VI. FIR digital filters

Size: px
Start display at page:

Download "VI. FIR digital filters"

Transcription

1 Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital filtrs usig Widow tchiqus, Frqucy samplig tchiqu, Compariso of IIR ad FIR filtrs. Cotts: 6. FIR Rcapitulatio 6.2 Charactristics if FIR digital filtrs 6.3 Frqucy rspos 6.4 Dsig of FIR digital filtrs Th Fourir sris ad widowig mthod 6.5 Choosig btw FIR ad IIR filtrs 6.6 Rlatioship of th DFT to th z-trasform DSP-6 (FIR) of 82 Dr. Ravi Billa

2 FIR - Rcapitulatio Nomclatur With a i th liar costat cofficit diffrc quatio, a y() + a y( ) + + a N y( N) b x() + b x( ) + + b M x( M), a w hav, H(z) M i i N i b z i a z i i This rprsts a IIR filtr if at last o of a through a N is ozro, ad all th roots of th domiator ar ot cacld xactly by th roots of th umrator. I gral, thr ar M fiit zros ad N fiit pols. Thr is o rstrictio that M should b lss tha or gratr tha or qual to N. I most cass, spcially digital filtrs drivd from aalog dsigs, M N. Systms of this typ ar calld N th ordr systms. This is th cas with IIR filtr dsig. Wh M > N, th ordr of th systm is o logr uambiguous. I this cas, H(z) may b tak to b a N th ordr systm i cascad with a FIR filtr of ordr (M N). Wh N, as i th cas of a FIR filtr, accordig to our covtio th ordr is. Howvr, it is mor maigful i such a cas to focus o M ad call th filtr a FIR filtr of M stags or (M+) cofficits. 8 Exampl Th systm H(z) ( z ) ( z ) is a FIR filtr. Why (vrify)? A FIR filtr th has oly th b cofficits ad all th a cofficits (xcpt a which quals ) ar zro. A xampl is th thr-trm movig avrag filtr y() (/3) x() + (/3) x( ) + (/3)x( 2). I gral th diffrc quatio of a FIR filtr ca b writt M y() br x( r) b x() + b x( ) + + b M x( M) () r Thr ar (M + ) cofficits; som us oly M cofficits. This quatio dscribs a orcursiv implmtatio. Its impuls rspos h() is mad up of th cofficits {b r } {b, b,, b M } h() b, for M {b, b,, b M }, lswhr Equivaltly, th fiit lgth impuls rspos ca also b writt i th form of a wightd sum of fuctios as was do i Uit I for xampl, x( ) x( k) ( k) k M h() br ( r) b () + b ( ) + + b M ( M) r Th diffrc quatio () is also quivalt to a dirct covolutio of th iput ad th impuls rspos: M y() br x( r) b( r) x( r) r M r whr w hav writt b r as b(r), i.., th subscript i b r is writt as a idx i b(r). DSP-6 (FIR) 2 of 82 Dr. Ravi Billa

3 Th trasfr fuctio H(z) of th FIR filtr ca b obtaid ithr from th diffrc quatio or from th impuls rspos h(): M H(z) h( ) z b 2 b z b z... b M z M M b z b z... bm z bm M z M b M bm bm b z z z b b b... M z Th trasfr fuctio has M otrivial zros ad a M th ordr (trivial) pol at z. This is cosidrd as a all-zro systm. j W may obtai th frqucy rspos H( ) or H() of th FIR filtr ithr from H(z) as j H ( ) H( z) j z or, from th impuls rspos, h(), as th discrt-tim Fourir trasform (DTFT) of h(): j H ( ) h ) j ( M b 2 j b M j j2 b b2... Th ivrs DTFT of H(ω) is of cours th impuls rspos, giv by h() 2 H ( ) j d Th basic dsig problm is to dtrmi th impuls rspos h(), or, th cofficits b r, for r to M, rquird to achiv a dsird H(). Ths cofficits ar of cours th costats that appar i th umrator of th trasfr fuctio H(z). Th various trasformatios usd i IIR filtr dsig caot b usd hr sic thy usually yild IIR fuctios, i.., with both umrator ad domiator cofficits. b M jm 6.2 Charactristics of FIR digital filtrs Illustratio Th quatios of th thr-trm movig avrag filtr ar rpatd blow x( ) x( ) x( 2) y() 3 2 Y ( z) z z H(z) X ( z) 3 j j2 j j j j ( ) 2cos H ( ) j This is a crud low pass filtr with liar phas, H() ω. %Magitud ad phas rspos of 3-cofficit movig avrag filtr %Filtr cofficits: h() {/3, /3, /3} b3[/3, /3, /3], a[] w-pi: pi/256: pi; Hw3frqz(b3, a, w); subplot(2,, ), plot(w, abs(hw3)); lgd ('Magitud'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid DSP-6 (FIR) 3 of 82 Dr. Ravi Billa

4 Magitud of H() Phas of H() subplot(2,, 2), plot(w, agl(hw3)); lgd ('Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl Normalizd frqucy W dfi th r ω/π. As ω gos from to th variabl r gos from to. This corrspods to a frqucy rag of F s /2 to F s /2 Hz. I trms of th ormalizd frqucy th frqucy rspos of th thr-trm movig avrag filtr bcoms j r j2 r H(r) 3 %Magitud ad phas rspos of 3-cofficit movig avrag filtr %Filtr cofficits: h() {/3, /3, /3} subplot(2,,); fplot('abs((/3)*(+xp(-j*pi*r)+xp(-j*2*pi*r)))', [-, ], 'k'); lgd ('Magitud'); xlabl('normalizd frqucy, r'); ylabl('magitud of H(r)'); grid subplot(2,,2);fplot('agl((/3)*(+xp(-j*pi*r)+xp(-j*2*pi*r)))', [-, ], 'k'); lgd ('Phas'); xlabl('normalizd frqucy');ylabl('phas of H(r)'); grid DSP-6 (FIR) 4 of 82 Dr. Ravi Billa

5 Magitud of H(r) Phas of H(r) Magitud Normalizd frqucy, r 4 2 Phas Normalizd frqucy DSP-6 (FIR) 5 of 82 Dr. Ravi Billa

6 Magitud of H() Phas of H() W illustrat blow th charactristics of svral typs of FIR filtr. Th filtr lgth N may b a odd (prfrrd) or a v umbr. Furthr, w ar typically itrstd i liar phas. This rquirs th impuls rspos to hav ithr v or odd symmtry about its ctr. Exampl 6.2. Fid th frqucy rspos of th followig FIR filtrs A. h() {.25,.5,.25} Ev symmtry B. h() {.5,.3,.2} No symmtry C. h() {.25,.5,.25} No symmtry D. h() {.25,,.25} Odd symmtry Solutio (A) Th squc h() {.25,.5,.25} has v symmtry. %Magitud ad phas rspos of h() {.25,.5,.25} %Filtr cofficits Ev symmtry b3[.25,.5,.25], a[] w-pi: pi/256: pi; Hw3frqz(b3, a, w); subplot(2,, ), plot(w, abs(hw3)); lgd ('Magitud'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw3)); lgd ('Phas -\omga'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl DSP-6 (FIR) 6 of 82 Dr. Ravi Billa

7 Phas of H() Magitud of H() (B) Th squc h() {.5,.3,.2}is ot symmtric. %Magitud ad phas rspos of h() {.5,.3,.2} %Filtr cofficits No symmtry b3[.5,.3,.2], a[] w-pi: pi/256: pi; Hw3frqz(b3, a, w); subplot(2,, ), plot(w, abs(hw3)); lgd ('Magitud'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw3)); lgd ('Noliar Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid.8 Magitud Frqucy, rad/sampl.5 Noliar Phas Frqucy, rad/sampl DSP-6 (FIR) 7 of 82 Dr. Ravi Billa

