VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems

Size: px
Start display at page:

Download "VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems"

Transcription

1 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 65 VIII.3 Method of Sepaatio of Vaiables Tasiet Iitial-Bouday Value Poblems VIII.3. Heat equatio i Plae Wall -D 67 VIII.3. Heat Equatios i Catesia Coodiates -D ad 3-D 63 VIII.3.3 Heat equatio i Cylidical Coodiates 644 VIII.3.4 Heat equatio i Spheical Coodiates 654 VIII.3.5 Wave Equatio 665 VIII.3.6 Sigula Stum-iouville Poblem 67 VIII.3.7 Review Questios, Examples ad Execises 675

2 66 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7

3 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 67 VIII.3. HEAT EQUATION IN PANE WA -D Heat Equatio VIII.3.. BASIC CASE: Homogeeous equatio, Homogeeous Bouday Coditios [ u] x u ( x,t) u ( x) [ u] x u u α t u ( x,t) : x (,) Iitial coditio: ( x, ) u ( x) u, t > x Bouday coditios: [ u] x, t > (I, II o IIId kid) [ u] x, t > (I, II o IIId kid) ) Sepaatio of vaiables: u ( x,t) X ( x) T ( t) Bouday coditios: [ u] [ X] T( t) [ ] x x x [ u ] [ X ] T ( t ) [ ] x x x X X Equatio: X T µ X α T ) Stum-iouville Poblem: X µ X [ X] x [ X] x X ( ) x µ λ,,... 3) Equatio fo T : T αµ T + ( ) T αλ T T t e αλ t u x,t a X T 4) Solutio: ( ) t a X e αλ u x, u x a X Iitial coditio: ( ) ( ) a ( ) ( ) u x X x dx X ( ) x dx

4 68 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Example Neuma-Neuma Poblem u a u t u ( x,t) : x (,), t > Iitial coditio: ( x, ) u ( x) u Bouday coditios: u x x u x x t > (Neuma) t > (Neuma) (both boudaies ae isulated) Sepaatio of vaiables: u ( x,t) X ( x) T ( t) Bouday coditios: x x (,t) u (,t) u X X ( ) T ( t) ( ) T ( t) X ( ) X ( ) Solutio of SP: X µ X µ λ λ X π π λ X cos x,,... Solutio fo T: + ( ) + ( ) T αλ T T α T T t e αλ T t t u x,t a X T + a X T Solutio: ( ) t a + axe αλ a u ( x) dx ( ) π a u x cos x dx Solutio of IBVP: π π u( x,t ) u( x) dx u( x) cos x dx cos x e + α π t

5 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 69 Paticula case: ( ) u x + x 3 o C, s a 5 α m (steel),.m t 6 sec u ( x) t 6 t 3 t 6 u u ( x) dx a Commets: ) The solutio is i the fom of a ifiite seies. If the iitial tempeatue distibutio give by the fuctio u ( x) is itegable, the the Fouie seies is absolutely coveget ad the fuctio u x, t satisfies the Heat Equatio ad iitial ad bouday coditios. ( ) Theefoe, it is a aalytical solutio of the give IBVP. ) With the icease of time, the solutio appoaches the steady state (the aveaged tempeatue i the slab ). Boudaies ae isulated, ad thee ae o heat souces. As a esult, o heat escapes ito the suoudigs. The divig foce tempeatue gadiet is diected towad the aeas with lowe tempeatue. Thee exists a pocess of edistibutio of heat eegy that poduces the uifom tempeatue i the slab. 3) Basic fuctios cosist of the poduct o-dimesioal time Fo π αt t ( π π α ) π u ( x,t) cos x e cos x e whee the cosie fuctio povides the spatial shape of the tempeatue pofile; ad the expoetial fuctio is esposible fo decay of the tempeatue pofile i time. 4) The ate of chage of tempeatue depeds o the themal diffusivity α. 5) Vey ofte, a -D Heat Equatio is teated as a model fo heat tasfe i a log vey thi od of costat coss-sectio whose suface, except fo the eds, is isulated agaist the flow of heat Although, it is fomally a coect model, the pactical applicatio of it is vey limited. But thee is aothe itepetatio of a -D model, which is moe eliable. Coside a 3-D wall with fiite dimesio i the x-diectio (withi x ad x ) ad elogated dimesios (may be ifiite) i y- ad z- diectios. If the coditios at the walls x ad x ae uifom, ad the iitial coditio is idepedet of vaiables y ad z, the the vaiatio of tempeatue i the y- ad z-diectios is egligible (o heat flux i these diectios) u u y z ad the heat equatio becomes -D u u α t It defies the vaiatio of tempeatue alog ay lie pepedicula to the wall.

6 6 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Example Diichlet-Robi Poblem u ( x) u u α t u ( x,t) : x (,), t > u ( x,t) [ ] x u + Hu Iitial coditio: u ( x,) u ( x) Bouday coditios: [ u] x (Diichlet) u( ) x u + Hu dx x (Robi) h H k Sepaatio of vaiables: u ( x,t) X ( x) T ( t) Bouday coditios : X µ X T αµ T x X ( ) T ( t) X ( ) X ( ) + HX ( ) x X ( ) T ( t) + HX ( ) T ( t) Solutio of Stum-iouville poblem: µ λ ( λ ) X si x,,... whee eigevalues λ cos λ + H si λx λ ae positive oots of the chaacteistic equatio: Gaphically, they ca be show as itesectios of the gaph of the fuctio with the λ -axis: λ λ Solutio fo T(t): With detemied eigevalues, the solutio fo T becomes: ( ) T t e αλ t Solutio: ( ) ( λ ) u x,t a si x e αλ t This solutio satisfies the heat equatio ad bouday coditios. We wat to defie coefficiets a i a such a way that the obtaied solutio satisfies also the iitial coditio at t : ( ) ( λ ) ( ) u x, a si x u x

7 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 6 I ou poblem, fuctios { X ( x) si( λx) } ae obtaied as eigefuctios of the Stum-iouville poblem fo the equatio X + λ X ; theefoe, the set of all eigefuctios is a complete system of fuctios othogoal with espect to the weight fuctio u x p. The, the last equatio is a expasio of the fuctio ( ) i a geealized Fouie seies ove the iteval (,) with coefficiets defied by a ( ) ( λ ) u x si x dx si ( λ ) x dx Solutio : The, the solutio of the iitial-bouday value poblem is give by u ( x) si( λ x) dx αλ t u ( x,t) si ( λ x) e si ( λ x) dx whee the squaed om of eigefuctios may be evaluated afte itegatio as si( λ) X si ( λx) dx 4λ Fially, the solutio is: u ( x) si( λ x) dx αλ t u ( x,t) si( λ x) e si( λ ) 4λ

8 6 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Maple: et, H 3 > estat; > with(plots):, u ( x) x( x), α.65 > :;H:3;A:.65; : H : 3 A :.65 Chaacteistic equatio: > w(x):x*cos(x*)+h*si(x*); > plot(w(x),x..); w( x ) : x cos( x) + 3 si( x ) Eigevalues: Eigefuctios: > :: fo m fom to 5 do z:fsolve(w(x),xm/..(m+)/): if type(z,float) the lambda[]:z: :+ fi od: > fo i to 5 do lambda[i] od; > N:-; > :'':i:'i': > X[]:si(lambda[]*x); N : 3 X : si( λ x ) Squaed-om: > NX[]:it(X[]^,x..); NX : cos( λ ) si( λ ) + λ λ Iitial coditio: > u(x):x*(-x)+; u( x ) : x ( x) + Fouie coefficiets: > a[]:simplify(it(u(x)*x[],x..)/nx[]); a : ( λ + + si( λ ) ) λ cos( λ ) cos( λ ) λ λ ( cos( λ ) si( λ ) + λ )

9 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 63 Solutio - Geealized Fouie seies: > u(x,t):sum(a[]*x[]*exp(-lambda[]^*t/a^),..n): > plot3d(u(x,t),x..,t..3,axesboxed,stylewiefame); u ( x,t) t > aimate({u(x),u(x,t)},x..,t..5,fames,axesboxed); u ( x,t) > u(x,):subs(t,u(x,t)): > u(x,):subs(t,u(x,t)): > u(x,5):subs(t5,u(x,t)): > u(x,):subs(t,u(x,t)): > u(x,):subs(t,u(x,t)): > plot({u(x),u(x,),u(x,),u(x,5),u(x,),u(x,)},x..); u ( x) t t u ( x,t) t 5 t t t

10 64 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3.. GENERA CASE No-Homogeeous Equatio, No-Homogeeous Bouday Coditios u u + F ( x) α t u ( x,t), x (,), t > Iitial coditio: ( x, ) u ( x) u Bouday coditios: [ ] x [ u] g u g, t > (I, II o IIId kid), t > (I, II o IIId kid) x I Steady State Solutio Defiitio A time-idepedet fuctio which satisfies the heat equatio ad bouday coditios obtaied as u s ( x) lim u( x,t) t is called a steady state solutio Substitutio of a time-idepedet fuctio ito the heat equatio leads to the followig odiay diffeetial equatio: us + F ( x) us ( x ), x (,) subject to the bouday coditios of the same kid as fo PDE: [ u ] [ u ] g, t > (I, II o IIId kid) s x g, t > (I, II o IIId kid) s x Geeal solutio of ODE: ( ) ( ) u x F x dx dx + c x + c s Solutios of BVPs fo plae wall with uifom heat geeatio ae povided by the Table. II Tasiet Solutio: Defie the tasiet solutio by equatio: U ( x,t) u( x,t) u ( x) s the solutio of the oigial poblem is a sum of tasiet solutio ad steady state solutio: u ( x,t) U ( x,t) + u ( x) Substitute it ito the Heat Equatio: U us U + + F ( x) α t us + F x, it yields Sice ( ) U a U t s

11 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 65 We obtaied the equatio fo the ew ukow fuctio ( x,t) has homogeeous bouday coditios: x [ U] [ u] [ u ] g g x x s x x [ U] [ u] [ u ] g g x x s x U which As a esult, we educed the o-homogeeous poblem to a U x,t with homogeeous bouday homogeeous equatio fo ( ) coditios. Iitial coditio fo fuctio U ( x,t) : ( ) ( ) ( ) ( ) ( ) U x, u x, u x u x u x s s Solutio fo U(x,t) We coside the followig basic iitial bouday value poblem: U U α t U ( x,t), x (,), t > iitial coditio: U ( x,) u ( x) u ( x) s bouday coditios: [ U] x, t > [ U] x t > We aleady kow a solutio of this basic poblem obtaied by sepaatio of vaiables: U ( x,t ) t axe αλ whee coefficiets a ae the Fouie coefficiets detemied by the coespodig iitial coditio fo the fuctio U ( x,t) : a ( ) ( ) ( ) u x us x X x dx X ( ) x dx III Solutio of IBVP: Solutio of the oigial IBVP is a sum of steady state solutio ad tasiet solutio: u ( x,t ) u ( x) + U ( x,t) s ( ) u x+ axe αλ s t whee a ( ) ( ) ( ) u x us x X x dx X ( ) x dx

12 66 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Example 3 Diichlet-Diichlet poblem with a uifom heat geeatio: u u + F α t u ( x,t) : x (,), t > Iitial coditio: ( x, ) u ( x) u u,t Bouday coditios: ( ) u (,t) g g t > (Diichlet) t > (Diichlet) ) Steady State Solutio: et F cost, the itegatig the equatio twice, we come up with the followig solutio: us Fx + c us F x + cx + c Apply bouday coditios to detemie the costats of itegatio: x c g x F c g g + + g g F c + F ( ) g g F u x x + x g + + s Example: F, g, g, 3 5 us ( x) x + x+ ) Tasiet Poblem: U U α t.5.5 U ( x,t) : x (,), t > iitial coditio: U ( x,) u ( x) u ( x) s bouday coditios: U (,t) (Diichlet) U (,t) (Diichlet)

13 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 67 Solutio of this basic poblem (Diichlet-Diichlet) obtaied by sepaatio of vaiables: π π λ, X ( x) si x U ( x,t ) t axe αλ π x e a si α π t whee coefficiets a ae the Fouie coefficiets detemied by the coespodig iitial coditio fo the fuctio U ( x,t) : ( ) ( ) ( ) u x u x X x dx π a u ( x) u ( x) si x dx s s X ( x) dx 3) Solutio of IBVP: Retu to the oigial fuctio u ( x,t ) : π u ( x,t) U ( x,t) + us( x) us( x) + a si x e α π t The the solutio of the o-homogeeous heat equatio with ohomogeeous Diichlet bouday coditios becomes: α π t g g π π ( ) s( ) F F u( x,t ) x + + x + g + u x u x si x dx si x e Remak: I pactice, istead of the exact solutio defied by the ifiite seies, the tucated seies is used fo calculatio of the appoximate solutio. How may tems ae eeded i the tucated seies fo the accuate appoximatio? Compaiso of the exact solutio (which is also a tucated seies but with a vey lage umbe of tems, which we assume, povides a accuate esult) with the calculatio with a small umbe of tems i a tucated seies shows that the accuacy depeds o time: the futhe we poceed i time, the moe accuate becomes a appoximate solutio (why?). Fo uifom chaacteizatio of physical pocesses, the o-dimesioal paametes ae used i egieeig. I heat tasfe, o-dimesioal time is defied by the Fouie umbe: αt Fo whee α is the themal diffusivity. I egieeig heat tasfe aalysis, a 4 tem appoximatio is cosideed as a accuate appoximatio fo all values of the Fouie umbe. Fo simplicity, vey ofte eve a tem appoximatio is used, which is cosideed to be accuate fo Fo >. (eo i most cases does ot exceed %, ad this is a covetio i egieeig heat tasfe).

