sic δ δ δ[ ] 4. Fid th v ad odd parts, x () t ad x o (), t of Solutios 4-8

9 M. J. Robrts - 8/8/4 x()= t cos 4t+. Th fid th harmoic fuctios, X [ ] ad X o [ ], corrspodig to thm. Th, usig th tim shiftig proprty fid th harmoic fuctio, X[ ] ad compar it to th sum of th two harmoic fuctios, X [ ] ad X o [ ]. = to fid th v ad odd parts. Us cos x + y cos x cos y si x si y 5. Usig th dirct summatio formula fid ad stch th DT harmoic fuctio of comb [ ] with =. F F X[ ]= comb [ ] = O ca choos ay covit priod for th summatio. I th priod chos blow thr is xactly o o-zro impuls i th comb fuctio at =. ( F ) X[ ]= comb [ ] = =. Usig th DT tabl of trasforms ad th DT proprtis, fid th DT harmoic fuctio of ach of ths priodic sigals usig th rprstatio priod, F, idicatd. (a) x[ ]= cos, F = (b) Th solutio is X[ ]= 5 comb [ + ]comb [ ] W ca dmostrat that this solutio is corrct by rcostitutig th sigal usig x[ ]= X[ ] = 5 comb [ + ]comb [ ] = = Sic th summatio xtds oly ovr o priod, =, choos th simplst priod, <. I that priod th two comb fuctios ar simply two impulss at =±. Solutios 4-9

10 M. J. Robrts - 8/8/4 5 x [ ]= 5 δ[ + ]δ[ ] = x[ ]= = 5 5 x[ ]=5 si si = W could hav chos a diffrt priod, for xampl 4 <. Th 5 x [ ]= 5 δ[ ]δ[ ] = 4 x[ ]= = 5 5 x[ ]= = {{ = = x[ ]= 5 si si = which is th sam aswr as bfor (with somwhat mor ffort). (c) x, x[ ]= a itgr 8 8, othrwis whr x[ ]= si, F = 48 Us th tim-scalig proprty of th DT. (d) x [ ]=, F = Solutios 4-

11 M. J. Robrts - 8/8/4 otic that this fuctio, although writt as x [ ]= could b mor simply writt as x[ ]= bcaus for ay itgr valu of discrt tim,, th rsult is always th sam,. Thrfor = comb [ ] X[] -4 4 Phas of X[] If w ta a mor straightforward approach to fidig th DT harmoic fuctio usig F = m comb m F [ ] w gt [ ] comb Obsrv that this aswr ad th prvious aswr ar idtical. That is, as must b tru. comb[ ]= comb[ ], () x[ ]= cos cos, F = (f) x[ ]=si si =, F = 4 4 Th priod of this sigal is 4. Solutios 4-

12 M. J. Robrts - 8/8/4 This form dos ot appar dirctly i Appdix E. Thrfor w must ithr us what is i Appdix E with som proprtis to gt to this form or simply apply th dfiitio of th DT harmoic fuctio dirctly. From Appdix E, comb [ ] Usig th frqucy-shiftig proprty, m [ ] comb m or Th m m ( m + ) comb m + m comb m [ ] + m = cos ( comb [ m comb m ]+ [ + ]) ad m m m = si ( comb [ m comb m + ] [ ]) X[ ]= comb4[ + ]comb4 ( [ ]) W ca dmostrat that this solutio is corrct by rcostitutig th sigal usig x[ ]= X[ ] = comb [ + ]comb [ ] = = 4 4 Sic th summatio xtds oly ovr o priod, = 4, choos th simplst priod, <. x[ ]= ( comb [ + ]comb [ ] ) 4 4 = Solutios 4-

13 M. J. Robrts - 8/8/4 W must ow dtrmi for which valus of, <, th comb fuctios ar ot zro. Ta th first comb fuctio, comb 4 [ + ]. Its impulss occur whvr + is a itgr multipl of 4. Th oly valu of i th rag, <, for which that is tru is =. Similarly, for comb 4 [ ] th oly valu for which it is o-zro is =. Thrfor w ca writ th summatio as 4 = x[ ]= δ[ ] δ[ + ] = x[ ]= = si si si = 4 4 = But this ca also b writt as x[ ]= = = = x[ ]= si si = 4 If ths two rsults ar to both b corrct si =si for ay itgr valu of. W ca writ 4 si = si = si = si =si Solutios 4-