8 Magitud of H() Phas of H() (C) Th squc h() {.25,.5,.25} is ot symmtric. %Magitud ad phas rspos of h() {.25,.5,.25} %Filtr cofficits This is ot odd symmtry b3[.25,.5, -.25], a[] w-pi: pi/256: pi; Hw3frqz(b3, a, w); subplot(2,, ), plot(w, abs(hw3)); lgd ('Magitud'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw3)); lgd ('Noliar Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid.9.8 Magitud Frqucy, rad/sampl 4 2 Noliar Phas Frqucy, rad/sampl (D) Th squc h() {.25,,.25} has odd symmtry. %Magitud ad phas rspos of h() {.25,,.25} %Filtr cofficits This is odd symmtry b3[.25,, -.25], a[] w-pi: pi/256: pi; Hw3frqz(b3, a, w); subplot(2,, ), plot(w, abs(hw3)); lgd ('Magitud'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw3)); lgd ('Phas -\omga + \pi/2 '); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid DSP-6 (FIR) 8 of 82 Dr. Ravi Billa

9 Magitud of H() Phas of H() Magitud Frqucy, rad/sampl 2 Phas - + / Frqucy, rad/sampl 6.3 Frqucy rspos Ralizatio of liar phas FIR filtrs A importat spcial subst of FIR filtrs has a liar phas charactristic. Liar phas rsults if th impuls rspos is symmtric about its ctr. For a causal filtr whos impuls rspos bgis at ad ds at N, this symmtry is xprssd thus Ev: h() h(n ), Odd: h() h(n ), for,,, (N ) a total of N poits for,,, (N ) a total of N poits This symmtry allows th trasfr fuctio to b rwritt so that oly half th umbr of multiplicatios is rquird for th rsultig ralizatio. Liar phas phas ad dlay distortio Assum a low pass filtr with frqucy rspos j H( ) giv by j j k H ( ), ω < ω c, ω c < ω < π whr k is a itgr. This is a liar phas filtr with th slop of th phas curv i th pass j bad big k. Lt X ( ) rprst th Fourir trasform of a iput squc x(). Th th j j j j trasform of th output squc y() is giv by Y ( ) X ( ). H ( ). If X ( ) is tirly j withi th pass bad of H( ) th j j Y ( ) X ( ). j k DSP-6 (FIR) 9 of 82 Dr. Ravi Billa

10 j So th output sigal y() ca b obtaid as th ivrs F-trasform of Y( ) as y() x( k), a dlayd vrsio of x() H ω c ω c ω kω H ω Thus th liar phas filtr did ot altr th shap of th origial sigal, simply traslatd (dlayd) it by k sampls. If th phas rspos had ot b liar, th output sigal would hav b a distortd vrsio of x(). It ca b show that a causal IIR filtr caot produc a liar phas charactristic ad that oly spcial forms of causal FIR filtrs ca giv liar phas. Thorm If h() rprsts th impuls rspos of a discrt tim systm, a cssary ad sufficit coditio for liar phas is that h() hav a fiit duratio N, ad that it b symmtric about its midpoit. Exampl 6.3. (a) For th FIR filtr of lgth N 7 with impuls rspos h() lt h() h(n ). Show that th filtr has a liar phas charactristic. (b) Rpat for N 8. h() N Solutio (a) For N 7, th positiv symmtry rlatio h() h(n ) lads to h() h(6 ) which mas that h() h(6), h() h(5), ad h(2) h(4), as show i figur abov. DSP-6 (FIR) of 82 Dr. Ravi Billa

11 6 j H(z) h ( ) z ad H ( ) H ( z) j h( ) z j H ( ) h () + h + j ( ) + h(4) j4 + h(2) h(5) j3 j3 j2 { h () + h () + j + h( 4) + h(5) Sic h() h(6), tc., w ca writ j H ( ) j2 j3 j 3 { ()( 3 j h ) j3 { ()cos 3 j2 j5 + h(3) + h(6) h 2) j3 j6 j ( + h (3) + h(6) j3 } 6 j j 2 + ()( 2 j h j j ) + h(2)( ) + h (3) } 2h + 2h ()cos 2 + 2h (2)cos + h (3) } a(3) a(2) a() a() 3 j3 a( k) cos k, with a() h(3) ad a(k) 2h(3 k), k, 2, 3 k Th cofficits, i gral, ar giv by N N a() h ad a(k) 2 h k, for k, 2,..., (N )/2 2 2 j j H ( ) ± H( ) 3 j j H ( ) 3 j3 k a( k) cos k j j whr ± H ( ) a( k) cos k ad H( ) Θ(ω) 3ω. Th phas rspos is obviously k liar, with slop 3 (N )/2 which mas that th dlay is a itgr umbr of sampls. Slop 3 H(ω) or Θ(ω) (b) For N 8, th positiv symmtry rlatio h() h(n ) lads to h() h(7 ), which mas h() h(7), h() h(6), h(2) h(5), ad h(3) h(4) as show i figur blow. h() N DSP-6 (FIR) of 82 Dr. Ravi Billa

12 7 j H(z) h ( ) z ad H ( ) H ( z) j h( ) z j H ( ) h () + h + j ( ) + h(4) + h(4) Sic h() h(7), tc., w ca writ j H ( ) j4 + h(2) h(5) j2 j5 + + h(3) h(6) j3 j6 7 j7 / 2 j7 / 2 j5 / 2 j3 / 2 { h () + h () + h (2) + j / 2 + h(5) j7 / 2 j7 / 2 j7 / 2 { h()( ) j7 / 2 j3 / 2 + h(6) j5 / 2 j5 / 2 j5 / 2 + h()( ) + h(7) h (3) + h(7) j j7 j / 2 j7 / 2 j3 / 2 j3 / 2 j / 2 j / 2 + h(2)( ) + h(3)( )} h () cos 2h() cos 2h(2) cos 2h(3) cos b(4) b(3) b(2) b() With b(k) 2h((N/2) k), for k, 2,, N/2, w ca writ j j H ( ) ± H( ) 4 j j H ( ) 4 j7 / 2 k b( k) cos[( k / 2) ] j j j whr ± H ( ) b( k)cos[( k / 2) ] ad H( ) Θ(ω) 7ω/2. Th phas, H( ), k is clarly liar. Howvr, th slop of th phas curv is ( 7/2), which is ot a itgr. Th o-itgr dlay will caus th valus of th squc to b chagd, which, i som cass, may b udsirabl. } Slop 7/2 H(ω) or Θ(ω) DSP-6 (FIR) 2 of 82 Dr. Ravi Billa

13 Implmtatio For a causal filtr whos impuls rspos has v symmtry: h() h(n ), th trasfr fuctio H(z) ʓ{h()} v or odd, as follows. for,,, (N ) a total of N poits N h( ) z For v N Th diffrc quatio is drivd startig from H(z), ( N / 2) H(z) ( N ) h ( ) z z Sic Y(z) H(z) X(z), w ca writ ( N / 2) ( N h( ) z z ( N) h() z X ( z ) Y(z) ca b writt, dpdig o whthr N is X(z) h() z ) + ( N2) z X ( z) N N N h z z X ( z) 2 Takig th ivrs z-trasform of th abov w gt y() as ( ) x( ) x N h ( ) x( ) x N 2 y() h N N N h x x Th dlayd vrsios of x() ar addd i pairs ad th multiplid by cofficits h(.). This is show i figur blow for N 8. Not that thr ar a odd umbr ( 7) of dlay lmts. Thr ar N/2 4 multiplicatios ad (N/2) addrs (actually th umbr of twooprad additios is ). Figur for N 8 x() x( ) x( 2) x( 3) x( 4) x( 5) x( 6) z z z z z z z x( 7) h() h(7) + h() h(6) + + h(2) h(5) + y() + h(3) h(4) DSP-6 (FIR) 3 of 82 Dr. Ravi Billa