14 68 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Coside compaiso of the exact solutio ( tems) with ad 4 tems appoximatios. Results ae calculated fo: Fo. Fo.5 Fo. Fo.4 The lowest cuve is a steady state solutio. As ca be see fom the figue, fo Fo >., all esults coicide. Fo >. is geeally adopted [see Icope ad De Witt] as a coditio fo applicatio oe tem appoximatio. Fo >.

15 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 69

16 63 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3. -D AND 3-D HEAT EQUATION Catesia Coodiates Geeal Poblem: t > u u u + + F ( x,y) x y α t u ( x, y,t) : ( x, y) (,) (,M ) [ u] f ( x) y Iitial Coditio: ( x, y, ) u ( x, y) ( x,y) [,] [,M ] Bouday Coditios: u x [ u] f3 ( y) x (,M ) x [ u] f4 ( y) x (,M ) y [ u] f ( x) y (,) y M [ u] f ( x) y M (,) y t > y t > x t > x t > u s. We ae lookig fo a steady state solutio which satisfies the diffeetial equatio:. Steady State Solutio Fid time-idepedet solutio ( x, y) u u + + F ( x,y) y s s ad the bouday coditios of the same type as i the geeal poblem x [ us] f3( y) x (,M ) x [ us] f4( y) x (,M ) y [ us] f( x) y (,) y M [ u ] f ( x) (,) s y M y t > y t > x t > x t > This is the BVP fo Poisso s Equatio fo which, i geeal, all bouday coditios ae o-homogeeous. The supepositio piciple should be used to educe the poblem to the set of supplemetal basic poblems (see VIII.3.4, p.597).. Tasiet Solutio (Basic Case) Itoduce the tasiet fuctio as U ( x, y,t) u( x, y,t) u ( x, y) It ca be veified that fuctio U satisfies homogeeous Heat Equatio + x y α U U U t with fou homogeeous bouday coditios (of the same type): ad the iitial coditio: x [ U] x (,M ) x [ U] x (,M ) y [ U] y (,) y M [ U] y M (,) s y t > y t > x t > x t > ( ) ( ) ( ) ( ) U x,y, u x,y u x,y U x,y s

17 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 63 Sepaatio of vaiables st stage: We assume that the fuctio ( x, y,t) two fuctios U ca be witte as a poduct of U ( x,y,t) Φ ( x,y) T ( t) whee Φ ( x,y) is the fuctio of space vaiables. Substitute it ito the Heat Equatio Φ Φ T + T ΦT y α Divide equatio by Φ T : Φ Φ + y T Φ α T o usig aplacia opeato Φ T Φ α T eft had side is a fuctio of space vaiables oly ad the ight had side is a fuctio of the time vaiable, theefoe, they have to be equal to a costat (sepaatio costat): Φ T β Φ α T Bouday coditios fo sepaated fuctios ae: [ ] [ Φ ] ( ) x x (,M ) [ ] [ Φ ] ( ) x x (,M ) [ U] [ Φ ] T( t) y y (,) [ ] [ Φ ] T ( ) (,) y M y M y y x x t > [ Φ ] x t > [ Φ ] x t > [ Φ ] y t > [ Φ ] y M Thee ae fou homogeeous bouday coditios fo the fuctio Φ. Fom the sepaated equatios, coside the equatio Helmholtz Equatio Φ βφ which has a stuctue of equatio of the eigevalue poblem fo diffeetial opeato. It is called the Helmholtz Equatio. The solutio of the Helmholtz Equatio subject to bouday coditios ca be easily obtaied by the eigefuctio expasio method. Sepaatio of vaiables d stage: Assume Φ ( x,y) X ( x) Y ( y) Substitute ito the Helmholtz Equatio XY X Y + XY ζ XY ( ) Divide by XY X Y + β X Y Sepaatio of vaiables i the bouday coditios yield: y (,M ) [ Φ ] X ( ) Y( y) x [ ] x y (,M ) [ Φ ] X ( ) Y( y) x [ ] x x (,) [ Φ ] X ( x) Y( ) y [ ] y x (,) [ Φ ] X ( x) Y( M) y M [ ] y M X X Y Y Note, that we have complete pais of homogeeous bouday coditios both fo X ad Y.

18 63 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Now, solve cosequetly the Stum-iouville poblems fo X ad Y : X Y + β µ X Y Equatio is sepaated. It yields fist SP: X µ X SP µ λ [ X] x [ X] x X ( ) x,,... The the secod equatio becomes: Y + β λ Y which i its tu is a sepaated equatio: Y β + λ η Y It yields the secod Stum-iouville Poblem: Y ηy SP η ν m [ Y] y [ Y] y M Y ( ) m y m,,... Equatio fo sepaatio costats yields: β λ ν + m β ( λ + νm) The equatio fo T becomes T β ( λ + νm) α T Which is the st ode odiay diffeetial equatio: T + α λ + ν T ( m) with the solutios: ( m) T t e α λ + ν t m ( ) Solutio of the Tasiet Poblem: Costuct the solutio i the fom of double ifiite seies (eigefuctio expasio): ( m) U x,y,t A X Y e α λ + ν t ( ) m m m Whee the coefficiets ( ) ( ) U x,y, U x,y A X Y A m ca be foud fom the iitial coditio m m m as the Fouie coefficiets of the double Geealized Fouie seies: A M ( ) ( ) ( ) U x, y X x Y y dxdy m m X Ym

19 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Example: DDNN u u u + y α t u ( x, y,t) : ( x, y) (,) (,M ), t > Iitial Coditio: ( x, y, ) u ( x, y) Bouday Coditios: u [ u] f ( x) y x [ u] x (,M ) x [ u] f4 ( y) x (,M ) y y M u y y u y y M y t > (Diichlet) y t > (Diichlet) x (,) t > (Neuma) x (,) t > (Neuma). Steady State Solutio Fid time-idepedet solutio ( x, y) u u + y s s subject to the bouday coditios: u s : x [ us ] x (,M ) x [ us] f4( y) x (,M ) y u s y y y t > y t > x (,) t > us y M x (,) t > y y M This is the basic poblem fo aplace s Equatio whe, thee bouday coditios ae o-homogeeous. Sepaatio of vaiables: us ( x, y) XY x [ u ] X s ( ) x x [ u ] f ( y) y s x 4 u s y y Y ( ) us y M y Y ( M) y M Sepaated equatio: Y X µ Y X Fist, coside equatio fo Y (two coditios): Y µ Y Y ( ) Y ( M) µ λ SP λ Y π M π Y y cos y cos y M λ ( ) ( λ )

20 634 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 The equatios fo X : X ( ) X λ X X x c+ cx X ( x) c cosh( λx) + c sih( λx) Bouday coditio at x yields X( ) c + c c c ( ) X c + c c c The X x x ( ) π X ( x) sih x M Costuct the steady state solutio as π π us ( x,y) axy + axy ax + asih x cos y M M This solutio should satisfy the bouday coditio at x ( ) ( ) s 3 u,y f y π π a + a sih cos y M M f y with Which is a cosie Fouie seies expasio of ( ) M a f ( y) dy 3 M M π a f3( y) cos y dy π M M sih M The the steady state solutio becomes: us ( x,y ) 3( ) + 3( ) 3 : M M π π π f y dy x f y cos y dy sih x cos y M π M M M M sih M. Tasiet Solutio Itoduce the tasiet fuctio as U ( x, y,t) u( x, y,t) u ( x, y) Fuctio U satisfies homogeeous Heat Equatio + y α U U U t with fou homogeeous bouday coditios: x [ U] x (,M ) x [ U] x (,M ) y y M ad the iitial coditio: U y y U y y M s y t > y t > x (,) t > x (,) t > ( ) ( ) ( ) ( ) U x,y, u x,y u x,y U x,y s

21 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Sepaatio of vaiables U XYT yields a sepaated equatio X Y T + β X Y α T with homogeeous bouday coditios: x [ U] x x [ U] x y U X ( ) X ( ) y y Y ( ) U y M Y ( M) y y M Solve cosequetly the Stum-iouville poblems fo X ad Y : X Y + β µ X Y X µ X [ X] x [ X] x DD µ λ π, λ,,,... π X x si λx si x ( ) ( ) The the secod equatio becomes: Y + β µ λ Y which i its tu is a sepaated equatio: Y β + λ η Y It yields the secod Stum-iouville Poblem: Y ηy [ ] y Y [ ] y M NN Y m η ν m m,,,... Y y ν ( ) mπ M ν ( ) Equatio fo sepaatio costats yields: β λ η ν + m β ( λ + νm) mπ Ym y cos y M The equatio fo T becomes T β ( λ + νm) α T Which is the st ode odiay diffeetial equatio: T + α λ + ν T ( m) with the solutios: ( m) T t e α λ + ν t m ( ) Solutio of the Tasiet Poblem: Costuct the solutio i the fom of double ifiite seies (eigefuctio expasio): αλ ( m) t t U x,y,t A XYe A XYe α λ + + ν ( ) m m m

22 636 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Whee the coefficiets ( ) ( ) A m ca be foud fom the iitial coditio: U x,y, U x,y A X Y + A X Y m m m U ( x,y) A X Y + A X Y m m m whee M A X U ( x, y) dy M M A X U ( x, y) Y ( y) dy m m M The M A U x, y X x dydx ( ) ( ) M M 4 A U x, y X x Y y dxdy ( ) ( ) ( ) m m M 3. Solutio of IBVP u ( x, y,t) U ( x, y,t) + u ( x, y) s u ( x, y,t) m A m π mπ si x cos y e M mπ mπ + ax + amsih x cos y m M M π m π + t M a whee coefficiets ae M si π x dydx M A [ g( x, y) us ( x, y) ] 4 M mπ M π A m [ g( x, y) us ( x, y) ] cos y si y dydx M a M M f ( y)dy M mπ f y cos y dy mπ M M sih M a m ( )

23 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 637

24 638 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 4. Maple Example: heat5d-.mws, M 4,. 5 α, f ( y), g( x, y) x( x ) + y( y M ) -D Heat Equatio Example DD-NN > estat; > with(plots): > :;M:4;alpha:.5; > f(y):; > plot(f(y),y..m,axesboxed); : M : 4 α :.5 f( y) : fuctio i o-homogeeous bouday coditio [ u] f ( y) x 4 > u(x,y):x*(x-)*y*(y-m); u ( x, y) : x ( x ) y ( y 4 ) > plot3d(u(x,y),x..,y..m,axesboxed); iitial tempeatue distibutio ( ) ( ) + ( ) u x,y x x y y M Steady State Solutio: > a[]:it(f(y),y..m)//m; a : > a[m]:/m*it(f(y)*cos(m*pi*y/m),y..m)/sih(m*pi*/m); si( m π) a m : m π sih m π > us[m](x,y):a[m]*sih(m*pi*x/m)*cos(m*pi*y/m): > us(x,y):a[]*x+sum(us[m](x,y),m..): > plot3d(us(x,y),x..,y..m,axesboxed,pojectio.9); steady state solutio u s ( x,y)