14 M. J. Robrts - 8/8/4 provig that th two xprssios ar idd quivalt for itgr valus of. [ ]= [ ] [ ] (g) x rct comb 5 W + Usig rctw[ ] comb [ ] drcl, W + Ad, from Appdix A, drcl, m comb m m + = + [ ] ad th fact that + W + =, X[ ]= comb [ ] Agrs with comb bcaus x rct comb 5 ad i comb [ ], ca b arbitrarily chos. Th maig of [ ] th rsult is th sam rgardlss of th choic of. [ ]= [ ] [ ]= This rsult was obtaid for a priod of =. But wh th fuctio is a costat, w ca choos ay priod w li ad gt a quivalt rsult (bcaus a costat rpats xactly i ay priod you choos). For xampl, if w lt = 4 th trasform pair, comb [ ], yilds X[ ]= comb [ ] 4. Th, rcostitutig th sigal from its DT, [ ]= [ ] = [ ] x X comb = = Summig ovr th priod, <, yilds 4 4 [ ]= 4[ ] = = = 4 x comb. If w chos th priod, < w would gt 5 ( 4) 4 [ ]= 4[ ] = = = 4 x comb, which is xactly th sam rsult. I gral, for ay choic of priod ad ay rag of covrig o priod, q + = [ ]= [ ] = = x comb Solutios 4-4

15 M. J. Robrts - 8/8/4 whr th itgr, q, lis i th rag, q< +. [ ]= [ ] [ ] (h) x rct comb, F = 7. Fid th DT harmoic fuctio of x[ ]= comb[ m]comb m m = 8. Fid th avrag sigal powr of with = F =. [ ]= [ ] [ ] x rct comb 4 [ ] dirctly i th DT domai ad th fid its harmoic fuctio, X[ ], ad fid th sigal powr i th domai ad show that thy ar th sam. I th DT domai: P x = 9 I th domai: Do th summatio umrically i MATLAB to gt P x = Usig th frqucy shiftig proprty of th DT fid th DT-domai sigal, x[ ], corrspodig to th harmoic fuctio, 7 X[ ]= drcl, 7. This frqucy shiftig causs th sig of th DT-domai fuctio to altrat.. Fid th DT harmoic fuctio for [ ]= [ ] [ ] x rct comb 8 Solutios 4-5

16 M. J. Robrts - 8/8/4 with th rprstatio priod, F = 8. Th, usig MATLAB, plot th DT rprstatio, x F 7 [ ]= X[ ] = 8 ovr th DT rag, 8 < 8. For compariso, plot th fuctio, x F [ ]= X[ ] = 8 ovr th sam rag. Th plots should b idtical.. A priodic sigal, x(t), with a priod of 4 scods is dscribd ovr o priod by x ()= t t, < t< 4. Plot th sigal ad fid its trigoomtric CT dscriptio. Th plot o th sam scal approximatios to th sigal, x (), t giv by + [ ] ( ) x ()= X c []+ X c [ ] cos ( F ) X s si F = t f t f t for =, ad. (I ach cas th tim scal of th plot should covr at last two priods of th origial sigal.) Fid th trigoomtric harmoics sris by dirct itgratio usig Us or X c t + T [ ]= x() t dt T, t + T t Xc [ ]= x() t cos( ( f ) t) dt T t t + T Xs [ ]= x() t si( ( f ) t) dt T t = x cos x dx x si x x si x dx, Solutios 4-

17 M. J. Robrts - 8/8/4 = + x si x dx x cos x x cos x dx from Appdix A, ad ma th chag of variabl to fiish th itgrals. λ = t. A priodic sigal, x(t), with a priod of scods is dscribd ovr o priod by ()= x t si ( t), t <, < t <. Plot th sigal ad fid its complx CT dscriptio. Th plot o th sam scal approximatios to th sigal, x (), t giv by x ( F ) ()= t X[ ] = f t for =, ad. (I ach cas th tim scal of th plot should covr at last two priods of th origial sigal.). Fid ad plot two priods of th complx CT dscriptio of cos( t) (a) Ovr th itrval, < t <, ad (b) Ovr th itrval, < t <. 5. Th priod of cos( t) is, thrfor th complx Fourir sris dscriptio is (a) simply th xpotial dscriptio of th cosi fuctio t t + cos( t)=. That is, X[]= X[ ]= ad X [ ]=,. Solutios 4-7