14 For odd N W d ot driv th quatios (thy would b cssary if w wr writig a computr program to automat it). For N 7, thr ar N 6 dlay lmts a v umbr of dlay lmts. Thr ar (N + )/2 (7 + )/2 4 multiplicatios ad 4 addrs (th umbr of two-oprad additios is 6). Figur for N 7 x() x( ) x( 2) x( 3) x( 4) x( 5) z z z z z z x( 6) + h() h(6) + + h() h(5) h(2) h(4) + y() h(3) Proprtis of FIR digital filtrs Th siusoidal stady stat trasfr fuctio of a digital filtr is priodic i th samplig frqucy. W hav j H ( ) H ( z) j j h( ) z i which h() rprsts th trms of th uit puls rspos. Th abov xprssio ca b dcomposd ito ral ad imagiary compots by writig j H ( ) h( ) cos j h( )si H R (ω) + j H I (ω) whr th ral ad imagiary parts of th trasfr fuctio ar giv by H R (ω) h( ) cos ad H I (ω) h( )si Ths xprssios for H R (ω) ad H I (ω) show that. H R (ω) is a v fuctio of frqucy ad H I (ω) is a odd fuctio of frqucy. 2. If h() is a v squc, th imagiary part of th trasfr fuctio, H I (ω), will b zro. (Th v squc, h(), multiplid by th odd squc si ω will yild a odd squc. A odd squc summd ovr symmtric limits yilds zro.) I this cas j H ( ) h( ) cos H R (ω) 3. Similarly, if h() is a odd squc, th ral part of th trasfr fuctio, H R (ω), will b zro H ( j ) j h( )si j H I (ω) DSP-6 (FIR) 4 of 82 Dr. Ravi Billa

15 Thus a v uit puls rspos yilds a ral-valud trasfr fuctio ad a odd uit puls rspos yilds o imagiary-valud trasfr fuctio. Rcall that a ral trasfr fuctio has a phas shift of or radias, whil a imagiary trasfr fuctio has a phas shift of / 2 radias as show i figurs blow. So, by makig th uit puls rspos ithr v or odd, w ca grat a trasfr fuctio that is ithr ral or imagiary. h() (Ev) h() (Odd) Θ(ω) Θ(ω) Θ(ω) π/2 π π π π π/2 Two typs of applicatios I dsigig digital filtrs w ar usually itrstd i o of th followig two situatios:. Filtrig W ar itrstd i th amplitud rspos of th filtr (.g., low pass, bad pass, tc.) without phas distortio. This is ralizd by usig a ral j valud trasfr fuctio, i.., H ( ) H R (ω), with H I (ω). 2. Filtrig plus quadratur phas shift Ths applicatios iclud itgrators, diffrtiators, ad Hilbrt trasform dvics. For all of ths th dsird j trasfr fuctio is imagiary, i.., H ( ) j H I (ω), with H R (ω) FIR Filtr Dsig Procdur. Dcid whthr H R (ω) or H I (ω) is to b st qual to zro. Typically, H d (ω) H R (ω) + j for filtrig, ad H d (ω) + j H I (ω) for itgrators, diffrtiators ad Hilbrt trasformrs 2. Expad H d (ω) ito Fourir sris h d (). This is th dsird impuls rspos. 3. Dcid o th lgth N of th impuls rspos duratio. Trucat th squc h d () to N sampls {h t (), (N )/2 to (N )/2}. Ev valus of N rsult i dlays of half-sampl priods; odd valus of N avoid this problm. 4. Apply widow fuctio {w(), (N )/2 to (N )/2} 5. Fid th trasfr fuctio H(z) z (N )/2 H t (z) ad th frqucy rspos H(ω). If ot satisfactory th valu of N may hav to b icrasd or a diffrt widow fuctio may b trid. Phas dlay ad group dlay If w cosidr a sigal that cosists of svral frqucy compots (such as a spch wavform or a modulatd sigal) th phas dlay of th filtr is DSP-6 (FIR) 5 of 82 Dr. Ravi Billa

16 th amout of tim dlay ach frqucy compot of th sigal suffrs i goig through th filtr. Mathmatically, th phas dlay τ p is giv by scat () τ p Th group dlay o th othr had is th avrag tim dlay th composit sigal suffrs at ach frqucy. Th group dlay τ g is giv by th slop (tagt) at ω d ( ) τ g d j whr Θ(ω) H( ) of th filtr. A oliar phas charactristic will caus phas distortio, which is udsirabl i may applicatios, for xampl, music, data trasmissio, vido ad biomdici. A filtr is said to hav a liar phas rspos if its phas rspos satisfis o of th followig rlatioships: Θ(ω) kω (A) or Θ(ω) β kω (B) whr k ad β ar costats. If a filtr satisfis quatio (A) its group dlay ad phas dlay ar th sam costat k. It ca b show that for coditio (A) to b satisfid th impuls rspos of th filtr must hav positiv symmtry (aka v symmtry or just symmtry). Th phas rspos i this cas is simply a fuctio of th filtr lgth N: h() h(n ),,, 2,, (N )/2 for N odd,, 2,, (N/2) for N v k (N )/2 If quatio (B) is satisfid th filtr will hav a costat group dlay oly. I this cas, th impuls rspos h() has gativ symmtry (aka odd symmtry or atisymmtry): h() h(n ) k (N )/2 β /2 DSP-6 (FIR) 6 of 82 Dr. Ravi Billa

17 Aalog filtr backgroud of phas ad group dlay Phas dlay at a giv frqucy is th slop of th scat li from dc to th particular frqucy ad is a sort of ovrall avrag dlay paramtr. Phas dlay is computd ovr th frqucy rag rprstig th major portio of th iput sigal spctrum ( to F i th figur blow). H(F) Tagt at F Slop group dlay at F Phas curv F Scat at F Slop phas dlay ovr to F F Th group dlay at a giv frqucy rprsts th slop of th tagt li at th particular frqucy ad rprsts a local or arrow rag (ighborhood of F i th figur) dlay paramtr. A cas of sigificac ivolvig both phas dlay ad group dlay is that of a arrow bad modulatd sigal. Wh a arrow bad modulatd sigal is passd through a filtr, th carrir is dlayd by a tim qual to th phas dlay, whil th vlop (or itlligc) is dlayd by a tim approximatly qual to th group dlay. Sic th itlligc (modulatig sigal) rprsts th dsird iformatio cotaid i such sigals, strog mphasis o good group dlay charactristics is oft mad i filtrs dsigd for procssig modulatd wavforms. DSP-6 (FIR) 7 of 82 Dr. Ravi Billa

18 Summary of symmtry Positiv symmtry (or just symmtry or v symmtry about th middl) is charactrizd by h() h(n ). Show that for positiv symmtry ( N ) / 2 j a) For N odd (Typ I): H ( ) j( N ) / 2 k a() a( k) cos k N N h & a(k) 2 h k, k 2 2 j j( N ) / 2 b) For N v (Typ II): H ( ) b( k)cos[( k / 2) ] b(k) N / 2 k N 2 h k 2 h() Typ I N is odd Ctr of Symmtry h() Typ II N is v Ctr of Symmtry 6 N 7 N DSP-6 (FIR) 8 of 82 Dr. Ravi Billa