25 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, > plot3d({us(x,y),u(x,y)},x..,y..m,axesboxed,stylewiefame); iitial tempeatue distibutio u ( x, y) steady state solutio u s ( x,y) Tasiet Solutio: > U(x,y):u(x,y)-us(x,y); U (, ) x y : x ( x ) y ( y 4) > A[,]:*it(it(U(x,y),y..M)*si(*Pi*x/),x..)//M: > A[,m]:4*it(it(U(x,y)*cos(m*Pi*y/M),y..M)*si(*Pi*x/),x..)//M: > U[,](x,y,t):A[,]*si(*Pi*x/)*exp(-^/^*Pi^*t*alpha): > U[,m](x,y,t):A[,m]*si(*Pi*x/)*cos(m*Pi*y/M)*exp(- (m^/m^+^/^)*pi^*t*alpha): > U(x,y,t):sum(U[,](x,y,t),..)+sum(sum(U[,m](x,y,t),m..),..): > U(x,y,):subs(t,U(x,y,t)): Solutio of IBVP: > u(x,y,t):us(x,y)+u(x,y,t): > u(x,y,):subs(t,u(x,y,t)): > aimate3d(u(x,y,t),x..,y..m,t..3,fames,axesboxed); x

26 64 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, D HEMHOTZ EQUATION Coside the Helmholtz equatio which appeas i the sepaatio of z all bouday coditios ae homogeeous [ ] I,II, o III U S vaiables i the Basic IBVP fo the 3-D Heat Equatio: U U U U t + + x y z α ( x,y,z) (,) (,M ) (,K), t > K y Sepaatio of vaiables: M ( ) Φ ( x,y,z) T ( t) U x,y,z,t iitial coditio: [ U] U ( x,y,z) t x Sepaated equatio: Φ Φ Φ + + y z Φ T β α T Sepaated equatio yields the Helmholtz Equatio: Helmholtz Equatio Φ βφ which costitutes the eigevalue poblem fo diffeetial opeato. The solutio of the Helmholtz Equatio subject to bouday coditios ca be easily obtaied by the eigefuctio expasio method. Assume ( x,y,z) X ( x) Y ( y) Z ( z) Φ Substitute ito the Helmholtz Equatio XYZ X YZ + XY Z + XYZ β XYZ Divide by XYZ ( ) X Y Z + + β X Y Z Sepaatio of vaiables i the bouday coditios yields: [ Φ ] X ( ) Y( y) Z( z) x [ ] x [ Φ ] X ( ) Y( y) Z( z) x [ ] x [ Φ ] X ( x) Y( ) Z( z) y [ ] y M [ Φ ] X ( x) Y( M) Z( z) y M [ ] y M [ Φ ] X( xy ) ( y) Z ( ) z [ ] z K [ Φ ] X( xy ) ( y) Z( K) z K [ ] z K x x y y z z Note, that we have complete pais of homogeeous bouday coditios fo X, Y ad Z. X X Y Y Z Z Now, solve cosequetly the Stum-iouville poblems fo X ad Y : X Y Z + β µ X Y Z

27 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 64 Equatio is sepaated. It yields the fist Stum-iouville Poblem: X µ X SP [ X] x µ λ ( ) [ X] x X ( ) x The the equatio becomes: Y Z + β µ λ Y Z which i its tu is a sepaated equatio: Y Z + β + λ η Y Z It yields the secod Stum-iouville Poblem: Y ηy SP [ Y] y η ν m ( ) [ Y] y M Y ( ) m y The oe moe step poduces equatio Z + β + λ νm Z which also ca be sepaated Z β + λ + νm γ Z It yields the thid Stum-iouville Poblem: Z γ Z SP,,,... m,,,... [ Z] z γ ω k ( ) [ Z] z K Z ( ) k z The the secod pat of the last equatio becomes β + λ + νm ωk ad the costat of sepaatio is k,,,... ( m k ) β λ + ν + ω The the solutio of the Basic IBVP fo the Heat Equatio is: ( m k ) t U x,y,z,t B X x Y y Z z e α λ + ν + ω Solutio of Basic IBVP: ( ) mk ( ) m ( ) k ( ) m k whee the coefficiets B mk ca be foud fom the iitial coditio as the Fouie coefficiets of the tiple Geealized Fouie Seies: B KM ( ) ( ) ( ) ( ) U x, y, z X x Y y Z z dxdydz m k mk X Ym Zk

28 64 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Pofesso Gabiel Węcel (Istitute of Themal Techology, Silesia Uivesity of Techology, Gliwice, Polad) has visited ou class o Febuay, 3

29 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Summay Tasiet Coductio THE HEAT EQUATION Catesia Coodiates u u u u F ( x,y,z) y z α t [ u] S f 3 ( x,y,z) (,) (,M ) (,K) t > [ u] t t u M y [ u] f ( x) y M [ u] f ( y) x 3 u+ F [ u] f ( y) x 4 [ u] f ( x) y x ( ) ( ) + ( ) u x,y,z,t U x,y,z,t u x,y,z s STEADY STATE PROBEM - PE TRANSIENTPROBEM - HE us us us F ( x,y,z) y z + + y z α U U U U t [ u ] s S f [ U] S [ ] t t U u u s M y [ u ] f ( x) s y M M y [ U] y M [ u ] f ( y) s x 3 s + u F [ u ] f ( y) s x 4 [ U] x U U α t [ u] x [ u ] f ( x) s y x [ U] y x TRANSIENT SOUTION: U x,y,z,t B ( m k ) X Y Z e α λ ν ω t ( ) m k mk m k B MK ( ) u u X Y Z dxdydz s m k mk X Ym Zk

30 644 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3.3. HEAT EQUATION IN CYINDRICA COORDINATES VIII.3.3. SOID CYINDER BASIC CASE: Homogeeous Equatio ad Bouday Coditios u u u + α t (, ) u t : [ ),, t > Iitial coditio: u (,) u ( ) Bouday coditios: u (,t ) < t > bouded [ ] u t > (I, II o IIId kid) ) Sepaatio of vaiables: u (,t) R( ) T ( t) u (,t ) bouded R ( ) < [ u] [ R] T( t) [ R] bouded R R T + µ R R α T ) Stum-iouville Poblem: R R + µ (Fom SP, µ λ ) R R + + R R λ R Bessel Equatio of ode Eigevalues: 3) Equatio fo T : T αµ T µ λ,,... Eigefuctios: R( ) J( λ) Weight Fuctio: p( ) + ( ) T αλ T T t e αλ t 4) Solutio: u (,t) art aj ( λ ) e αλ t u, u a R Iitial coditio ( ) ( ) a ( ) ( ) u R d R ( ) d ( ) ( λ ) u J d J ( λ ) d

31 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, GENERA CASE: No-Homogeeous Equatio, No-Homogeeous Bouday Coditios u u u + + F ( ) α t u ( x,t) : ( ),, t > Iitial coditio: u (,) u ( ) Bouday coditios: u (,t ) t > bouded [ u] f t > (I, II o IIId kid) I Steady State Solutio Time-idepedet solutio u ( ) s Substitutio of a time-idepedet fuctio ito the heat equatio leads to the followig odiay diffeetial equatio: u s u ( ) s + + F us ( ), (, ) subject to the bouday coditios of the same kid as fo PDE: [ u s ] x t > bouded [ us] f, Geeal solutio of ODE: u s + F( ) t > (I, II o IIId kid) u s F ( ) us F ( ) d + c us c F ( ) d + ( ) us F ( ) d d + c l + c Fo bouded solutio, it is ecessaily c, theefoe the geeal steady state solutio i cicula domai is ( ) u F ( ) d d + c s Solutios of BVPs fo cicula domai with uifom heat geeatio ae povided by the Table. II Tasiet Solutio: Defie the tasiet solutio by equatio: ( ) ( ) ( ) U,t u,t u s the solutio of the oigial poblem is a sum of tasiet solutio ad steady state solutio: ( ) ( ) + ( ) u,t U,t u s

32 646 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Substitute it ito the Heat Equatio: U U u u U α t us u + + F x, it yields s s F ( ) Sice ( ) U U U + α t We obtaied the equatio fo the ew ukow fuctio U (,t ) which has homogeeous bouday coditio: [ U] [ u] [ u ] f f s As a esult, we educed the o-homogeeous poblem to a U,t with homogeeous bouday homogeeous equatio fo ( ) coditios. Iitial coditio fo fuctio U (,t ) : U (,) u (,) u ( ) u ( ) u ( ) s s Solutio fo U(,t) We coside the followig BASIC iitial bouday value poblem: U U U + α t U (,t ), ( ),, t > iitial coditio: U (,) u ( ) u ( ) s bouday coditios: U (,t ) < t > [ U ] t > We aleady kow a solutio of this basic poblem obtaied by sepaatio of vaiables: ( ) U x,t art aj ( λ ) t e αλ whee coefficiets a ae the Fouie coefficiets detemied by the coespodig iitial coditio fo the fuctio U ( x,t) : a ( ) ( ) ( ) u us R d R ( ) d ( ) ( ) ( λ ) u us J d J ( λ ) d III Solutio of IBVP: Solutio of the oigial IBVP is a sum of steady state solutio ad tasiet solutio: u (,t ) u ( ) + U (,t) s

33 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, VIII.3.3. HOOW CYINDER BASIC CASE: Homogeeous Equatio ad Bouday Coditios u u u + α t u ( x,t) : ( ),, t > Iitial coditio: u (,) u ( ) Bouday coditios: [ ] [ ] u t > (I, II o IIId kid) u t > (I, II o IIId kid) ) Sepaatio of vaiables: u (,t) R( x) T ( t) [ u] [ R] T( t) [ ] [ u] [ R] T( t) [ ] R R T + µ R R α T R R ) Stum-iouville Poblem: R R + µ ( µ λ SP) R R + + R R λ R Bessel Equatio of ode Eigevalues: µ λ,,... λ ae oots of chaacteistic eq Eigefuctios: R ( ) c J ( λ ) + c Y ( λ ),, 3) Equatio fo T : T αµ T + ( ) T αλ T T t e αλ t 4) Solutio: u (,t) art ar ( ) t e αλ u, u a R Iitial coditio: ( ) ( ) a ( ) ( ) u R d R ( ) d

34 648 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 GENERA CASE: No-Homogeeous Equatio, No-Homogeeous Bouday Coditios u u u + + F ( ) α t u ( x,t) : ( ),, t > Iitial coditio: u (,) u ( ) Bouday coditios: [ u] [ u] f f t > (I, II o IIId kid) t > (I, II o IIId kid) I Steady State Solutio Time-idepedet solutio u ( ) s Substitutio of a time-idepedet fuctio ito the heat equatio leads to the followig odiay diffeetial equatio: us us + + F ( ) us ( ), (, ) subject to the bouday coditios of the same kid as fo PDE: [ u ] [ u ] s s f, t > (I, II o IIId kid) f, t > (I, II o IIId kid) Geeal solutio of ODE: ( ) u F ( ) d d + c l + c s Coefficiets c,c have to be detemied fom bouday coditios. II Tasiet Solutio: Defie the tasiet solutio by equatio: ( ) ( ) ( ), u (,t) U (,t) + u ( ) U,t u,t u s Substitutio ito the Heat Equatio yields a equatio fo tasiet solutio: s U U U + α t fo the ew ukow fuctio U (,t ) which has two homogeeous bouday coditios: [ ] [ ] [ ] U u u f f s [ ] [ ] [ ] U u u f f ad iitial coditio: s ( ) ( ) ( ) ( ) ( ) U, u, u u u s s

35 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Solutio fo U(,t) We coside the followig BASIC iitial bouday value poblem: U U U + α t U (,t ), ( ),, t > iitial coditio: U (,) u ( ) u ( ) bouday coditios: [ ] [ ] s U t > U t > We aleady kow a solutio of this basic poblem obtaied by sepaatio of vaiables: ( ) U x,t art ar( ) t e αλ whee coefficiets a ae the Fouie coefficiets detemied by the coespodig iitial coditio fo the fuctio U ( x,t) : a ( ) ( ) ( ) u us R d R ( ) d III Solutio of IBVP: Solutio of the oigial IBVP is a sum of steady state solutio ad tasiet solutio: u (,t ) u ( ) + U (,t) s