18 M. J. Robrts - 8/8/4 Th plot is simply th plot of two priods of th cosi bcaus th complx Fourir sris dscriptio is xact vrywhr. (b) T F = ad ff = t + TF ff t X[ ]= x() t dt T F t si si X[ ]= cos cos Usig MATLAB, plot th followig sigals ovr th tim rag, < t <. (a) x ()= t (b) x t x t cos t ()= ()+ ()= ()+ ()= ()+ (c) x t x t cos 4 t (d) x t x9 t cos 4t For ach part, (a) through (d), umrically valuat th ara of th sigal ovr th tim rag, < t <. Th th mmbr of this squc of fuctios ca b rprstd by th gral form ()= ()+ x t x t cos t. Basd o what you obsrvd i parts (a) through (d) what is th limit as approachs ifiity? Fid th trigoomtric Fourir sris xprssio for th uit comb fuctio ad compar it to this rsult. Solutios 4-8

19 M. J. Robrts - 8/8/4 5 Succssiv Cumulativ Sums of Highr Harmoic Cosis so(t), = so(t), = so(t), = so(t), = Tim, t (s) 5. Usig th CT tabl of trasforms ad th CT proprtis, fid th CT harmoic fuctio of ach of ths priodic sigals usig th tim itrval, T F, idicatd. (a) x()= t rctt comb t () 4 Rmmbr:, T F = ()= () () If g t g t δ t Th g( t t )= g ( tt ) δ()= t g () t δ tt Ad g( t t ) g ( tt ) δ( tt )= g( tt ) t (b) x()= t 5[ tri( t) tri( t+ ) ] comb 4 4, T F = 4 t t w Usig tri comb sic w T T T t tri() t comb sic w T, with w = ad T = 4, ( f) t Th usig th tim-shiftig proprty, x( t t ) X t tri( t ) comb sic [ ], Solutios 4-9

20 M. J. Robrts - 8/8/4 ad t tri( t + ) comb sic Th, usig liarity, or t 5 tri( t ) tri( t + ) comb sic 4 4 t 5 tri( t ) tri( t + ) 5 comb 4 4 si sic 4 ()= + (c) x t si t 4cos 8 t, T F = ()= + (d) x t cos 4t 8cos t si t, T F = t () x()= t comb( λ)combλ d λ, T F = ()= (f) x t 4cos t si t, T F = 5 t t t t (g) x()= t rct comb rct comb , T F = 4 Lt Th, usig t t x()= t rct comb 8 t t ad x()= t rct comb 5 8 t t w w rct comb sic w T T T T, X [ ]= ()= () () x t x t x t 8 98 sic, T F = Solutios 4-

21 M. J. Robrts - 8/8/4 8sic, X[ ]= a itgr, othrwis, T F = 4 X [ ]= 5 5 sic, T 8 F = 8 X 5 5sic, a itgr [ ]= 4, othrwis, T F = 4 sic sic, X[ ]= , othrwis a itgr, T F = 4 All th valus of this fuctio ar zro xcpt wh =. Th X[ ]= 948δ [ ], T F = 4. (This rsult idicats that th priodic covolutio of th two sigals is a costat, 948. That ca b cofirmd by graphically priodically covolvig th two sigals. That is by fidig th ara udr th product ovr o cycl ad obsrvig that, as o sigal is shiftd, th ara dos ot chag. Sigal o is a priodic squc of pulss of hight 8, width 8 ad priod. Sigal two is a priodic squc of pulss of hight 5, width 5 ad priod 8. Th ovrall ovrlap width is a costat. That product is 8 5 = 948.) t t t t (h) x()= t rct comb rct comb 8 5, T F = sic sic, X[ ]=9 4, othrwis a itgr, T F =. A sigal, x(), t is dscribd ovr o priod by Solutios 4-