19 Summary of symmtry, cot d Ngativ symmtry (or atisymmtry or odd symmtry about th middl) is charactrizd by h() h(n ). Show that for gativ symmtry N j ( N ) / 2 j a) For N odd (Typ III): H ( ) 2 2 k a() N j N / 2 a( k)si k N N h & a(k) 2 h k, k 2 2 j b) For N v (Typ IV): H ( ) 2 2 b( k)si[( k / 2) ] b(k) k N 2 h k 2 h() Typ III N is odd Ctr of Symmtry h() Typ IV N is v Ctr of Symmtry 6 N 7 N DSP-6 (FIR) 9 of 82 Dr. Ravi Billa

20 Magitud of H() Phas of H() Qualitativ atur of symmtry Typ I Positiv symmtry, N is odd. To illustrat tak N 5: ( N ) / 2 j H ( ) j( N ) / 2 k j2 a( k) cos k a( k)cos k 2 k j2 [a() + a() cos ω + a(2) cos 2ω] W hav to add up a(), ad th two cosi trms. It is clar that at ω all th cosi trms ar j at thir positiv pak, so that wh addd th rspos of H ( ) vs. ω would idicat a low pass filtr. Cosidr x( ) x( ) x( 2) x( 3) x( 4) y() 5 j j2 j3 j4 j H ( ) H( z) j z 5 j2 j j j2 j2 2cos 2cos j2 %Frqucy rspos of movig avrag filtr h() {.2,.2,.2,.2,.2} b5 [.2,.2,.2,.2,.2], a [] w-pi: pi/256: pi; Hw5frqz(b5, a, w); subplot(2,, ), plot(w, abs(hw5)); lgd ('Magitud'); titl ('Typ I, N is odd'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw5)); lgd ('Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid Typ I, N is odd Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl DSP-6 (FIR) 2 of 82 Dr. Ravi Billa

21 Magitud of H() Phas of H() Typ II Positiv symmtry, N is v. Tak N 6: N / 2 j j( N ) / 2 j5 / 2 H ( ) b( k)cos[( k / 2) ] b( k)cos[( k / 2) ] k j5 / 2 [b() cos ω/2 + b(2) cos 3ω/2 + b(3) cos 5ω/2] At, corrspodig to half th samplig frqucy (maximum possibl frqucy), all th cosi trms will b zro. Thus this typ of filtr is usuitabl as a high-pass filtr. It should b ok as a low pass filtr. Cosidr x( ) x( ) x( 2) x( 3) x( 4) x( 5) y() 6 j j2 j3 j4 j5 j H ( ) H( z) j z 6 j(5/ 2) j 5/ 2) j(3/ 2) j(/ 2) 6 cos( / 2) cos(3 / 2) cos(5 / 2) 3 3 k ( j(/ 2) j(3/ 2) j(5/ 2) 2) j(5/ %Frqucy rspos of movig avrag filtr h() {/6, /6, /6, /6, /6, /6} b6 [/6, /6, /6, /6, /6, /6], a [] w-pi: pi/256: pi; Hw6frqz(b6, a, w); subplot(2,, ), plot(w, abs(hw6)); lgd ('Magitud'); titl ('Typ II, N is v'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw6)); lgd ('Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid Typ II, N is v Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl DSP-6 (FIR) 2 of 82 Dr. Ravi Billa

22 Magitud of H() Phas of H() Typ III Ngativ symmtry, N is odd. This itroducs a 9 ( π/2) phas shift. Bcaus of th si trms H is always zro at ω ad at ω π/2 (half th samplig frqucy). Thrfor th filtr is usuitabl as a low pass or a high pass filtr. To illustrat tak N 5 ad h() {.2,.2,, -.2, -.2} N j ( N ) / 2 j H ( ) 2 2 k j2 j( / 2) a( k)si k 2 k a( k)si k 2 2 k N a() h h(2) 2 N a(k) 2 h k 2 h2 k, k 2 Etc. 5 j (5 ) / 2 a( k)si k %Frqucy rspos of Typ III filtr, h() {.2,.2,, -.2, -.2} b5 [.2,.2,, -.2, -.2], a [] w-pi: pi/256: pi; Hw5frqz(b5, a, w); subplot(2,, ), plot(w, abs(hw5)); lgd ('Magitud'); titl ('Typ III, N is odd'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw5)); lgd ('Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid.8.6 Typ III, N is odd Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl DSP-6 (FIR) 22 of 82 Dr. Ravi Billa

23 Magitud of H() Phas of H() Typ IV Ngativ symmtry, N is v. This itroducs a 9 ( π/2) phas shift. Bcaus of th si trms H is always zro at ω. Thrfor th filtr is usuitabl as a low pass filtr. To illustrat tak N 6 ad h() {/6, /6, /6, -/6, -/6, -/6} N j N / 2 j H ( ) 2 2 b( k)si[( k / 2) ] 2 2 b( k)si[( k / 2) ] Etc. k 3 j3 j( / 2) b( k)si[( k / 2) ] k 6 j 6/ 2 k ad b(k) h3 k 2, k to 3 %Frqucy rspos of Typ IV filtr h() {/6, /6, /6, -/6, -/6, -/6} b6 [/6, /6, /6, -/6, -/6, -/6], a [] w-pi: pi/256: pi; Hw6frqz(b6, a, w); subplot(2,, ), plot(w, abs(hw6)); lgd ('Magitud'); titl ('Typ IV, N is v'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw6)); lgd ('Phas'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid.8.6 Typ IV, N is v Magitud Frqucy, rad/sampl 4 2 Phas Frqucy, rad/sampl Typs III ad IV ar oft usd to dsig diffrtiators ad Hilbrt trasformrs bcaus of th 9 phas shift that ach o ca provid. DSP-6 (FIR) 23 of 82 Dr. Ravi Billa

24 Th phas dlay for Typ I ad II filtrs or group dlay for all four typs of filtrs is xprssibl i trms of th umbr of cofficits of th filtr ad so ca b corrctd to giv a zro phas or group dlay rspos. N Typs I ad II: τ p τ g Θ(ω)/ω T 2 d ( ) N Typs III ad IV: τ g T d 2 Magitud ( H(ω) ) rspos at ω rad. ω π rad. Typ I Max Low pass Typ II Zro OK as LP Not OK as HP filtr Typ III Zro Zro 9 Phas shift Typ IV Zro 9 Phas shift 6.4 Dsig of FIR digital filtrs Th Fourir sris ad widowig mthod This mthod of filtr dsig origiats with th obsrvatio that th siusoidal stady stat trasfr fuctio of a digital filtr is priodic i th samplig frqucy. Sic H() is a cotiuous ad priodic fuctio of w ca xpad it ito a Fourir sris. Th rsultig Fourir cofficits ar th impuls rspos, h(). Th major disadvatag is that o caot asily spcify i advac th xact valus for pass bad ad stop bad attuatio/rippl lvls, so it may b cssary to chck svral altrat dsigs to gt th rquird o. j Cosidr th idal low pass filtr with frqucy rspos Hd ( ) or H d () as show blow. Th subscript d mas that it is th dsird or idal filtr. H d (ω) H d (ω) 2π π ω c ω c π 2π ω Th impuls rspos is giv by j j h d () H d d 2 ( ) 2 c si c,, c, c j d DSP-6 (FIR) 24 of 82 Dr. Ravi Billa