36 65 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII HEAT EQUATION i Cylidical Coodiates: u (, θ,z,t) -D AND 3-D cases u u u u g u z k α t θ ) og cylide u z : u u u g u θ k α t (,θ) θ ) Shot cylide with agula symmety u θ : u u u g u z k α t z (,z) 3) Cylidical suface of fixed adius u : u u g u + + θ z k α t z θ ( θ,z)

37 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, D HEMHOTZ EQUATION Coside the Helmholtz equatio which appeas i the sepaatio of vaiables i the Basic IBVP fo the 3-D Heat Equatio: z all bouday coditios ae homogeeous [ ] I,II, o III U S θ z α U U U U U t z K (, θ,z) [, ) [,π] (,K), t > Sepaatio of vaiables: ( θ ) Φ (, θ,z) T ( t) U,,z,t Sepaated equatio: iitial coditio: [ U ] U (, θ,z ) t Φ Φ Φ Φ θ z T β Φ α T Sepaated equatio yields the Helmholtz Equatio: Helmholtz Equatio Φ βφ The solutio of the Helmholtz Equatio subject to bouday coditios ca be obtaied by the eigefuctio expasio method. Assume (,,z) R( ) ( ) Z( z) Φ θ Θ θ Substitute ito the Helmholtz Equatio R ΘZ + R ΘZ + RΘ Z + RΘZ βrθz Divide by RΘ Z R R Θ Z β R R Θ Z Sepaatio of vaiables i the bouday coditios yields: [ Φ] R( ) Θ( θ) Z( z) x [ ] [ Φ] R( ) Θ( θ) Z( ) z [ ] z K [ Φ] R( ) Θ( θ) Z( K) z K [ ] z K z z We still eed the bouded solutio R Z Z [ Φ] R ( ) Θ( θ) Z( z) < [ ] ad peiodic R < (, +,z) (, +,z) Θ( θ + π) Θ( θ) Φ θ π Φ θ π

38 65 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 st equatio Θ R R Z Θ R R Z β η Θ ηθ ( + ) ( ) Θ θ π Θ θ η ( ) Θ θ η Θ( θ) a cos ( θ) b si( θ) +,,... d equatio R R Z β,,,... R R Z + β µ R R Z R R Z R R + µ R R + µ R R R R ( µ ) ( ) ( µ ) R + R + R µ λ R + + R + + R R λ R [ R ] < [ R ] ( ) ( λ ) + ( λ ) R c J c Y,, [ R ] < c, ( ) ( λ ) R c J, [ R ] ( ) J λ λ m,,,... m ( ),,,...

39 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, d equatio Z β λ Z m Z Z λ + β γ m Z γ Z SP [ Z] z γ ω k ( ) [ Z] z K Z ( ) k z The the secod pat of the last equatio becomes λm + β ωk ad the costat of sepaatio is k,,,... ( m k ) β λ + ω The the solutio of the Basic IBVP fo the Heat Equatio is: ( m k ) t U,,z,t A cos B si J Z z e α λ + ω Solutio of Basic IBVP: ( θ ) mk ( θ) + mk ( θ) ( λm ) k ( ) m k whee the coefficiets A mk ad Bmk ca be foud fom the iitial coditio as the Fouie coefficiets of the tiple Geealized Fouie Seies: Kπ ( ) ( λ ) ( ) U x, y, z J Z z ddθdz m k mk Rm Ym Zk A A B KM ( ) ( ) ( ) ( ) U x, y, z X x Y y Z z dxdydz m k mk X Ym Zk KM ( ) ( ) ( ) ( ) U x, y, z X x Y y Z z dxdydz m k mk X Ym Zk,,... m ( ),,,... k ( ),,,...

40 654 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3.4 SOID SPHERE u,h Coside heat coductio i the sphee with agula symmety: u u φ θ he o-statioay tempeatue field u (,t) depeds oly o the adial vaiable ad time vaiable t. Iitial-bouday value poblem: ( ) u q u + k α t [, ) t > iitial coditio: (, ) u ( ) [ ] u, bouday coditios: ( ) u k hu u t > u < t > whee u is the ambiet tempeatue ad h is a covective coefficiet. Rewite the bouday coditio i the stadad fom u h hu + u k k ) Supepositio of Steady State ad Tasiet Solutios: ( ) ( ) + ( ) u,t u U,t ) Steady State Solutio: s ( ) u q + k s bouday coditios: us h hu + u s k k t > u s < t > Geeal solutio: q( ) c us ( ) d d + c k Fo the solid sphee (bouded solutio at ): q( ) us ( ) d d c + k Fo uifom heat geeatio ( q cost ): q + + 6k 3h q u us ( ) ( )

41 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, ) Tasiet Solutio: U U α t iitial coditio: [, ) t > ( ) ( ) ( ) [ ] U, u u s bouday coditios:, U h + U k t > U < t > Itoduce the ew depedet vaiable (eductio to catesia case): ( ) U (,t) V,t Evaluate U U U U V V + V V + V V + V + V U V Equatio: U α t V V α t V α t V V α t which fomally is the -d Heat Equatio fo i the fiite iteval [, ), which equies two bouday coditios. The fist coditio at is obtaied diectly fom the equatio used fo a chage of vaiable: V U Diichlet Coside the secod bouday coditio at : U h + U k V hv + k

42 656 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 V V hv + k V h + V k V h + V k V h + HV H Robi k Iitial-bouday value poblem: V V α t ( ) ( ) ( ) ( ) V, U, u us V U D V h + HV H R k 4) Stum-iouville Poblem coespodig to the case of Diichlet- Robi bouday coditios (table SP): Eigevalues λ ae the positive oots of the equatio: λ cos λ + H si λ Eigefuctios X si λ X si 4λ ( λ ) Solutio (see Example, p.?): V (,t ) c si( λ ) c e αλ t ( ) ( ) ( λ ) u u si d s X 5) Solutio: u,t us V,t ( ) ( ) + ( )

43 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, ) Example (tukey-3.mws) Roastig of a tukey The tukey (W u 5 lb ) is assumed to be a sphee with the uifom iitial tempeatue o C. It is exposed to the covective eviomet at u with the covective o 5 C W coefficiet h. The tukey is cosideed to be doe whe its miimum tempeatue mk o eaches udoe 75 C (Stadad fo Califoia). Themophysical popeties of tukey meat used fo calculatio ae fom the Table (Sectio.3.4, p.78). > estat;with(plots): > alpha:.3e-6;ho:5;cp:354;k:.5; α :.3-6 > h:; > qdot:.; ρ : 5 cp : 354 k :.5 h : qdot :. > W:5.;VO:W/ho;:fsolve(4/3*Pi*^3VO,..); W : 5. > H[]:h/k-/; Specified Tempeatues: > uif:5;ud:75; > u:; VO : : H : uif : 5 ud : 75 u : Steady State Solutio: > us:qdot*(^-)/6/k+qdot*/3/h+uif; us : 5. Tasiet Solutio: chaacteistic equatio: > w(x):x*cos(x*)+h[]*si(x*); w( x ) : x cos( x ) si( x ) > plot(w(x),x..5); Eigevalues: > :: fo m fom to do y:fsolve(w(x),x*m..*(m+)): if type(y,float) the lambda[]:y: :+ fi od: > fo i to 4 do lambda[i] od; > N:-; N :

44 658 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Eigefuctios: > X[]:si(lambda[]*); X : si( λ ) > NX[]:/-si(*lambda[]*)/4/lambda[]; si( λ ) NX : λ > c[]:it(*(u-us)*x[],..)/nx[]; > u(,t):us+(/)*sum(c[]*x[]*exp(-alpha*lambda[]^*t),..n); u (, t) : 5. + ( si( ) e ( t ) si( ) e ( t ) si( ) e ( t ) si( ) e ( t ) si( ) e ( t ) si( ) e ( t ) si( ) e (.4549 t ) si( ) e ( t ) si( ) e ( t ) si( ) e ( t ) )/ Solutio: Symmetic Extesio: > u(,t):subs(-,u(,t)): > t:.5*6*:t:3*6*6:t:5*6*6:t3:7*6*6:t4:9*6*6: > z:subs(tt,u(,t)):z:subs(tt,u(,t)):z3:subs(tt3,u(,t)):z4:subs(tt4,u(,t)): > plot({u,us,ud,z,z,z3,z4},-..,coloblack,axesboxed); u (,t) t t 9 hous 5 mi Tempeatue at the cete: > uc:limit(u(,t),); uc : e ( t ) e ( t ) e ( t ) e ( t ) e ( t ) e ( t ) e ( t ) e ( t ) e ( t ) e (.4549 t )

45 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, > aimate({u(,t),uc,ud,u,us},-..,t..*36,fames,axesboxed); u doe > plot({uc,u,ud},t..*36,axesboxed,coloblack); u doe u (,t) t doe

46 66 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3.4. Heat Equatio i Spheical Coodiates: u (, φθ,,t) u u u u g u + + si φ + + siθ φ φ si θ θ k α t ) Sphee with agula symmety u φ : u u u g u si θ θ k α t Example: Floatig ball (,θ ) θ φ ) Spheical suface of fixed adius u : u u g u si φ + + siθ φ φ si θ θ k α t ( φθ, ) θ φ Example: Diffusio of foeig mit cois i Face

47 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 66

48 66 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII PDE i spheical coodiates Coside a BVP geeated by sepaatio of vaiables i a PDE i spheical coodiates. We will oly see what the Stum-iouville poblems ae i this case.. aplace s Equatio Recall the geeal fom of aplace s Equatio i spheical coodiates u,φ,θ, D : fo the fuctio ( ) u u u cosθ u u si θ φ siθ θ θ o with diffeetial opeatos witte i self-adjoit fom: () u u cosθ u u si θ φ siθ θ θ () sepaatio of vaiables Assume u, φ, θ R Φ φ Θ θ (3) ( ) ( ) ( ) ( ) Substitute ito equatio () R cosθ ΦΘ + R ΦΘ + RΦ Θ + RΦΘ + RΦΘ si θ siθ Multiply the equatio by RΦΘ R R Φ cosθ Θ Θ R R si θ Φ siθ Θ Θ Coside the axisymmetic case ( ): φ R R cos θ Θ Θ R R siθ Θ Θ Sepaate vaiables ad set both sides of the equatio equal to the same costat R R cosθ Θ Θ + µ R R siθ Θ Θ It yields two equatios: R R ) + µ R R which ca be ewitte i the fom R + R µ R (Eule-Cauchy equatio) o i the self-adjoit Stum-iouville fom ( ) ( µ ) R R (4) Solutios of this equatio ae sought i the fom R m.

49 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, ) cosθ Θ + Θ + µθ siθ Use chage of idepedet vaiable x cosθ, the d d dx d Θ Θ Θ siθ Θ dθ dx dθ dx Θ d d d d d d d Θ siθ Θ cosθ Θ siθ Θ dθ dθ dθ dx dx dθ dx d d d dx d d cosθ siθ cos si dx dx θ θ dx + dθ dx dx Substitute ito equatio dθ d Θ cosθ dθ cosθ + si θ siθ + µθ dx dx siθ dx Θ Θ Θ Θ d Θ dθ si θ cosθ + µθ dx dx ( x ) d Θ dθ x + µθ dx dx o i self-adjoit Stum-iouville fom: d dθ ( x ) dx dx This equatio is called egede s diffeetial equatio. It happes that its solutio is bouded oly if the sepaatio costat is a o-egative itege of the fom µθ (5) µ ( + ),,,... Its solutio cosists of egede polyomials P ( x ) (see Sec. 5.7).. Heat Equatio Coside the axisymmetic heat equatio fo u (,t ), spheical coodiates: u u u + a t u,t R T t Sepaatio of vaiables ( ) ( ) ( ) D, t > i Substitute ito equatio (6) R T + R T a RT divide by RT ad sepaate vaiables R R T + a µ R R T It yields two odiay diffeetial equatios. Equatio fo R is R + R µ R (7) which is a spheical Bessel equatio of zeo ode (see equatio (5) i Sec. 5.6 with, AAEM-II). Eigevalue poblem: R ( R ) µ R Its solutios ae give by spheical Bessel fuctios π J( ) j ( ) y ( ) π Y ( ) (6)

50 664 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Why we caot be completely satisfied with the method of sepaatio of vaiables? How about the time depedet bouday coditios, fo example?

