GENERALIZATION OF THE FINITE INTEGRAL TRANSFORM METHOD

Size: px
Start display at page:

Download "GENERALIZATION OF THE FINITE INTEGRAL TRANSFORM METHOD"

Transcription

1 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, IX.5 GENERAIZATION OF THE FINITE INTEGRA TRANSFORM METHOD NEW VERSION Fall 8: IX.5. DERIVATION OF THE FINITE INTEGRA TRANSFORM OD VERSION Fall 7: IX.5. Itodctio 864 IX.5. Slemetal Stm-ioville Poblem 864 IX.5.3 Fiite Itegal Tasfom 865 IX.5.4. Oeatioal Poety of the Fiite Itegal Tasfom 865 IX.5.5. Tasiet Heat Tasfe i the Fi 868

2 856 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 Setembe, 8 BYU, Decembe 8

3 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, IX.5. DERIVATION OF THE FINITE INTEGRA TRANSFORM METHOD NEW VERSION Itodctio et (,ξ ) be a fctio of ad some othe vaiables deoted by a cosolidated symbolξ (which is teated as a aamete). Coside a atial diffeetial eqatio fo (,ξ ) i the domai fo which the vaiable is defied i the fiite iteval [, ]. et be the diffeetial oeato with esect to the vaiable, ad let ξ be the diffeetial oeato with esect to the othe vaiables ξ. The the PDE eqatio fomally ca be witte i the followig oeato s fom: ( ξ ) G (, ) F, ξ, G ξ ξ () Also coside the mied boday coditios give at the boday of G : h f ( ξ ) h f ( ξ ) () (3) itegal tasfom O objective is to costct a itegal tasfom :(, ξ ) ( ξ ) I :(, ξ ) ( ξ ) its alicatio to the PDE elimiates the diffeetial oeato : ( ξ) ( ξ) ( ξ) ( ξ) ( ξ) Q,f,f F ξ I sch that whee Q is some eessio which does ot iclde deivatives with esect to, ad F is a tasfom of the fctio F : I { F} F I the Catesia coodiate system fo diffeetial oeato, sch a itegal tasfom was defied by the itegal eel as the omalized eigefctios of the coesodig slemetal Stm-ioville Poblem (see table SP). Hee, we coside a abitay diffeetial oeato, bt o aoach is also based o the soltio of the coesodig eigevale oblem. Si ξ Fo simlicity, the vaiables ξ will be omitted fom the otatios of (,ξ ). Deivatio will be cocetated oly o the vaiable. Theefoe, otatio ( ) does ot elimiate the esece of the othe vaiables o aametes.

4 858 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9. Diffeetial oeato Coside the secod ode diffeetial eessio defied as a eslt of alicatio C, of the oeato to the fctio, a a a whee coefficiets a C[, ] a > < < (4) ae cotios fctios, ad some eqiemet of diffeetiability will be eeded too. Assme that the followig boday coditios ae imosed o ( ) : α β f ξ, α β f ξ, α > (5a) β α > (5b) β Defie fctios ( ),q( ), ad ( ) by the eqatios a e a d a q a Note, that a >. The oeato ca be ewitte i self-adjoit fom (eecise): Self-adjoit fom a a a ( ) q (6)

5 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, Slemetal eigevale oblem Eigevale oblem y y Coside eigevale oblem fo the give oeato with a aamete sbject to the boday coditios, which ae the homogeeos case of coditios (5): < < (7) β β α y y, α y y, α > (8) α β β > Rewite it sig the self-adjoit fom of oeato ( y ) qy y ad eaage this eqatio to the Stm-ioville fom (see Eq.(5),.438): y q y (9) ( ) Accodig to Stm-ioville Theoem (VI.3,.439), fo this eigevale oblem to be solvable, aamete has to be o-ositive, µ. The thee ae ifiitely may distict vales of aamete µ : µ < µ < µ <... ( µ is a eigevale oly if α α ) fo which eqatio (9) has the coesodig o-tivial soltios y ( ) y µ y () satisfyig the boday coditios (8). Ie odct Defie ie odct fo v( ), (, ) with the weight fctio as v,w v w d () The om of fctios v (, ) itodced om as ca be defied with the hel of Nom v v,v v d () The the vecto sace, with the defied ie odct is the Hilbet sace (Riesz-Fische Theoem, VI.,.43).