25 This is a o-causal ifiit impuls rspos squc. It is mad a fiit impuls rspos squc by trucatig it symmtrically about ; it is mad causal by shiftig th trucatd squc to th right so that it starts at. Th shiftig rsults i a tim dlay ad w shall igor it for ow. Th trucatio rsults i th squc h t () whr th subscript t mas trucatio but w shall igor th subscript h() h d (), (N )/2 (N )/2, othrwis I gral h() ca b thought of as obtaid by multiplyig h d () with a widow fuctio w() as follows h() h d (). w() For th h() obtaid by simpl trucatio as abov th widow fuctio is a rctagular widow giv by w(), (N )/2 (N )/2, othrwis j j j Lt H ( ), H ( ) ad W( ) rprst th Fourir trasforms of h(), h d () ad w() d j rspctivly. Th th frqucy rspos H( ) of th rsultig filtr is th covolutio of j j H ( ) ad W ( ) giv by d j H ( ) 2 H d j j( ) j j ( ) W ( d H ( )* W( ) Th covolutio producs a smard vrsio of th idal low pass filtr. I othr words, j j j H( ) is a smard vrsio of H d ( ). I gral, th widr th mai lob of W ( ), th mor spradig or smarig, whras th arrowr th mai lob (largr N), th closr j j H( ) coms to H ( ). d For ay arbitrary widow th trasitio bad of th filtr is dtrmid by th width of th mai lob of th widow. Th sid lobs of th widow produc rippls i both pass bad ad stop bad. d DSP-6 (FIR) 25 of 82 Dr. Ravi Billa

26 I gral, w ar lft with a trad-off of makig N larg ough so that smarig is miimizd, yt th umbr of filtr cofficits ( N) is ot too larg for a rasoabl implmtatio. Som commoly usd widows ar th rctagular, Bartltt (triagular), Haig, Hammig, Blackma, ad Kaisr widows. j h d () H ( ) d ω j w() W ( ) ω j h() h d ().w() H ( ) W tur ow to filtrig applicatios. W ar itrstd i th amplitud rspos ω of th filtr (.g., low pass, bad pass, tc.) without phas distortio. This is ralizd by usig a ral j valud trasfr fuctio, i.., H ( ) H R (ω), with H I (ω). Exampl 6.4. [Dsig of 9-cofficit LP FIR filtr] Dsig a i-cofficit (or 9-poit or 9-tap) FIR digital filtr to approximat a idal low-pass filtr with a cut-off frqucy c.2. Th magitud rspos, H (), is giv blow. Tak (). d H d (ω) H d π π/5 π/5 π ω, rad/sampl Solutio Th impuls rspos of th dsird filtr is DSP-6 (FIR) 26 of 82 Dr. Ravi Billa

27 h d () 2 H.2 d j j ( ) d 2 j j.2 j.2 ( ) si.2 2 j 2 j.2 Sic h d () for < this is a ocausal filtr (also, it is ot BIBO stabl s Uit IV). Th rst of th dsig is aimd at comig up with a ocausal approximatio of th abov impuls rspos. For a rctagular widow of lgth 9, th corrspodig impuls rspos is obtaid by valuatig h d () for 4 4 o a calculator. I th MATLAB sgmt blow, which grats th h d () cofficits for 5 5, divisio by zro for causs NaN (Not a Numbr), whil all th othr cofficits ar corrct. I gratig th frqucy rspos H () w copy ad past all th cofficits xcpt for h d () which is trd by had. d(si.2 ) h d () d d( ) d cos.2 j d.2 Asid (MATLAB) Th sgmt blow grats ad stm-plots th h d () cofficits. %Calculat hd (si (.2*pi*)) / (pi*) ad stm plot -5: 5, hd (si(.2*pi*))./(pi*), stm(, hd) xlabl(''), ylabl('hd()'); grid; titl ('hd() (si (.2*pi*)) / (pi*)') -5 to 5 Warig: Divid by zro. hd -, -.38, -.63, -.64, -.4,, ,.46 -, ,.55.92, , ,.78, , , , ,, NaN , , , , , , DSP-6 (FIR) 27 of 82 Dr. Ravi Billa

28 hd() hd() (si (.2*pi*)) / (pi*) Not Th sgmt blow is usd to gt a quick look at th h d () cofficits ad thir symmtry. Th MATLAB problm with may b avoidd by rplacig with (.). This will affct th othr cofficits vry slightly (which is ot a srious problm as far as dmostratig th v symmtry of h d ()) but th accuracy of th cofficits is somwhat compromisd i th third or fourth sigificat digit. %Calculat hd (si (.2*pi*)) / (pi*) ad stm plot -4: 4, hd (si(.2*pi*(-.) ) )./(pi*(-.) ), stm(, hd), xlabl(''), ylabl('hd()'); grid; titl ('hd() (si (.2*pi*)) / (pi*)') hd.467,.9,.53,.87,.2,.87,.54,.,.468 DSP-6 (FIR) 28 of 82 Dr. Ravi Billa

29 hd() hd() (si (.2*pi*)) / (pi*) Not 2 As a altrativ to th abov, o could writ a custom program to calculat all cofficits xactly icludig h d (). Ed of Asid Th valus ar show i tabl blow: h t () {.47,.,.5,.87,.2,.87,.5,.,.47} By a rctagular widow of lgth 9 w ma that w rtai th abov 9 valus of h d (.) ad trucat th rst outsid th widow. Thus h t ( 4).47, h t ( 3).,, h t ().2,, h t (4).47 h d () DSP-6 (FIR) 29 of 82 Dr. Ravi Billa

30 Th trasfr fuctio of this filtr is 4 H t (z) h d ( ) z z +. z z z +.2 z z +.5 z +. 3 z +.47 z 4 Th causal filtr is th giv by dlayig th squc h t () by 4 sampls. That is, h() h t ( 4), ad th rsultig trasfr fuctio is H(z) z 4 H t (z) 8.47 ( z ) +. ( z z ) +.5 ( z z ) ( z z ) +.2 z W may obtai th frqucy rspos of this ralizabl (causal) filtr by sttig z j, j that is, H ( ) H( z) j. Bcaus of th trucatio th magitud H will oly b z approximatly qual to H d Gibbs phomo, s compariso of 9 cofficits vrsus cofficits blow. Furthr, bcaus of th dlay th phas H 4ω whras, as origially d H ( ) spcifid, H d. Th slop 4, showig that th filtr itroducs a dlay of 4 d sampls. 4 4ω H ω %Magitud ad phas rspos of 9-cofficit LP filtr %Filtr cofficits b9[.468,.9,.54,.87,.2,.87,.54,.9,.468], a[] w-pi: pi/256: pi; Hw9frqz(b9, a, w); subplot(2,, ), plot(w, abs(hw9)); lgd ('9 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw9)); lgd ('9 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid DSP-6 (FIR) 3 of 82 Dr. Ravi Billa

31 Magitud of H() Phas of H() 9 cofficits Frqucy, rad/sampl cofficits Frqucy, rad/sampl DSP-6 (FIR) 3 of 82 Dr. Ravi Billa

32 Magitud of H() %Compariso of 9 cofficits vs. cofficits %Filtr cofficits b9[.468,.9,.54,.87,.2,.87,.54,.9,.468], a[] b [ , , ,.55.92, , , , , , , , , , , , ] w-pi: pi/256: pi; Hw9frqz(b9, a, w); Hwfrqz(b, a, w); plot(w, abs(hw9), w, abs(hw), 'k') lgd ('9 cofficits', ' cofficits'); titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid.4.2 Magitud Rspos 9 cofficits cofficits Frqucy, rad/sampl Rctagular widow I this xampl th squc h d (), which xtds to ifiity o both sids, has b trucatd to 9 trms. This trucatio procss ca b thought of as multiplyig th DSP-6 (FIR) 32 of 82 Dr. Ravi Billa