51 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, VIII.3.5 WAVE EQUATION VIII D Catesia homogeeous equatio with homogeeous bouday coditios u a u t u ( x,t), (,) x, t > Iitial coditios: u( x, ) u ( x) u( x, ) u ( x) Bouday coditios: ( ) u(,t) t u,t, t > (Diichlet) + h u ( x,t), k t > (Robi) Deote H h k. Sepaatio of vaiables we assume that the fuctio ( x,t) u ca be epeseted as a poduct of two fuctios each of a sigle vaiable u x, y X x T t ( ) ( ) ( ) u X ( x) T ( t) ( x) T ( t) X ( x) T ( t) u X t ( x) T ( t) substitute ito equatio a X Afte sepaatio of vaiables, oe gets X T µ with a sepaatio costat µ X a T That yields two odiay diffeetial equatios: X µ X ad T µ a T. Stum-iouville poblem X µ X bouday coditios: x X ( ) T ( t) X ( ) X ( ) + H X ( ) x X ( ) T ( t) + H X ( ) T ( t) This Stum-iouville poblem has the followig solutio with µ : λ eigevalues λ ae positive oots of equatio λ cos λ + H si λ eigefuctios X ( x) si λ x The solutios of the secod diffeetial equatio T + λ a T ae T ( t) c cos λ at + c si λ at basic solutios: u ( x,t) X T si λ x( c cos λ at + c si λ at)

52 666 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 We ae lookig fo a solutio i the vecto space with the basis { ( x,t) } iitial coditios: u u u u : ( x,t) au( x,t) a si λ x( c cos λat + c si λat) ( x,t) si λ x( a c cos λ at + a c si λ at) ( x,t) si λ x( b cos λ at + d si λ at) t ( x, ) b si λ ax u ( x) u which is a geealized Fouie seies expasio of the fuctio f ( x) ove the iteval (,) with coefficiets b u ( x) si λxdx u ( x) si λ xdx si λ 4λ si λ xdx The deivative with espect to t of the assumed solutio is u( x,t) λ a si λx( b si λat + d cos λat) t The the secod iitial coditio yields u( x, ) t d λ a si λx u( x) t Agai, it ca be teated as a Fouie seies with coefficiets d λ a d u ( x) ( x) si λxdx u( x) si λ xdx u si λxdx si λ λ a 4λ si λ 4λ si λ xdx The the solutio of the iitial-bouday value poblem is: 3. Solutio u ( x,t) si λ x{ b cos λ at + d si λ at} si λ x u si λ 4λ ( x) si λ + xdx cos λat u ( x) si λxdx si λat λ a

53 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Nomal modes of stig vibatio Solutio of the Wave Equatio is obtaied as a sum of tems of the fom u ( x,t) X T si λ x( c cos λ at + c si λ at) which we called the basic solutios, but as the cotibutos to the vibatio of stig, these fuctios ae kow as omal modes. I ou example, fo,,3,4,... they have the followig shape (see Maple file fo aimatio): > m:subs(,x[]*(b[]*cos(lambda[]*a*t)+d[]*si(lambda[]*a*t))): > aimate({m},x..,t..9); fudametal mode > m:subs(,x[]*(b[]*cos(lambda[]*a*t)+d[]*si(lambda[]*a*t))): > aimate({m},x..,t..9); fist ovetoe > m3:subs(3,x[]*(b[]*cos(lambda[]*a*t)+d[]*si(lambda[]*a*t))): > aimate({m3},x..,t..9); secod ovetoe > m4:subs(4,x[]*(b[]*cos(lambda[]*a*t)+d[]*si(lambda[]*a*t))): > aimate({m4},x..,t..9); thid ovetoe ovetoes stadig waves The fist of these omal modes is called the fudametal mode, othes ae called the fist ovetoe, the secod ovetoe, ad so o. The fequecy of oscillatio of the omal mode is iceased with its umbe ad is detemied by the coespodig eigevalue λ ad coefficiet a which has a physical sese of the speed of popagatio of the waves (speed of soud). Thee ae fixed poits i the vibatio of ovetoes. The whole motio of the stig is a supepositio of vibatio of all ovetoes with diffeet amplitude. The ivolvemet of diffeet modes i the vibatio of stig is detemied by iitial coditios. If fo epesetatio of the iitial shape of the stig at est, diffeet modes ae equied, the all of them will be peset i the udamped vibatio of the stig. But if the iitial shape of the stig is exactly oe of the ovetoes, the oly this mode will be peset the stig vibatio. This pheomeo is called stadig waves. Stadig waves do ot popagate, oly shik ad swell i the same shape.

54 668 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII D pola coodiates Wave Equatio i pola coodiates with agula symmety u + u a u t u (,t), [, ], t > Iitial coditios: u (,) u ( ) u (,) u ( ) Bouday coditio: ( ) t u,t t > (Diichlet). Sepaatio of vaiables Assume u (, y) R( ) T ( t) the u u u R ( ) T ( t), R ( ) T ( t), R( ) T ( t). t Substitute ito the equatio R ( ) T ( t) + R ( ) T R( ) T ( t) a Afte sepaatio of vaiables (divisio by R ( t) T ( t) ), we eceive R R T + µ with a sepaatio costat µ R R a T it yields two odiay diffeetial equatios: R + R µ R bouday coditio T µ a T (,t) R( ) T ( t) ( ) u R. Solutio of Stum-iouville poblem Coside fist the bouday value poblem fom which we expect to obtai eigevalues ad eigefuctios fo costuctio of a fuctioal vecto space. Coside the equatio fo R ( ) fo which we have a homogeeous bouday coditio: R + R µ R R( ) Multiplicatio by yields R + R µ R Solutio of this equatio depeds o the fom of the sepaatio costat ( λ) + d K ( λ) di µ > µ λ R( ) d l + d µ µ dj ( λ) + dy ( λ) µ < µ λ See, how these solutios wee obtaied ad how the bouday coditio ca be satisfied: ) µ > Deote µ λ. The the equatio becomes R + R λ ( + ) R

55 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, This is a modified Bessel equatio of itege ode fo the idepedet vaiable x λ. Geeal solutio of this equatio is give by ( ) d I ( λ ) + d K ( ) R λ At the iteio poit of the membae, the solutio has to be fiite, theefoe, we equie the coefficiet K λ (which is ubouded at ) to be equal to zeo, d. Coside the bouday coditio: ( ) d I ( ) d R Theefoe, the case µ > leads to a tivial solutio. ) µ Equatio becomes d befoe fuctio ( ) R + R The ode of equatio ca be educed by a chage of idepedet vaiable R ~ R. The equatio fo R ~ is a fist ode liea diffeetial equatio R ~ + R ~ solutio of which is obtaied with the help of a itegatig facto ~ d l d R( ) d e d ( e ) d ( ) The the solutio of the oigial equatio is ~ d R ( ) R( ) d d d l + d To have a fiite solutio at poit, we must put d. The the bouday coditio leads to d, ad we ed up with a tivial solutio. 3) µ < Deote µ λ. The the equatio becomes ( ) R R + R + λ which we ca idetify as a Bessel equatio of ode. The geeal solutio of Bessel equatio of itege ode is give by R d J d Y λ ( ) ( λ ) + ( ) whee J ( λ ) ad ( ) Y λ ae, coespodigly, Bessel s fuctios of the st ad the d kid of zeo ode. Befoe cosideig the bouday coditio, we ca make oe obsevatio. The deflectio of membae aywhee i the domai [ ], is assumed to be fiite (moeove, the wave equatio is deived i the assumptio of small deflectio). The Bessel fuctio of the d kid Y λ appoaches whe goes to. I ou case, is the ( ) iteio poit of the membae. Theefoe, fo fuctio R ( ) to be bouded at, the coefficiet d should be equal to. The solutio of the Bessel equatio becomes R( ) dj ( λ) The bouday coditio implies d J λ ( ) ( ) R If we wat a o-tivial solutio, the d, ad we eceive ( λ ) J

56 67 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 The figue shows the gaph of the fuctio w( ) ( λ ) λ J with The oots of the equatio λ, λ,... ae the values of the paamete λ fo which the bouday value poblem has a o-tivial solutio (they ae called eigevalues). The coespodig solutios (eigefuctios) ae R ( ) J ( λ ) To detemie the weight fuctio, tasfom the Bessel equatio to the self-adjoit fom of the Stum-iouville poblem (.6 poblem #4). Fid the itegatig facto m( ) d e ad educe the equatio to the self-adjoit fom [ R ] λ R The, accodig to the Stum-iouville theoem, the set of fuctios R { J ( λ) },,... is a complete set of fuctios othogoal with espect to weight ove iteval [, ], e.g. R ( ) Rm ( ) d whe m solutio fo T The esult of a egative sepaatio costat physical sese of solutio fo T ( t) : µ λ agees with a µ at µ at ce + ce µ > T µ a T T( t ) c + ct µ c cos µ at + c si µ at µ < We expect a peiodic solutio fo a udamped vibatio of membae. Thee should be o costat tems eithe because bouday coditios ad the equatio ae homogeeous. Theefoe, oly the case of a egative sepaatio costat may be accepted fo ou poblem, µ λ (o positive eigevalues). The solutios T ( t) with detemied eigevalues ae T ( t) c cos λ at + c si λ at, 3. Basic solutios Fo basis fuctios we take the solutios of the wave equatio satisfyig bouday coditios, u (,t) J ( λ )( c cos λ at + c si λ at), We ae lookig fo solutio of the give i.b.v.p. i the vecto space spaed by this basis:,

57 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 67 u (,t) a J ( λ )( c cosλ at + c siλ at) J J,, ( λ )( a c cosλ at + a c siλ ),, at ( λ )( b cosλ at + b siλ ),, at We will choose the values of coefficiets i such a way that iitial coditios ae satisfied. 4. Iitial coditios Coside the fist iitial coditio ( ), ( λ ) ( ) u, b J u the coefficiets fo the geealized Fouie seies ae defied as ( ) ( λ ) u J d, J ( λ ) b d ( ) ( λ ) u J d, J b ( λ ) The secod coditio fo the deivative with espect to time (,t) u J ( λ )( b, λa si λat + b,λ a cos λat) t becomes u (,) b,λaj ( λ ) u ( ) t The coefficiets i this geealized Fouie expasio ae ( ) ( λ ) u J d,λa J ( λ ) b d ( ) ( λ ) u J d, λa J b ( λ ) 5. Solutio u (,t ) J ( λ ) ( b, cos λat + b, siλat) The solutio of the iitial-bouday value poblem fo the wave equatio is J( λ) ( ) ( ) ( ) ( ) aλ J ( λ ) u (,t) u J λ d cos λat + u J λ d si λat

58 67 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 VIII.3.6 SINGUAR STURM_IOUVIE PROBEM We studied a egula Stum-iouville Poblem i which the odiay diffeetial equatio is set i the fiite iteval ad both bouday coditios do ot vaish. I a sigula Stum-iouville poblem ot all of these coditios hold. Usually, the iteval is ot fiite, ad oe o both bouday coditios ae missig. Istead of bouday coditios, whe the solutio may ot exist at the boudaies, the eigefuctios should satisfy some limitig coditios. Oe of such equiemets ca be the followig: et y ad y be eigefuctios coespodig to two distict eigevalues λ ad λ, coespodigly. The they have to satisfy the followig coditio: lim p( x) [ y ( x) y ( x) y ( x) y ( x) ] lim p( x) [ y ( x) y ( x) y ( x) y ( x) ] + x x x x I the othe cases the absece of bouday coditios is because of the peiodical o cycled domai, whe we demad that the solutio should be cotiuous ad smooth x y y x y y ( ) ( x ) ad ( ) ( x ) I this case, it is still possible to have the othogoal set of solutios { ( x) } [ x, ]. x y o We will ot study the fomal appoach to solutio of such poblems, but athe discuss the pactical examples of its applicatio. Hee, we coside a iteestig example of a sigula SP i a cycled domai with o bouday coditios. Physical demostatio of this example ca be see o the ceilig of the hall of the Eyig Sciece Buildig. Example Coside vibatio of a thi closed ig stig of adius descibed i pola coodiates by deflectio ove the plae z u( θ,t), θ [, π ], t > The Wave Equatio educes to u u a cost θ t with iitial coditios u, u θ ( ) ( ) θ u ( θ, ) u ( θ ) t Thee ae o boudaies fo a closed stig, but athe a physical coditio fo a cotiuous ad smooth stig: u,t u π,t t > ( ) ( ) u u θ θ (,t) ( π,t) t > sepaatio of vaiables Assume u( θ,t) Θ ( θ ) T ( t) Substitute ito equatio Θ T a ΘT Sepaate vaiables Θ T a µ Θ T µ is a sepaatio costat Θ Coside µ Θ Θ µ Θ We aleady have expeiece with solutio of this special equatio fo egula Stum-iouville Poblems ad kow that i all cases except the case of both bouday coditios of Neuma type, oly a egative sepaatio costat,