6 86 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 Othogoality of { y ( )} Accodig to Stm-ioville Theoem, the set of eigefctios { } comlete set of mtally othogoal fctios i (, ) y is a ( y,y m) if m (3) ad ay fctio v (,) eigefctios { y ( )} as ca be eeseted by the seies easio ove v cy (4) whee the coefficiets of easios ae c ( v,y) ( y,y ) ( v,y ) y (5) Theefoe, easio of v( ) ca be ewitte as ( v,y ) y v (6) y This eigefctio easio fomla ca be sed fo defiitio of the Fiite Itegal Tasfom, ad fo the coesodig Ivese Tasfom fo ecostctio of the fctio fom its tasfom: 3. Fiite Itegal Tasfom Diect Tasfom { } I y,y d (7) Ivese Tasfom I { } ( ) y (8) y The defied fiite itegal tasfom ai is based o the soltio of the Stm- ioville oblem. Fo alicatio of this itegal tasfom to soltio of the boday vale oblems, the oeatioal oety has to be develoed. The followig elatio will be sed i deivatio of oeatioal oety. Usefl elatio Fom ($) ( µ ) y q y y qy µ y (9)

7 I { } Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, Oeatioal Poety fom Eq.(9) I et ( ) satisfies o-homogeeos boday coditios (5), ad let be the diffeetial oeato defied by eqatios (4), which has the self-adjoit eesetatio (6). Deive the eslt of alicatio of the Fiite Itegal Tasfom to the diffeetial oeato : ( ) q q y d ( ) q y d ( ) y d qy y d ( ) qy y y d qy y y d qy qy y y y d ( y ) qy µ y µ y y qy y d d d d d d qy d y y µ y d qyd qy y y µ d Robi-Robi coditios The case of Robi-Robi boday coditios. Eqatios (8) ca be ewitte as β y y, α >, β > α β y y, α >, β > α I y ( ) ( ) ( ) y ( ) ( ) ( ) y ( ) ( ) ( ) y ( ) ( ) ( ) µ { } β β µ α α ( β β ) µ α α f f y y y y y y y ( ) ( ) α ( ) β ( ) y ( ) ( ) α ( ) β ( ) α µ f f y y ( ) µ α α α f f () Robi-Robi I { } µ y ( ) ( ) y ( ) ( ) α α

8 86 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 5. OUTINE of the Fiite Itegal Tasfom method ) Give oeato a a a, Boday coditios ae imosed o ( ) : α β f( ξ), α ( ) β ( ) f ( ξ), α α a > < <, β > β > a Defie fctios e a q a a a d ad ewite ( ) q ( ) self-adjoit fom ) Slemetal eigevale oblem (Stm-ioville oblem) y y, < < α y β y, α β > β α y y, α β > Soltios fo µ. Solve the b.v.. fo eigevales µ : µ < µ < µ <... ( µ oly if α α ) ad fo the coesodig o-tivial soltios y ( ) (eigefctios) y µ y satisfyig the boday coditios. Defie ie odct fo v( ), (, ) with the weight fctio v,w v w d ad the om 3) Itegal Tasfom { } v v,v v d I Ivese Tasfom I { } ( ) y,y y y d f f (R-R) 4) Oeatioal oety I { } µ y ( ) ( ) y ( ) ( ) 5) Aly tasfom I { } to the diffeetial eqatio. 6) Solve fo tasfomed fctio α α ad aly the ivese tasfom to fid the soltio I { } as.

9 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, EXAMPE Viscos flid flow betwee two otatig cylides (see IX.4.7.5), SF-AD---FiT eamle.mws f ω ν, < <, t > ν α iitial coditio: (,) ( ) boday coditios:, ( t) c f Nema f t ω Diichlet ( ) y y µ y ) Diffeetial oeato ( ) ) Stm-ioville oblem self-adjoit fom, weight ( ) y ( ) (N) homogeeos y( ) (D) boday coditios 3) Itegal Tasfom 4) Oeatioal oety { } ( µ ) y y y Bessel eqatio of ode ν. Eigevales µ ae the ositive oots of chaacteistic eqatio (.58). y ae (.59): The coesodig soltios y ( ) J ( µ ) J ( µ ) Y ( µ ) Y ( µ ) y( ) y ( ) d { } (,y ) y µ - fy fy I sqaed om (see Ozisi,.4) I 5) Aly tasfom I{ } to eqatio αµ -α f y ( ) α f y ( ) Aly alace tasfom su αµ U α f y ( ) f y ( ) 6) Fid the tasfomed soltio d (N-D,.83 ) s U fy fy µ s s αµ t fy fy e αµ µ U Aly ivese alace tasfom Soltio (by ivese FIT) (,t ) y ( ) y αµ ( e ) f y f y y µ y t Steady state soltio s ( ) Not-oscillatig soltio (,t ) ( ) ( ) f f f f s f y f y y e αµ t s µ y