33 ifiitly log squc by a widow fuctio calld th rctagular widow, w R (). Th figur blow shows both h d () ad w R () i th udlayd form, that is, symmtrically disposd about. Spcifyig th widow fuctio Th itrval ovr which th widow fuctio is dfid h d () w R () dpds o whthr w first dlay h d () ad th trucat it or th othr way aroud. If, istad of trucatig first ad th dlayig, w adopt th procdur of first dlayig h d () ad th trucatig it, th widow fuctio may b dfid ovr th itrval N, whr N is th umbr of trms rtaid. With this udrstadig th rctagular widow, w R (), is giv blow. w R (), N, lswhr If, howvr, w dfi w R () symmtrically about, as w do latr, w hav w R (), (N )/2 (N )/2, lswhr I this cas w hav implid that N is odd. DSP-6 (FIR) 33 of 82 Dr. Ravi Billa

34 Hammig widow As a altrativ to th rctagular widow w shall apply th Hammig widow, dfid ovr th itrval N, by w Ham () cos[ 2 /( N )], N, lswhr For N 9, th Hammig widow is giv by w Ham () cos( / 4), w Ham () {.8,.25,.54,.865,,.865,.54,.25,.8} w Ham () Imagi that w li up this squc alogsid th h d () giv arlir. (This mas w should imagi w Ham () is movd to th lft by 4 sampls). W th multiply th two squcs at ach poit to gt th widowd squc, h t (): h d () {.47,.,.5,.87,.2,.87,.5,.,.47} w() {.8,.25,.54,.865,,.865,.54,.25,.8} h t () {.382,.26,.85,.67,.2,.67,.85,.26,.382} Th trasfr fuctio is giv by H t (z).382 z z z z z +.85 z z z 4 Dlayig by 4 sampl priods w gt H(z) z 4 8 H t (z).382 ( z ) +.26 ( z z ) +.85 ( z z ) ( z z ) +.2 z 4 HW Writ th corrspodig diffrc quatio ad show th filtr structur. W compar blow th 9-tap Hammig widowd filtr to th filtr without th widow. %Compariso of o widow vs. Hammig widow %Ni-tap filtr cofficits, o widow b9[.468,.9,.54,.87,.2,.87,.54,.9,.468], % %Ni-tap, Hammig-widowd filtr cofficits DSP-6 (FIR) 34 of 82 Dr. Ravi Billa

35 Magitud of H() b9ham[.382,.26,.85,.67,.2,.67,.85,.26,.382] a[] w-pi: pi/256: pi; Hw9frqz(b9, a, w); Hw9Hamfrqz(b9Ham, a, w); plot(w, abs(hw9), w, abs(hw9ham), 'k') lgd ('9 cofficits, No widow', '9 cofficits, Hammig widow'); titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid.4.2 Magitud Rspos 9 cofficits, No widow 9 cofficits, Hammig widow Frqucy, rad/sampl Exampl [Low pass filtr] [23] Dsig a low pass FIR filtr that approximats th followig frqucy rspos H(F), F Hz, lswhr i F F s /2 whr th samplig frqucy F s is 8 sps. Th impuls rspos duratio is to b limitd to 2.5 msc. Draw th filtr structur. Solutio Not th spcs ar giv i Hrtz. O th digital frqucy scal gos from to 2, with 2 corrspodig to th samplig frqucy of F s 8 Hz or to s 2 8 rad/sc. Basd o this Hz corrspods to (/8)2 /4. Or w may us th rlatio T to covrt th aalog frqucy Hz to th digital frqucy. Thus T 2F T 2 (/8) /4 Thus th spcificatios ar rstatd o th ω scal as DSP-6 (FIR) 35 of 82 Dr. Ravi Billa

36 j H ( ), /4 /4 d, lswhr i th rag [ to ] H(F) or H d (ω) Tak H d (ω) k k 4k 8k π/4 π 2π F ω W ca valuat th impuls rspos h d () 2 H d j j ( ) d 2 / 4 / 4. j d 2 j j j / 4 j / 4 ( ) si.25 2 j W d to dcid th umbr of cofficits, that is, th filtr lgth, dd. Th problm spcifis th impuls rspos duratio is to b limitd to 2.5 msc. At 8 h() / 4 / 4 2 N 2.5 msc (2 Poits) sampls/sc., th samplig priod T /8.25 msc. So th duratio of 2.5msc traslat to 2.5/.25 2 sampl priods. Arragig ths o a liar scal w s that th filtr lgth N 2 or w d 2 cofficits. Thrfor dtrmi th valus h d ( ) through h d (), h t () si.25, h t ().25 by L Hopital s rul %Calculat hd (si (.25*pi*)) / (pi*) ad stm plot -5: 5, hd (si(.25*pi*))./(pi*), stm(, hd) -5 to 5 Warig: Divid by zro. DSP-6 (FIR) 36 of 82 Dr. Ravi Billa

37 hd [ NaN ] ± ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ± h t () Th tak th z trasform H t (z) h t ( ) z. Th dtrmi th trasfr fuctio, H(z), of th ralizabl FIR filtr as H(z) z H t (z) from which th filtr structur ca b draw. Th frqucy rspos is compard blow for 2 ad cofficits. Th 2-tap filtr is ot that bad. %2-tap filtr cofficits b2[ ], a[] %-tap filtr cofficits b[ ], w-pi: pi/256: pi; Hw2frqz(b2, a, w); Hwfrqz(b, a, w); plot(w, abs(hw2), w, abs(hw), 'k') lgd ('2 cofficits', ' cofficits'); titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); DSP-6 (FIR) 37 of 82 Dr. Ravi Billa

38 Magitud of H() Magitud Rspos 2 cofficits cofficits Frqucy, rad/sampl Exampl [Vry arrow bad pass filtr] [23] Dsig a bad pass FIR filtr that approximats th followig frqucy rspos: H(F), 6 F 2 Hz, lswhr i F F s /2 wh th samplig frqucy is 8 sps. Limit th duratio of impuls rspos to 2 msc. Draw th filtr structur. Solutio Th samplig frqucy F s 8 Hz corrspods to ω 2 rad. Thus 6 Hz corrspods to ω (6/8)2.4 rad., ad 2 Hz corrspods to ω (2/8)2.5 rad. H d (ω) Tak H d (ω) π.5π.4π.4π.5π π ω DSP-6 (FIR) 38 of 82 Dr. Ravi Billa

39 j H ( ),.5 ω.4 ad.4 ω.5 d h d () 2 2, lswhr i th rag [ to ].4.5 j j j j H d ( ) d 2 d d.5.4 j j2 j j j.5.4 j j j j j.5 j2 j.5 si.5 si. 4 j.4 j2 j.4 h() 6 N 2 msc (7 Poits) Filtr lgth N is dtrmid by th duratio of th impuls rspos. Two milliscods corrspods to.2 / (/8) 6 sampl priods. This mas that th filtr lgth N 7, ad thr will b 7 cofficits. Dtrmi th valus of h d () for 8 8, so that h t () { h d ( 8), h d ( 7),, h d (),, h d (8) }, ad H t (z) h t ( ) z 8 8 Dlay th impuls rspos by 8 sampl priods so that h() h t ( 8) ad H(z) z 8 H t (z) h d (). by L Hopital s rul %Calculat hd (si(.5*pi*) - si(.4*pi*)) /(pi*) ad stm plot -5: 5, hd (si(.5*pi*) - si(.4*pi*))./(pi*), stm(, hd) -5 to 5 Warig: Divid by zro. hd [ DSP-6 (FIR) 39 of 82 Dr. Ravi Billa