59 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, µ λ, geeates eigevalues ad eigefuctios. Geeal solutio i this case is Θ ( θ ) c cos λθ + c si λθ This solutio suits ou poblem because it is peiodic. The values of λ which θ, π, ae satisfy peiodicity o the iteval [ ] π λ π Theefoe, solutios ae Θ ( θ ) c cos θ c si θ, +, Obviously, that fo all,,,... π is a peiod fo this solutio ad fo its deivative Θ θ c si θ c cos ( ) θ, +, With these values of the sepaatio costat, µ λ,,,,... coside the equatio fo T ( t) : T a T T + T a which also has a peiodic (i t ) geeal solutio T ( t) c3, cos t + c4, si t a a The peiodic solutio of the wave equatio ca be costucted i the fom of a ifiite seies: u ( θ,t) Θ ( θ ) T ( t) Θ ( θ ) T ( t) ( c cos θ + c si θ ) c cos t + c a a,, 3, 4, si t c,c3, cos θ cos t + c,c4, cos θ si t + c,c3, si θ cos t + c,c4, si θ si t a a a a b cos θ cos t + b a cos θ si t + b a si θ cos t + b a,, 3, 4, si θ si t whee coefficiets b ae ew abitay costats which ca be chose i such a way that this solutio will satisfy the iitial coditios. Coside the fist iitial coditio: t (, ) u ( θ ) θ a u ( b cos θ + b si θ ) b, 3, ( b cos θ + b si θ ), +, 3, which ca be teated as a stadad Fouie seies expasio of the fuctio θ,π. Theefoe, the coefficiets of this expasio ae u ( ) o the iteval [ ] b b b π π, u ( θ ) d π θ π, u ( θ ) d π cos θ θ π 3, u ( θ ) d si θ θ

60 674 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Fo the secod iitial coditio, diffeetiate the solutio fist with espect to t u θ t (,t) b, cos θ si t + b, cos θ cos t b3, si θ si t + b4, si θ cos t a a a a a a a a the apply the secod iitial coditio u ( θ, ) u ( θ ) b, cos θ + b t a b Whee the coefficiets ae detemied as π b, u ( θ ) dθ π π a b, u ( θ ) cos θdθ π b a π π 4, u ( θ ) d si θ θ a 4, si θ, + b, cos θ + b4, si a a Coefficiet b, ca be ay costat, it will ot ifluece the iitial speed of the stig, but ot to ifluece the iitial shape of the stig it has to be chose equal to zeo (othewise, iitially the stig will shifted by b, ad will ot be ceteed ove the plae z ): b, Theefoe, solutio of the poblem is give by the ifiite seies θ u( θ,t) b, + b cos θ cos t + b a cos θ si t + b a si θ cos t + b a,, 3, 4, si θ si t a whee coefficiets ae detemied accodig to abovemetioed fomulas. Coside paticula cases (Maple examples): ) isolated wave ) stadig waves

61 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, VIII.3.7 REVIEW QUESTIONS, EXAMPES AND EXERCISES

62 676 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 REVIEW QUESTIONS. What is the mai assumptio i the method of sepaatio of vaiables?. What is a sepaatio costat? 3. How does the Stum-iouville poblem appea i the method of sepaatio of vaiables? 4. What is the fom of the solutio of the IVBP i the method of sepaatio of vaiables? 5. How may tems ae eeded i the tucated ifiite seies fo accuate pesetatio of the solutio? 6. Give a example whe the solutio of the IBVP is give just by a oe tem tigoometic fuctio? How does it happe?

63 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, EXAMPES AND EXERCISES. 3 et D be a domai (ope coected set), ad let S D\D be the bouday of D (ecall Sectio VIII..). Show that if S is a poit of the bouday of D, the ay ope ball B (,R) with a adius R > icludes poits both fom D ad 3 \D, i.e. itesectio of B (,R) with the domai ad with the suoudigs is ot empty: ( ) 3 ad B (,R) ( \D) B,R D. Remak: this popety is usually used as the moe geeal defiitio of the bouday: If A is a abitay subset of (ot ecessaily domai), the x is called a bouday poit of A if fo ay adius R > : B( x,r) A ad B( x,r ) ( \ A). The the set A { x x is bouday poit of A} i. is called the bouday of A If S D\D is the bouday of domai D, the S is the bouday of S i geeal sese too. Examples of the bouday i geeal sese: a) (,] {,} b) { a} { a} (the bouday of a isulated poit is the poit itself) c) d) e) f) g) { }. a) Solve the Diichlet poblem fo the Heat Equatio: u u a u ( x,t) : x [,], t > t Iitial coditio: ( x, ) u ( x) u Bouday coditios: u (,t), t > (Diichlet) u (,t), t > (Diichlet) b) Sketch the gaph of solutio fo 3 ad a. ad iitial coditios: i) u ( x) ii) u ( x) x( x) iii) u ( x) si x c) Obseve the Maximum piciple fo the Diichlet poblem fo the Heat Equatio.

64 678 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 3. The Supepositio Piciple fo No-Homogeeous Heat Equatio with No-Homogeeous Bouday Coditio.: Heat Equatio: u + F ( x) a u t u ( x,t) : x (,), t > Iitial coditio: ( x, ) u ( x) u u,t Bouday coditios: ( ) u (,t) g, t > (Diichlet) g, t > (Neuma) Supplemetal poblems a) steady state solutio: us + F ( x) u g ( ) s u s ( ) f u s ( x) : x (,) b) tasiet solutio: U a U t U ( x, ) u ( x) us ( x) U (,t) t > U (,t) t > U ( x, t) : x (,), t > Fist supplemetal poblem is a BVP fo ODE. The secod supplemetal poblem is a IBVP poblem fo the homogeeous Heat Equatio with homogeeous bouday coditios. Show that u ( x,t) U ( x,t) u ( x) IBVP. Solve the poblem with + is a solutio of the o-homogeeous F ( x) 5, g, g 3ad u ( x) x( 4 x) s. Sketch the gaph of the solutio.

65 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, a) Solve the IBVP: u a u + F t ( x) u ( x,t), (,) iitial coditio: ( x, ) u ( x) u x, t > u,t bouday coditios: ( ) u (,t) b) Sketch the gaph of solutio with 4, a. 5, k., f t > (I) ( ) k + hu,t f t > (III) dx u ( x) x( x / ) + 5, f, f, F ( x) x 5. a) Solve the IBVP fo the Heat Equatio i the plae wall with distibuted heat geeatio: u u + F ( x) α t, ( x,t) u, (,) Iitial Coditio: ( x, ) u ( x) u x, t >, F( x) q x k Bouday Coditios: ( ) u,t t > u (,t) k h T u (,t) dx t > b) Sketch the gaph of solutio with.5, α.5, k 5, u ( x), T, h 5, q 6. a) Solve the Heat Equatio i the cylidical domai with agula symmety + a u u u t (,z) u : <, t > Bouday coditio: u (,t) t > Iitial coditio u (,) u ( ) b) Sketch the gaph of the solutio fo.5 a 3 ( ) u 6 +

66 68 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 7. a) Solve the Heat Equatio i the cylidical domai with agula symmety + a u u u t (,z) u, <, t > Bouday coditio: u (,t) f Iitial coditio u (,) u ( ) t > b) Display some ceativity i visualizatio of solutio fo.5 a 3 f 7 ( ) u 5 + c) Give some physical itepetatio of the poblem 8. Solve the IBVP fo the Heat Equatio i pola coodiates with agula symmety: + a u u u t u (,t), [ ),, t > Iitial coditios: u (,) u ( ) Bouday coditio: ( ) u,t k + hu (,t) f t > Ad sketch the gaph of solutio fo, a.5, k., h, f (hit: fist, fid the steady state solutio) u, ad ( ) ( ) 9. a) Solve the Heat Equatio i the aula domai with agula symmety (cylidical wall with uifom heat geeatio) u u q u + + k α t ( ) u,t : < <, t > Bouday coditio: u (,t) T u (,t) T Iitial coditio: u (,) u ( ) t > t > < < b) Display some ceativity i visualizatio of the solutio fo.5.6 k 5 α. T 5 T ( ) u q 5

67 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, EXAMPE Radiatio Iduced Themal Statificatio i Suface ayes of Stagat Wate Pofesso Raymod Viskata (o the left) Atalya, Tukey, Jue

68 68 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Radiatio Iduced Themal Statificatio i Suface ayes of Stagat Wate Based o papes: [] D.M.Side, R.Viskata Radiatio Iduced Themal Statificatio i Suface ayes of Stagat Wate, ASME Joual of Heat Tasfe, Feb 975, pp [] R.Viskata, J.S.Too Radiat Eegy Tasfe i Wates, Wate Resouces Reseach, Vol. 8, No.3, Jue 97, pp Itoductio: Ou Objective: The vetical tempeatue distibutio i a body of wate have impotat effects o chemical ad physical popeties, dissolved oxyge cotet, wate quality, aquatic life ad ecological balace as well as mixig pocesses i wate. Sola adiatio is ecogized as the piciple atual heat load i wates. Some ivestigatos have cosideed the adiatio to be absobed at the wate suface (i.e. opaque) ad othes teated the wate as beig semitaspaet but igoed the spectal atue of adiatio. Sice the ultaviolet (UV) ad ifaed (IR) pats of the icomig sola adiatio ae lagely absobed withi the fist cetimetes of the wate ad the visible pat (VI) peetates moe deeply ad caies sigificat eegy to depths, the modelig of wate as a gay medium is ope to questio ad eeds to be examied. I the woks of Raymod Viskata (Pudue Uivesity) ad cowokes, aalysis fo the time depedet themal statificatio of i suface layes of stagat wate by sola adiatio was developed. The tasiet tempeatue distibutio is obtaied by solvig the oe-dimesioal eegy equatio fo combied coductio ad adiatio eegy tasfe usig a fiite diffeece method. Expeimetally, sola heatig ( T 58K ) of wate is simulated usig tugste filamet lamps ( T chaacteistics. 35K ) i paabolic eflectos of kow spectal Aalytical ivestigatio of tasiet combied coductio-adiatio heat tasfe with two bad spectal model (VI-IR) of icidet adiatio. Spectal distibutio of emissive powe: T 58K T 35K q eflected q VI q IR x β exticto coefficiet of wate, m - Q( x) x

69 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Model: Heat equatio: ( ) u Q x u + k α t u x, u x T Iitial coditio: ( ) ( ) u k heff u T + q IR dx Bouday coditios: ( ) Souce fuctio [ u] T x Q x q βe β (adiat eegy absoptio ate): ( ) x VI x Wate Popeties: Extictio coefficiet β 7 m kg Desity ρ 3 m Specific heat cp 48 J kg K Coductivity k.6 W m K Data: egth.38 m a. Solve the give IBVP: u ( x,t ) Tempeatue T Tif T 5 Visible iadiatio q 85 Ifaed iadiatio q 5 Efficiet covective coefficiet o C VI IR heff W m W m W m K u (.5m,3s ) o 8.3 C paticula value b. Sketch the gaph of the solutio fo t 5,,5,3,6,9 mi ad compae with Viskata s esults. c. You view o the poblem. How ca the accuacy of the model be impoved? What have you leaed fom this poblem?