22 M. J. Robrts - 8/8/4 ()= x t T A, < t < T A, < t<. Fid its complx CT ad th, usig th itgratio proprty fid th CT of its itgral ad plot th rsultig CT rprstatio of th itgral. Fid its harmoic fuctio usig th itgral dfiitio. You should gt X[ ]= cos( ) A Th apply th itgratio proprty. Vrify that th harmoic is corrct at =. (You will d to apply L Hôpital s rul.) 7. I som typs of commuicatio systms biary data ar trasmittd usig a tchiqu calld biary phas-shift yig (BPSK) i which a is rprstd by a burst of a CT si wav ad a is rprstd by a burst which is th xact gativ of th burst that rprsts a. Lt th si frqucy b MHz ad lt th burst width b priods of th si wav. Fid ad plot th CT harmoic fuctio for a priodic biary sigal cosistig of altratig s ad s usig its fudamtal priod as th rprstatio priod. Th sigal ca b rprstd by [ ] x()= t si( t) rct( t) 5 comb( 5 t) Usig mulitplicatio-covolutio duality, 5 5 X[ ]= ( comb[ + ]comb[ ]) sic [ ] δ Rmmbr that a priodic covolutio is th sam as th apriodic covolutio of o priod of o of th priodic sigals with th tir othr sigal. Choos o priod of th diffrc of two combs. Solutios 4-

23 M. J. Robrts - 8/8/4 8. Usig th DT tabl of trasforms ad th DT proprtis, fid th harmoic fuctio of ach of ths priodic sigals usig th rprstatio priod, F, idicatd. [ ]= 4[ ] (a) x comb, F = 48 From th tabl, [ ] comb, F = Thrfor, usig th chag of priod proprty, comb, a itgr, othrwis, F = 48 Also, from th tabl, F = m comb m F [ ] 48 = comb 48 [ ] Th fuctio, comb, is a squc of impulss. Th impulss occur whrvr = m, m ay itgr. Rarragig, th impulss occur whr = 48 m. This dscribs a comb of th form, comb 48 [ ]. Thrfor th two aswrs agr. From th tabl, comb Thrfor, usig th tim scalig proprty, [ ], F = 4 Solutios 4-

24 M. J. Robrts - 8/8/4 comb, a itgr [ ] 4, othrwis, F = 48 Th, sic th two DT s ar both do with rfrc to th sam rprstatio priod, usig th multiplicatio-covolutio duality proprty, comb 48 [ ], a itgr, a itgr X[ ]= 4, othrwis, othrwis Th o-zro impulss i th first harmoic fuctio occur at valus of for which + is a itgr multipl of 48. Thrfor all ths s must b odd. Th valus of for which th scod harmoic fuctio is o-zro ar all v. Thrfor X[ ]=, for all. [ ]= [ ] This rsult implis that th origial DT fuctio, x comb4, is zro. Show that to b tru by actually doig th covolutio dirctly. (b) x[ ]= ( rct 5[ ] comb4[ ] ) si, F = 4 (c) x[ ]= x[ ]x[ ] whr x [ ]= tri comb 8 [ ], F = 9. Fid th sigal powr of 4 x[ ]= 5si 8cos 5. Us Parsval s thorm to fid th sigal powr from th harmoic fuctio. Fid. th DT harmoic fuctio, X[ ], of x[ ]= ( rct[ ]rct[ 4 ]) comb[ ]. Th plot th partial sum, 5 x X, for =,, ad th th total sum, x X. [ ]= [ ] = x[ ]= rct [ ] comb [ ]rct 4 comb [ ] [ ] [ ]= [ ] = Solutios 4-4

25 M. J. Robrts - 8/8/4 Solutios 4-5 Usig rct comb si W W [ ] [ ] + si X si si si si si si [ ]= = 4 4 X si si [ ]= 5 = 5 si si x si si si si [ ]= = = = x[] - = - x[] - = - x[] - = - x[] - Total Sum from to 5. Fid ad stch th magitud ad phas of th DT harmoic fuctio of

26 M. J. Robrts - 8/8/4 x[ ]= 4 cos + si 7 which is valid for all discrt-tim. Th last commo priod of ths two sigals is =. Us th tabls ad th chag-of-priod proprty of th DT, to fid th DT harmoic fuctio. X[ ]= ( comb[ ]+ comb[ + ] )+ comb[ + 7]comb 7 X[] ( [ ]) - Phas of X[] - -. Th su shiig o th arth is a systm i which th radiat powr from th su is th xcitatio ad th atmosphric tmpratur (amog may othr thigs) is a rspos. A simplifid modl of th radiat powr fallig o a typical mid-latitud locatio i orth Amrica is that it is priodic with a fudamtal priod of o yar ad that vry day th radiat powr of th sulight riss liarly from th tim th su riss util th su is at its zith th falls liarly util th su sts. Th arth absorbs ad stors th radiat rgy ad r-radiats som of th rgy ito spac vry ight. To p th modl of th xcitatio as simpl as possibl assum that th rgy loss vry ight ca b modld as a cotiuatio of th daily liar radiat powr pattr xcpt gativ at ight. Thr is also a variatio with th sasos causd by th tilt of th arth s axis of rotatio. This causs this liar risad-fall pattr to ris ad fall siusoidally o a much logr tim scal as illustratd blow. Solutios 4-