40 NaN ] ± ±2 ±3 ±4 ±5 ±6 ±7 ±8 h d () Th frqucy rsposs 7-tap ad -tap filtrs ar show blow. Th 7-tap filtr looks mor lik a low pass filtr! Owig to th vry arrow pass bad a vry larg umbr of cofficits is dd bfor th pass bad bcoms discribl. I gral FIR filtrs ar charactrizd by a larg umbr of cofficits compard to IIR filtrs. %Filtr cofficits b7[ ], a[] b[ ] w-pi: pi/256: pi; Hw7frqz(b7, a, w); Hwfrqz(b, a, w); subplot(2,, ), plot(w, abs(hw7)); lgd ('7 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, abs(hw)); lgd (' cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid DSP-6 (FIR) 4 of 82 Dr. Ravi Billa

41 Magitud of H() Magitud of H() 7 cofficits Frqucy, rad/sampl.8.6 cofficits Frqucy, rad/sampl Exampl [Bad pass filtr] [23] Dsig a bad pass filtr to pass frqucis i th rag to 2 rad/sc usig Haig widow with N 5. Draw th filtr structur ad plot its spctrum. Solutio Th Haig widow is also kow as th Ha widow. It is a raisd cosi, is vry similar to th Hammig widow, ad is giv by w Ha ().5 cos2 /( N ), N, lswhr Not I ordr to covrt th aalog frqucis to digital w d th samplig tim T. Th samplig frqucy F s (or th samplig tim T) is ot spcifid. W assum T sc or, what amouts to th sam, w assum that th frqucis giv ar actually digital, that is, to 2 rad/sampl istad of to 2 rad/sc. Howvr, th solutio blow assums that th frqucis ar giv corrctly, that is, that thy ar aalog, ad uss a samplig frqucy of s 4 rad / sc. Although thr is a spcializd vrsio of th samplig thorm for bad pass sigals w shall simply tak th samplig frqucy to b twic th highst frqucy which is 2 rad / sc. Thus w shall tak s 4 rad / sc. This th givs us a high pass filtr rathr a bad pass. Howvr, if w tak, say, s 8 rad / sc., w shall hav a bad pass filtr. W shall xt covrt th aalog frqucy spcs to digital (): s 4 rad / sc corrspods to 2 rad rad / sc corrspods to 2/4 /2 rad 2 rad / sc corrspods to (2/4) 2 rad DSP-6 (FIR) 4 of 82 Dr. Ravi Billa

42 Thus H d (), /2 ad /2, lswhr i [, ] H d (ω) Tak H d (ω) π π/2 π/2 π ω Evaluat impuls rspos h d () 2 2 H d j ( ) d j j / 2 + j j2 j 2 / 2 j j d d / 2 DSP-6 (FIR) 42 of 82 Dr. Ravi Billa j j / 2 j / 2 j2 j / 2 j j j / 2 j2 j / 2 h d ().5 by L Hopital s rul Dtrmi h d () for 2 2, so that h t () {h d ( 2), h d ( ), h d (), h d (), h d (2)} si( ) si( / 2) For N 5 th Haig widow is giv by w Ha ().5 cos2 / 5, 5.5 cos / 2, 4 Thus w() {,.5,,.5, }. Multiplyig h t () ad w Ha () poit by poit w gt hd ( ) hd () h t () h t () w Ha (),, hd (),, ad 2 2 H t (z) h t ( ) z 2 2 Dlay by 2 sampls to gt h() h t ( 2) ad H(z) z 2 H t (z). Now draw th dirct form structur j for H(z). Th spctrum is giv by H ( ) H( z) j. W compar blow filtrs lgths of 5 ad without th Haig widow. Grat filtr cofficits: %Calculat hd (si(pi*) - si(pi*/2)) /(pi*) ad stm plot -5: 5, hd (si(pi*) - si(pi*/2))./(pi*), stm(, hd) z

43 to 5 Warig: Divid by zro. hd [ NaN ] Grat frqucy rsposs: %5-tap filtr cofficits b5[ ], a[] %-tap filtr cofficits b[ ], w-pi: pi/256: pi; Hw5frqz(b5, a, w); Hwfrqz(b, a, w); plot(w, abs(hw5), w, abs(hw), 'k') lgd ('5 cofficits', ' cofficits'); titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid DSP-6 (FIR) 43 of 82 Dr. Ravi Billa

44 Magitud of H() Magitud Rspos 5 cofficits cofficits Frqucy, rad/sampl W compar blow th frqucy rsposs of th 5-tap filtr with ad without th Haig widow. It ca b s that th Haig widow aggravats what is alrady a poor (short) filtr lgth. Thr may b mor to gai by icrasig th filtr lgth tha by widowig. Grat Haig widow: %Grat Haig widow w.5*( cos(pi*/2)) ad stm plot -2: 2, w.5*(-cos(pi*/2)), stm(, w) -2 to 2 w Grat frqucy rsposs: %5-tap filtr cofficits b5[ ], %Haig widow cofficits w [..5.5.], %Widowd cofficits b5ha b5.*w, a[] w-pi: pi/256: pi; Hw5frqz(b5, a, w); Hw5Hafrqz(b5Ha, a, w); plot(w, abs(hw5), w, abs(hw5ha), 'k') lgd ('5 cofficits, No widow', '5 cofficits, Haig widow '); DSP-6 (FIR) 44 of 82 Dr. Ravi Billa

45 Magitud of H() titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid.4.2 Magitud Rspos 5 cofficits, No widow 5 cofficits, Haig widow Frqucy, rad/sampl DSP-6 (FIR) 45 of 82 Dr. Ravi Billa

46 Exampl [High pass filtr] [28] Dsig a high pass liar phas filtr with frqucy rspos j H ( ) d j3, c, lswhr i th rag [ to] Th umbr of filtr cofficits is N 7 ad c /4. Us (a) rctagular widow ad (b) Hammig widow. H d (ω) π π/4 π/4 π ω H d (ω) 3ω π π ω h d () 2 2 H d j ( ) d / 4 j( 3) ( 3) 2 j( 3) j2 ( 3) 2 d / 4 j / 4 + / 4 j3 j j3 j d d / 4 j( 3) d ( 3) j j( 3) / 4 j ( 3)/ 4 j ( 3) j ( 3) j ( 3)/ 4 j ( 3) j ( 3) j ( 3)/ 4 j ( 3)/ 4 ( 3) j2 si ( 3) si ( 3) / 4 ( 3) j2 DSP-6 (FIR) 46 of 82 Dr. Ravi Billa

47 This squc is ctrd at 3. Sic th filtr lgth is N 7 w ca calculat th 7 cofficits as {h d (), 6}. I othr words w trucat it outsid th itrval 6; morovr, thr is o d to right-shift th trucatd squc. I gral, o may ot kow th filtr lgth with crtaity ad thr is o spcial advatag i spcifyig th phas, H d (ω), as aythig but zro. W calculat cofficits si( ) si( / 4) of th squc ctrd about, that is, h d () : h d ().75 by L Hopital s rul % Grat hd (si(pi*) - si(pi*/4)) /(pi*) ad stm plot -5: 5, hd (si(pi*) - si(pi*/4))./(pi*), stm(, hd) 5 to 5 Warig: Divid by zro. hd [ NaN ] DSP-6 (FIR) 47 of 82 Dr. Ravi Billa