70 684 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 Solutio: Heat equatio: ( ) u Q x u + k α t u x, u x T Iitial coditio: ( ) ( ) u k heff u T + q IR dx Bouday coditios: ( ) [ u] T x x x ( ) β VI Q x q e β u k + heff u heff T q dx + IR x u heff heff T + q IR + u dx k k x u + Hu f dx x h eff H, k f heff T + q k IR u u + F ( x) α t q x x (,) F( x) VI e k β β u + Hu dx x u T [ ] x f ( ) ( ) u x, u x T I Steady State Solutio: u s ( ) + F x x (,) u Hu s + s dx x us T x [ ] f us + F ( x) us q VIβ x F ( x) e β k us q VIβ β x e dx k us q VI β β x e d β x k β ( ) us q VI e β x + c k q VI β x u e dx+ c x+ c k s ( )

71 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, q u e + cx+ c kβ VI β x s Bouday coditios: x x q q k kβ VI βx VI βx e c H e cx c f q q VI + c + H + c f k kβ q VI H c + Hc + + f k β VI H c + Hc + qvi + heff T + qir k β heff kc + heff c + qvi + qir + heff T kβ q VI β e + c + c T kβ q VI β c + c e + T kβ f x heff T + q k IR I matix fom: h + q + q + heff T kβ eff VI IR k heff c kβ c q VI e β + T Use Came s Rule: k h + ( eff ) eff det k h heff + qvi + qir + heff T heff k det β q h β q VI e + T kβ kβ kβ c k heff ( k + heff det ) eff VI β qvi qir heff T heff e heff T h ( ) kβ c + eff VI β qvi qir heff T T heff e ( k heff ) q kβ c : q h h Tif + qi + q + k β T + k h q e ( β ) k β h

72 686 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 c heff k + qvi + qir + heff T k det β q h β q VI e + T + kβ kβ kβ k heff ( k+ heff det ) VI β eff k e kt qvi qir hefft c h β kβ qvi eff e β + kt + + q VI + q IR + h eff T ( k+ heff ) c : k q e ( β ) T + k β h Tif + qi + q + k h q h k β h q q h q q h T T h e e kt q q h T ( ) eff VI β VI β eff + VI + IR + eff eff VI + IR + eff q β x kβ kβ β kβ VI us e + x+ ( ) eff ( eff ) kβ k+ h k+ h II Tasiet Solutio: U ( x,t) u ( x,t) u ( x) s U U α t x (,) Supplemetal SP (RD): U + HU dx x R λ oots of chaacteistic equatio: [ U] x D X ( ) si λ x ( ) ( ) ( ) ( ) U x, u x u x U x s X Solutio: U ( x,t) a t X e αλ ( ) s( ) ( ) a u x u x X x dx X III Solutio: u ( x,t) u ( x) + U ( x,t) s

73 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, > U:subs(t,u(x,t)): > U:subs(t3,u(x,t)): > U:subs(t6,u(x,t)): > U3:subs(t9,u(x,t)): > U4:subs(t8,u(x,t)): 3 mi > U5:subs(t36,u(x,t)): > U6:subs(t54,u(x,t)): 9 mi Compaiso Cuet aalytical solutio Expeimat ad umeical solutio [Viskata]

74 688 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7. Fid the solutio of the IBVP fo the Wave Equatio u a u t u ( x,t), (,) x, t > iitial coditio: u ( x,) u ( x) u ( x,) u ( x) t bouday coditios: u (,t) t > (Diichlet) u (,t) t > (Diichlet) Sketch the gaph of solutio with, a. 5, ad a) u ( x)., u ( x) x ( x) 6π b) u ( x), u ( x) si x (obseve the pheomea called stadig waves). Fid the solutio of the IBVP fo the Wave Equatio u a u t u ( x,t), (,) x, t > iitial coditio: u ( x,) u ( x) u ( x,) u ( x) t bouday coditios: u (,t) + Hu (,t), t > (Robi) u (,t) t > (Diichlet) Sketch the gaph of solutio with 5, a., ad a) u ( x)., u ( x ) ( x) b) u ( x), u( x) X5( x) 3. a) Solve the IBVP: u a u + F t ( x) (eigefuctio) u ( x,t), (,) iitial coditio: ( x, ) u ( x) u x, t > u,t bouday coditios: ( ) u (,t) b) Sketch the gaph of solutio with 4, a. 5,. k, ( ) f t > (Diichlet) ( ) k + hu,t f t > (Robi) dx u x x( x / ) + 5, f, F x f, ( ) x

75 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Fid the solutio fo vibatio of the aula membae with agula symmety: u u u + a t u (,t), (, ), t > Iitial coditios: u (,) u ( ) u, u t ( ) ( ) Bouday coditio: u (,t) t > u (,t) t > Ad sketch the gaph of solutio fo, a.5, u ( )( ), ad ( ) u.

76 69 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 No-Classical IBVPs z 5. (Flow Betwee Two Plates) x T w y T w T T ρc T q ρc T + v + z k k k t p p x T Te x T < z T T w z T Tw t T T v T e Fid steady state solutio fo q. Sketch the gaph fo Te 8, Tw, v,., fluid is wate. 6. (Tasiet Coductio i Fi) h,t Tb T x T hp q ρcp T ( T T ) + ka k k t x T Tb x T T t T T c Fid tasiet state solutio fo q. cicula coppe fi ( D.5 ) Sketch the gaph fo Tb, T 5, T, T, h 5,.,

77 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, [Based o Nellis&Klei, p.37] Absoptio i a les Aalytical ivestigatio of tasiet combied coductio-adiatio heat tasfe with a gay spectal model of icidet adiatio. A les is used to focus the illumiatio adiatio that is equied to develop the esist i a lithogaphic maufactuig pocess The les is ot pefectly taspaet but athe absobs some of the illumiatio eegy that passes though it. covective-adiative suoudigs with T,h eff q icidet adiative flux x x.m dissipatio of the et adiative flux ito heat q q( x) ( x) x β exticto coefficiet of wate, m - tasmitted adiatio Model: Heat equatio: ( ) u Q x u + k α t u x, u x T Iitial coditio: ( ) ( ) u dx Bouday coditios: k h ( u T ) Dissipatio souce fuctio eff u k heff ( u T ) dx Q x q β e β (adiat eegy absoptio ate): ( ) x x x The es Popeties: Extictio coefficiet β m kg Desity ρ 5 3 m Specific heat cp 75 Coductivity k.5 Data: egth. m Tempeatue Tif T J kg K W m K W Icidet adiative flux q m Efficiet covective coefficiet heff o C W m K

78 69 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 a. Solutio of the give IBVP: u ( x,t ) b. Steady State Solutio: U( x ) c. Sketch the gaph.

79 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Ivestigate the tempeatue field i the log colum of squae coss-sectio two adjacet sides of which ae o o themally isulated ad two othes ae maitaied at tempeatues C ad 5 C if iitially it was of uifom tempeatue T T o C. Sketch the tempeatue sufaces. T m u 9. Use sepaatio of vaiables fo solutio of IBVP fo log cylide with agula symmety. θ : u u u g u z k α t z (,z)

80 694 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7. Set up a mathematical model (choose a appopiate coodiate system ad dimesio of the poblem, wite the goveig equatio ad coespodig iitial ad bouday coditios) fo the followig egieeig models (do ot solve the poblem): a) A vey thi log wie dissipates eegy i the massive laye of the stagat media with the ate W W pe uit legth q. The media has a themal coductivity k m. Detemie the m K statioay tempeatue distibutio i the media. b) I the massive laye of homogeeous mateial (with themal popeties k, ρ,c p ) which was iitially at the uifom tempeatue T, a localized heat souce spotaeously stated to dissipate eegy with the ate q [ W ]. Detemie the developmet of the tempeatue field i the mateial. c) A vey log tee tuk of adius R i the foest is exposed to the suoudig ai (aveage wid m speed is v ), but the dese cow pevets the diect su adiatio of the tuk. Set up the s mathematical model descibig the tempeatue distibutio i the tee tuk duig the day. Coductivity i the tee depeds o diectio: it is much highe alog the tee tha i the adial diectio. W d) A wide esevoi of wate of metes deep is exposed to the sola iadiatio G m icidet at the agle θ. Peetatio of the sola adiative flux alog the path s is descibed by the s ambet-bee aw G( x) G cosθe κ, whee κ is the gay absoptio coefficiet of wate. m The the sola eegy dissipated i wate (adiative dissipatio souce o the divegece of dg Radiative flux) is detemied by ( ) ( x) W Q s dx 3. Set up the mathematical model m descibig the equilibium tempeatue field i the wate laye. e) Two opposite sides of the log colum ae isulated. Thee is a itesive codesatio of the wate steam o oe of the othe sides. The last side is exposed to the covective eviomet at tempeatue T ad covective coefficiet h W. Due to some chemical eactio thee is m K W poductio eegy i the colum with the volumetic ate q 3. Iitially, colum was at the m uifom tempeatue T. Descibe the tasiet tempeatue distibutio iside of the colum.

81 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, Staislaw Mazu ad Pe Eflo Mazu was a close collaboato with Baach at wów ad was a membe of the wów School of Mathematics, whee he paticipated i the mathematical activities at the Scottish Café. O 6 Novembe 936, he posed the "basis poblem" of detemiig whethe evey Baach space has a Schaude basis, with Mazu pomisig a "live goose" as a ewad: Thity-seve yeas late, a live goose was awaded by Mazu to Pe Eflo i a ceemoy that was boadcast thoughout Polad. vov i 9

82 696 Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 AEGORY OF GEOMETRY Museum of ouve Ree Descates Uivesity, Pais

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe, 8 65 VIII.3 Method of Sepaatio of Vaiables Tasiet Iitial-Bouday Value Poblems VIII.3. Heat equatio i Plae Wall -D 67 VIII.3. Heat Equatios

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

ADDITIONAL INTEGRAL TRANSFORMS

ADDITIONAL INTEGRAL TRANSFORMS Chapte IX he Itegal asfom Methods IX.7 Additioal Itegal asfoms August 5 7 897 IX.7 ADDIIONAL INEGRAL RANSFORMS 6.7. Solutio of 3-D Heat Equatio i Cylidical Coodiates 6.7. Melli asfom 6.7.3 Legede asfom

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Chapter 10 Partial Differential Equations and Fourier Series

Chapter 10 Partial Differential Equations and Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7 Chapter Partial Differetial Equatios ad Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7. Boudary Value Problems for

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

L8b - Laplacians in a circle

L8b - Laplacians in a circle L8b - Laplacias i a cicle Rev //04 `Give you evidece,' the Kig epeated agily, `o I'll have you executed, whethe you'e evous o ot.' `I'm a poo ma, you Majesty,' the Hatte bega, i a temblig voice, `--ad

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

FOURIER-BESSEL SERIES AND BOUNDARY VALUE PROBLEMS IN CYLINDRICAL COORDINATES

FOURIER-BESSEL SERIES AND BOUNDARY VALUE PROBLEMS IN CYLINDRICAL COORDINATES FOURIER-BESSE SERIES AND BOUNDARY VAUE PROBEMS IN CYINDRICA COORDINATES The paametic Bessel s equation appeas in connection with the aplace opeato in pola coodinates. The method of sepaation of vaiables

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Effect of Material Gradient on Stresses of Thick FGM Spherical Pressure Vessels with Exponentially-Varying Properties

Effect of Material Gradient on Stresses of Thick FGM Spherical Pressure Vessels with Exponentially-Varying Properties M. Zamai Nejad et al, Joual of Advaced Mateials ad Pocessig, Vol.2, No. 3, 204, 39-46 39 Effect of Mateial Gadiet o Stesses of Thick FGM Spheical Pessue Vessels with Expoetially-Vayig Popeties M. Zamai

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Math 220B Final Exam Solutions March 18, 2002

Math 220B Final Exam Solutions March 18, 2002 Math 0B Fial Exam Solutios March 18, 00 1. (1 poits) (a) (6 poits) Fid the Gree s fuctio for the tilted half-plae {(x 1, x ) R : x 1 + x > 0}. For x (x 1, x ), y (y 1, y ), express your Gree s fuctio G(x,

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

1. Using Einstein Summation notation, prove the identity: = A

1. Using Einstein Summation notation, prove the identity: = A 1. Usig Eistei Suatio otatio, pove the idetity: ( B ( B B( + ( B ( B [1 poits] We begi by witig the coss poduct of ad B as: So the ou idetity, C B C ( B C, i ε ik B k We coside ( C ε i ε ik ε iε ik ( ε