27 M. J. Robrts - 8/8/4 Radiat Powr Ju.75 Day Dcmbr 5 (a) Writ a mathmatical dscriptio of th radiat powr from th su. t p()= t tri( t) comb() t si (b) Assum that th arth is a first-ordr systm with a tim costat of. yars. What day of th yar should b th hottst accordig to this simplifid modl? Th diffrtial quatio for th rat of hat flow ito th arth is () d dt K t t KT t ( T() )= p() whr K is a proportioality costat rlatig th tmpratur of th arth to its stord rgy (t i days). Sic th radiat powr striig th arth is priodic th tmpratur is also priodic ad both ca b xprssd i a CT with a rprstatio priod of 5 days. Fid th harmoic fuctio for th radiat powr, P[]. Th tmpratur must also b priodic with th sam fudamtal priod as th radiat powr. Solv for th harmoic fuctio of th tmpratur, T[], by substitutig P[] ito th diffrtial quatio. Th simplify it by ralizig that th highr ordr harmoic cott i T[] is gligibl compard to th fudamtal. Th fid th tim-domai tmpratur xprssio, T(t), ad fid th tim at which it rachs a maximum. [ ] sic δ, a itgr 5 + δ[ + ]δ 8 Τ[, othrwis ]= K ( [ ]) Solutios 4-7

28 M. J. Robrts - 8/8/4 Τ t () 8K t t. 44 cos +. 44si (. ). 44K Th maximum tmpratur occurs at about t = So th hottst day should occur about 4 days aftr th summr solstic or about August.. Th spd ad timig of computr computatios ar cotrolld by a cloc. Th cloc is a priodic squc of rctagular pulss, typically with 5% duty cycl. O problm i th dsig of computr circuit boards is that th cloc sigal ca itrfr with othr sigals o th board by big coupld ito adact circuits through stray capacitac. Lt th computr cloc b modld by a squar-wav voltag sourc altratig btw.4 ad. V at a frqucy of GHz ad lt th couplig ito a adact circuit b modld by a sris combiatio of a. pf capacitor ad a 5 Ω rsistac. Fid ad plot ovr two fudamtal priods th voltag across th 5 Ω rsistac. Dscrib th xcitatio as a rctagl covolvd with a comb, plus a costat. Fid its harmoic fuctio. Put that ito th diffrtial quatio for th rspos voltag, [ ( i ) o() ]= o() RC v t v t v t 9 4. sic ad solv for th harmoic fuctio of th rspos, V o[ ]= + RC 9 4. Th plot th rspos voltag by computig its CT. It should loo li th graph blow. Solutios 4-8

29 M. J. Robrts - 8/8/4 v o (t) t - 4. Fid ad plot vrsus F th magitud of th rspos, y[ ], to th priodic xcitatio, i th systm blow. x[ ]= cos( F), x[] y[].9 D or [ ]= [ ]+ [ ] y x 9. y y [ ]9. y[ ]= x[ ]. Th fial graph should loo li th graph blow. Amplitud F This is a lowpass DT filtr. Solutios 4-9

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN Jo Dattorro, Summr 998 Fractioal Samplig usig th sychroous Shah with applicatio to LIER PSE FIR FILER DESIG bstract W ivstigat th fudamtal procss of samplig usig a impuls trai, calld th shah fuctio [Bracwll],

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Student s Printed Name:

Student s Printed Name: Studt s Pritd Nam: Istructor: CUID: Sctio: Istructios: You ar ot prmittd to us a calculator o ay portio of this tst. You ar ot allowd to us a txtbook, ots, cll pho, computr, or ay othr tchology o ay portio

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

n n ee (for index notation practice, see if you can verify the derivation given in class)

n n ee (for index notation practice, see if you can verify the derivation given in class) EN24: Computatioal mthods i Structural ad Solid Mchaics Homwork 6: Noliar matrials Du Wd Oct 2, 205 School of Egirig Brow Uivrsity I this homwork you will xtd EN24FEA to solv problms for oliar matrials.

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information