48 Magitud of H() Th 7-tap ad -tap filtr rsposs ar show blow %7-tap filtr cofficits b7[ ], a[] %-tap filtr cofficits b[ ], w-pi: pi/256: pi; Hw7frqz(b7, a, w); Hwfrqz(b, a, w); plot(w, abs(hw7), w, abs(hw), 'k') lgd ('7 cofficits', ' cofficits'); titl('magitud Rspos'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid.4.2 Magitud Rspos 7 cofficits cofficits Frqucy, rad/sampl DSP-6 (FIR) 48 of 82 Dr. Ravi Billa

49 Exampl [Bad-stop filtr] Dsig a bad-stop liar phas filtr with th followig frqucy rspos. Th umbr of filtr cofficits is N 3. H d (ω) π 3π/4 π/4 π/4 3π/4 π ω h d () 2 2 H j d j 3 / 4 + j ( ) d 2 j / 4 + j / 4 3 / 4 j j j 3 / 4 d / 4 / 4 j d Exampl [Dsig of 9-cofficit arrow-bad LP FIR filtr] This is a rpat of Exampl 2. with th badwidth rducd to.2π. Th bad width is arrowr by a factor of from th bad width i that xampl. Th objctiv is to show that th arrowr th bad width th largr th umbr of cofficits dd to achiv th spcifid frqucy rspos. Dsig a i-cofficit (or 9-poit or 9-tap) FIR digital filtr to approximat a idal low-pass filtr with a cut-off frqucy c.2. Th magitud rspos, H (), is giv blow. Tak (). H d H d (ω) 3 / 4 d j π.2π π.2π ω Solutio Th impuls rspos of th dsird filtr is h d () 2 2 j j H d.2.2 j j ( ) d ( 2 j 2 j.2 j ) j d si.2 DSP-6 (FIR) 49 of 82 Dr. Ravi Billa

50 d(si.2 ) h d () d d( ) d.2 cos.2.2 Th MATLAB calculatio of cofficits follows (good for all xcpt whr w fill i th valu.2): % Grat hd (si (.2*pi*)) / (pi*) ad stm plot -5: 5, hd (si(.2*pi*))./(pi*), stm(, hd) xlabl(''), ylabl('hd()'); grid; titl ('hd() (si (.2*pi*)) / (pi*)') -5 to 5 Warig: Divid by zro. hd NaN Th followig MATLAB plot of cofficits is good for all xcpt at. DSP-6 (FIR) 5 of 82 Dr. Ravi Billa

51 hd() 2 x -3 hd() (si (.2*pi*)) / (pi*) MATLAB plots of magitud ad phas rspos of th 9-cofficit arrowr bad LP filtr follow: %Magitud ad phas rspos of 9-cofficit LP filtr %Filtr cofficits b9x7 [ ], a[] w-pi: pi/256: pi; Hw9x7frqz(b9x7, a, w); subplot(2,, ), plot(w, abs(hw9x7)); lgd ('9 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid subplot(2,, 2), plot(w, agl(hw9x7)); lgd ('9 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('phas of H(\omga)'); grid DSP-6 (FIR) 5 of 82 Dr. Ravi Billa

52 Magitud of H() Phas of H() 9 cofficits Frqucy, rad/sampl cofficits Frqucy, rad/sampl DSP-6 (FIR) 52 of 82 Dr. Ravi Billa

53 Magitud of H() Th MATLAB plots blow abl us to compar (oly visually) th magitud rsposs of th two 9-cofficit filtrs, th oly diffrc big that Ex has a bad width of.2π whil Ex 2 is vry arrow at.2π. % Magitud rsposs compard: Ex ad Ex 7 (9-cofficit LP filtrs) %Filtr cofficits b9x[.468,.9,.54,.87,.2,.87,.54,.9,.468], b9x7 [ ], a[] w-pi: pi/256: pi; Hw9xfrqz(b9x, a, w); Hw9x7frqz(b9x7, a, w); plot(w, abs(hw9x), w, abs(hw9x7), 'k') lgd ('Ex, 9 cofficits', 'Ex7, 9 cofficits'); xlabl('frqucy \omga, rad/sampl'), ylabl('magitud of H(\omga)'); grid From th plots it clar that th arrow-bad filtr of Exampl 6 is o whr ar ithr th bad width or th gai spcifid. I cotrast, th widr bad width filtr of Exampl is rlativly much closr to spcificatio..4.2 Ex, 9 cofficits Ex6, 9 cofficits Frqucy, rad/sampl DSP-6 (FIR) 53 of 82 Dr. Ravi Billa

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation viw of STFT Digital Spch Procssig Lctur Short-Tim Fourir Aalysis Mthods - Filtr Ba Dsig j j ˆ m ˆ. X x[ m] w[ ˆ m] ˆ i fuctio of ˆ loos li a tim squc i fuctio of ˆ loos li a trasform j ˆ X dfid for ˆ 3,,,...;

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

The University of Manchester Analogue & Digital Filters 2003 Section D5: More on FIR digital filter design.

The University of Manchester Analogue & Digital Filters 2003 Section D5: More on FIR digital filter design. Th Uivrsity of achstr Aalogu & Digital Filtrs 3 Sctio D5: or o FIR digital filtr dsig. D5..Bacgroud: As w hav s bfor, a FIR digital filtr of ordr may b implmtd by programmig th sigal-flow graph show blow.

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN Jo Dattorro, Summr 998 Fractioal Samplig usig th sychroous Shah with applicatio to LIER PSE FIR FILER DESIG bstract W ivstigat th fudamtal procss of samplig usig a impuls trai, calld th shah fuctio [Bracwll],

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Discrete Fourier Series and Transforms

Discrete Fourier Series and Transforms Lctur 4 Outi: Discrt Fourir Sris ad Trasforms Aoucmts: H 4 postd, du Tus May 8 at 4:3pm. o at Hs as soutios wi b avaiab immdiaty. Midtrm dtais o t pag H 5 wi b postd Fri May, du foowig Fri (as usua) Rviw

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters Typs of Transfr Typs of Transfr x[n] X( LTI h[n] H( y[n] Y( y [ n] h[ k] x[ n k] k Y ( H ( X ( Th tim-domain classification of an LTI digital transfr function is basd on th lngth of its impuls rspons h[n]:

More information

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Problem Set #2 Due: Friday April 20, 2018 at 5 PM. 1 EE102B Spring 2018 Signal Procssing and Linar Systms II Goldsmith Problm St #2 Du: Friday April 20, 2018 at 5 PM. 1. Non-idal sampling and rcovry of idal sampls by discrt-tim filtring 30 pts) Considr

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Sigal Processig Lecture 20 Filter Desig Liear Filter Desig Used to be a art Now, lots of tools to desig optimal filters For DSP there are two commo classes Ifiite impulse respose IIR Fiite

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals Itroductio to Digital Sigal Processig Chapter : Itroductio Aalog ad Digital Sigals aalog = cotiuous-time cotiuous amplitude digital = discrete-time discrete amplitude cotiuous amplitude discrete amplitude

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, 999.. uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs

More information

Spring 2014, EE123 Digital Signal Processing

Spring 2014, EE123 Digital Signal Processing Aoucemets EE3 Digital Sigal Processig Last time: FF oday: Frequecy aalysis with DF Widowig Effect of zero-paddig Lecture 9 based o slides by J.M. Kah Spectral Aalysis with the DF Spectral Aalysis with

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B WBJEEM - MATHEMATICS Q.No. μ β γ δ C A C B B A C C A B C A B B D B 5 A C A C 6 A A C C 7 B A B D 8 C B B C 9 A C A A C C A B B A C A B D A C D A A B C B A A 5 C A C B 6 A C D C 7 B A C A 8 A A A A 9 A

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information