More information

Lecture 2: Stress. 1. Forces Surface Forces and Body Forces

Lecture 2: Stress. 1. Forces Surface Forces and Body Forces Lectue : Stess Geophysicists study pheomea such as seismicity, plate tectoics, ad the slow flow of ocks ad mieals called ceep. Oe way they study these pheomea is by ivestigatig the defomatio ad flow of

More information

Minimization of the quadratic test function

Minimization of the quadratic test function Miimizatio of the quadatic test fuctio A quadatic fom is a scala quadatic fuctio of a vecto with the fom f ( ) A b c with b R A R whee A is assumed to be SPD ad c is a scala costat Note: A symmetic mati

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

W = mgdz = mgh. We can express this potential as a function of z: V ( z) = gz. = mg k. dz dz

W = mgdz = mgh. We can express this potential as a function of z: V ( z) = gz. = mg k. dz dz Electoagetic Theoy Pof Ruiz, UNC Asheville, doctophys o YouTube Chapte M Notes Laplace's Equatio M Review of Necessay Foe Mateial The Electic Potetial Recall i you study of echaics the usefuless of the

More information

In this simple case, the solution u = ax + b is found by integrating twice. n = 2: u = 2 u

In this simple case, the solution u = ax + b is found by integrating twice. n = 2: u = 2 u The Laplace Equatio Ei Pease I. Itoductio Defiitio. Amog the most impotat ad ubiquitous of all patial diffeetial equatios is Laplace s Equatio: u = 0, whee the Laplacia opeato acts o the fuctio u : R (

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis Geeal Pape ARKIVOC 009 (xi 85-03 Supplemetay mateials Suzui eactio: mechaistic multiplicity vesus exclusive homogeeous o exclusive heteogeeous catalysis Aa A. Kuohtia, Alexade F. Schmidt* Depatmet of Chemisty

More information

Chapter 2 Sampling distribution

Chapter 2 Sampling distribution [ 05 STAT] Chapte Samplig distibutio. The Paamete ad the Statistic Whe we have collected the data, we have a whole set of umbes o desciptios witte dow o a pape o stoed o a compute file. We ty to summaize

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

Applications of the Dirac Sequences in Electrodynamics

Applications of the Dirac Sequences in Electrodynamics Poc of the 8th WSEAS It Cof o Mathematical Methods ad Computatioal Techiques i Electical Egieeig Buchaest Octobe 6-7 6 45 Applicatios of the Diac Sequeces i Electodyamics WILHELM W KECS Depatmet of Mathematics

More information

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ =

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ = Electo states i a peiodic potetial Assume the electos do ot iteact with each othe Solve the sigle electo Schodige equatio: 2 F h 2 + I U ( ) Ψ( ) EΨ( ). 2m HG KJ = whee U(+R)=U(), R is ay Bavais lattice

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - PROGRESSIONS CONTENTS Be able to apply algebaic techiques Aithmetic pogessio (AP): fist

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8.

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8. Mathematics. Solved Eamples JEE Mai/Boads Eample : Fid the coefficiet of y i c y y Sol: By usig fomula of fidig geeal tem we ca easily get coefficiet of y. I the biomial epasio, ( ) th tem is c T ( y )

More information

Ground Rules. PC1221 Fundamentals of Physics I. Uniform Circular Motion, cont. Uniform Circular Motion (on Horizon Plane) Lectures 11 and 12

Ground Rules. PC1221 Fundamentals of Physics I. Uniform Circular Motion, cont. Uniform Circular Motion (on Horizon Plane) Lectures 11 and 12 PC11 Fudametals of Physics I Lectues 11 ad 1 Cicula Motio ad Othe Applicatios of Newto s Laws D Tay Seg Chua 1 Goud Rules Switch off you hadphoe ad page Switch off you laptop compute ad keep it No talkig

More information

AN ANALYTICAL SOLUTION OF THE REYNOLDS EQUATION FOR THE FINITE JOURNAL BEARING AND EVALUATION OF THE LUBRICANT PRESSURE

AN ANALYTICAL SOLUTION OF THE REYNOLDS EQUATION FOR THE FINITE JOURNAL BEARING AND EVALUATION OF THE LUBRICANT PRESSURE AN ANALYTICAL SOLUTION OF THE REYNOLDS EQUATION FOR THE FINITE JOURNAL BEARING AND EVALUATION OF THE LUBRICANT PRESSURE Dimitis Sfyis Uivesity of Aegea 84 Aegea, Geece e-mail: dsfyis@aegea.g Athaasios

More information

Some Properties of the K-Jacobsthal Lucas Sequence

Some Properties of the K-Jacobsthal Lucas Sequence Deepia Jhala et. al. /Iteatioal Joual of Mode Scieces ad Egieeig Techology (IJMSET) ISSN 349-3755; Available at https://www.imset.com Volume Issue 3 04 pp.87-9; Some Popeties of the K-Jacobsthal Lucas

More information

Rotational symmetry applied to boundary element computation for nuclear fusion plasma

Rotational symmetry applied to boundary element computation for nuclear fusion plasma Bouda Elemets ad Othe Mesh Reductio Methods XXXII 33 Rotatioal smmet applied to bouda elemet computatio fo uclea fusio plasma M. Itagaki, T. Ishimau & K. Wataabe 2 Facult of Egieeig, Hokkaido Uivesit,

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

The Discrete Fourier Transform

The Discrete Fourier Transform (7) The Discete Fouie Tasfom The Discete Fouie Tasfom hat is Discete Fouie Tasfom (DFT)? (ote: It s ot DTFT discete-time Fouie tasfom) A liea tasfomatio (mati) Samples of the Fouie tasfom (DTFT) of a apeiodic

More information

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jue 005. A cuve has equatio blak x + xy 3y + 16 = 0. dy Fid the coodiates of the poits o the cuve whee 0. dx = (7) Q (Total 7 maks) *N03B034* 3 Tu ove physicsadmathstuto.com

More information

AIEEE 2004 (MATHEMATICS)

AIEEE 2004 (MATHEMATICS) AIEEE 004 (MATHEMATICS) Impotat Istuctios: i) The test is of hous duatio. ii) The test cosists of 75 questios. iii) The maimum maks ae 5. iv) Fo each coect aswe you will get maks ad fo a wog aswe you will

More information

Green Functions. January 12, and the Dirac delta function. 1 x x

Green Functions. January 12, and the Dirac delta function. 1 x x Gee Fuctios Jauay, 6 The aplacia of a the Diac elta fuctio Cosie the potetial of a isolate poit chage q at x Φ = q 4πɛ x x Fo coveiece, choose cooiates so that x is at the oigi. The i spheical cooiates,

More information

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem!

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem! Liea Algeba fo Wieless Commuicatios Lectue: 8 Sigula Value Decompositio SVD Ove Edfos Depatmet of Electical ad Ifomatio echology Lud Uivesity it 00-04-06 Ove Edfos A bit of epetitio A vey useful matix

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Latticed pentamode acoustic cloak (supplementary Info)

Latticed pentamode acoustic cloak (supplementary Info) Lattied petamode aousti loak (supplemetay Ifo) Yi Che, Xiaoig Liu ad Gegkai Hu Key Laboatoy of yamis ad Cotol of Flight Vehile, Miisty of Eduatio, Shool of Aeospae Egieeig, Beiig Istitute of Tehology,

More information

Modelling rheological cone-plate test conditions

Modelling rheological cone-plate test conditions ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 16, 28 Modellig heological coe-plate test coditios Reida Bafod Schülle 1 ad Calos Salas-Bigas 2 1 Depatmet of Chemisty, Biotechology ad Food Sciece,

More information

THE ABCD-HANKEL TRANSFORMATION IN TWO-DIMENSIONAL FREQUENCY-DOMAIN WITH POLAR COORDINATES

THE ABCD-HANKEL TRANSFORMATION IN TWO-DIMENSIONAL FREQUENCY-DOMAIN WITH POLAR COORDINATES Jue Phys. hem. News ( 9-34 PN THE BD-HNKEL TRNSFORMTION IN TWO-DIMENSIONL FREQUENY-DOMIN WITH POLR OORDINTES M. Ibchaikh,. Belafhal * Laboatoie de Physique Moléculaie, Dépatemet de Physique, B.P, Faculté

More information

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 2009 2 a 7. Give that X = 1 1, whee a is a costat, ad a 2, blak (a) fid X 1 i tems of a. Give that X + X 1 = I, whee I is the 2 2 idetity matix, (b)

More information

ELEMENTARY AND COMPOUND EVENTS PROBABILITY

ELEMENTARY AND COMPOUND EVENTS PROBABILITY Euopea Joual of Basic ad Applied Scieces Vol. 5 No., 08 ELEMENTARY AND COMPOUND EVENTS PROBABILITY William W.S. Che Depatmet of Statistics The Geoge Washigto Uivesity Washigto D.C. 003 E-mail: williamwsche@gmail.com

More information

GENERALIZATION OF THE FINITE INTEGRAL TRANSFORM METHOD

GENERALIZATION OF THE FINITE INTEGRAL TRANSFORM METHOD Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 855 IX.5 GENERAIZATION OF THE FINITE INTEGRA TRANSFORM METHOD NEW VERSION Fall 8: IX.5. DERIVATION OF THE FINITE

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK

FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK The 4 th Wold Cofeece o Eathquake Egieeig Octobe -7, 8, Beijig, Chia FAR FIELD SOLUTION OF SH-WAVE BY CIRCULAR INCLUSION AND LINEAR CRACK HogLiag Li,GuoHui Wu, Associate Pofesso, Depatmet of Egieeig Mechaics,

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES O completio of this ttoial yo shold be able to do the followig. Eplai aithmetical ad geometic pogessios. Eplai factoial otatio

More information

Recursion. Algorithm : Design & Analysis [3]

Recursion. Algorithm : Design & Analysis [3] Recusio Algoithm : Desig & Aalysis [] I the last class Asymptotic gowth ate he Sets Ο, Ω ad Θ Complexity Class A Example: Maximum Susequece Sum Impovemet of Algoithm Compaiso of Asymptotic Behavio Aothe

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spig 013 Special Topics: Active Micowave Cicuits ad MMICs Zoya Popovic, Uivesity of Coloado, Boulde LECTURE 7 THERMAL NOISE L7.1. INTRODUCTION Electical oise is a adom voltage o cuet which is

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Asymptotic Expansions of Legendre Wavelet

Asymptotic Expansions of Legendre Wavelet Asptotic Expasios of Legede Wavelet C.P. Pade M.M. Dixit * Depatet of Matheatics NERIST Nijuli Itaaga Idia. Depatet of Matheatics NERIST Nijuli Itaaga Idia. Astact A e costuctio of avelet o the ouded iteval

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

Solutions of the D-dimensional Schrödinger equation with the Hyperbolic Pöschl Teller potential plus modified ring shaped term

Solutions of the D-dimensional Schrödinger equation with the Hyperbolic Pöschl Teller potential plus modified ring shaped term Solutios of the -dimesioal Schödige equatio with the Hypebolic Pöschl Telle potetial plus modified ig shaped tem Ibsal A. Assi, Akpa N. Ikot * ad E.O. Chukwuocha Physics epatmet, Kig Fahd Uivesity of Petoleum

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Reccurent sequenses in solving the Schrödinger equation

Reccurent sequenses in solving the Schrödinger equation It. Jl. of Multiphysics Volume 9 Numbe 5 57 eccuet sequeses i solvig the Schödige equatio Alexade F. Polupaov Kotel iov Istitute of adio-egieeig ad Electoics of the ussia Academy of Scieces, Mohovaya st.

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

12.6 Sequential LMMSE Estimation

12.6 Sequential LMMSE Estimation 12.6 Sequetial LMMSE Estimatio Same kid if settig as fo Sequetial LS Fied umbe of paametes (but hee they ae modeled as adom) Iceasig umbe of data samples Data Model: [ H[ θ + w[ (+1) 1 p 1 [ [[0] [] ukow

More information

PROBLEMS AND SOLUTIONS 2

PROBLEMS AND SOLUTIONS 2 PROBEMS AND SOUTIONS Problem 5.:1 Statemet. Fid the solutio of { u tt = a u xx, x, t R, u(x, ) = f(x), u t (x, ) = g(x), i the followig cases: (b) f(x) = e x, g(x) = axe x, (d) f(x) = 1, g(x) =, (f) f(x)

More information