10 864 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 7. EXAMPE -D Foe-Plac Eqatio FP-.mws [see class website] a a, < <, t > a >, a (,t) t > (,t) f ( t) (,t) t > (,t) f ( t) δ, S 7. EXAMPE -D Foe-Plac Eqatio Ostei-Uhlebec ocess Rise,., Eq. (5-3) a a ( ), < <, t > a >, a (,t) t > (,t) f ( t) (,t) t > (,t) f ( t) δ, S Shodige [Rise,.7] Semiclassical ase Eqatio [Rise,. 377, Eq.(.7)] E E E P t κ c z ε t

11 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, Itegal tasfoms based o sigla Sigla Stm-ioville Poblems 8. EXAMPE Cicla domai

12 866 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 9. EXAMPE Hagig Cable (Chai) FP-.-CHAINmws w, < <, t > (,t ) < t > (,t) t >, (,) With damig w γ (,t ) < t >, < <, t > (,t) t > (,t) f ( t),, Oscillatio dive by eteal foce at the boday w, < <, t > (,t ) < t >,t f t h siωt t > (,) (,)

13 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, EXAMPE -D Heat Eqatio i Catesia coodiates to show how the taditioal Fiite Itegal Tasfom is develoed by the geealized aoach

14 868 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 IX.5. INTRODUCTION et (,ξ ) be a fctio of ad some othe vaiables deoted by a cosolidated symbolξ (which will be teated as a aamete). Coside a atial diffeetial eqatio fo (,ξ ) i the domai fo which the vaiable is defied i the fiite iteval [, ]. et be the diffeetial OD NOTES 7 vesio oeato with esect to the vaiable, ad let ξ be the diffeetial oeato with esect to the othe vaiables ξ. The the PDE eqatio ca be witte i the followig oeato s fom: ( ξ ) G (, ) F, ξ, G ξ ξ () Also let the mied boday coditios be give at the boday of G : h f ( ξ ) h f ( ξ ) () (3) O goal is to costct a itegal tasfom :(, ξ ) ( ξ ) I sch that its alicatio to the PDE elimiates the diffeetial oeato : ( ξ) ( ξ) ( ξ) ( ξ) ( ξ) G,f,f F ξ whee G is some eessio which does ot iclde deivatives with esect to, ad F is a tasfom of the fctio F. Fo the fiite iteval i the Catesia coodiate system with, sch a itegal tasfom was defied by the itegal eel as the omalized eigefctios of the coesodig slemetal Stm-ioville Poblem (see table SP). Hee, we coside a abitay diffeetial oeato, bt o aoach is also based o the soltio of the coesodig eigevale oblem. IX.5.. SUPPEMENTA EIGENVAUE PROBEM Coside a boday vale oblem (-3) fo the PDE which icldes the diffeetial oeato edced to self-adjoit fom: q (4) with fctios, > i (, ). Coside a slemetal eigevale oblem (Stm-ioville Poblem): (, ) y y (5) ( ) h y( ) ( ) h y( ) y (6) y (7) Boday coditios (6-7) ae the homogeeos case of boday coditios (-3).

15 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, Accodig to the Stm-ioville Theoem, thee eist ifiitely may vales of the aamete (eigevales) fo which SP (5-6) has the o-tivial soltio y (eigefctios). Ths, fo the slemetal eigevale oblem we have y y,,... (8) > (i a case of q ad h (Nema b.c.s), h is also a eigevale). IX.5.3 Fiite Itegal Tasfom Defie a fiite itegal tasfom : (, ξ ) ( ξ ) (with the weight fctio aametes ξ ) with a eel d I as a weighted ie odct ) of fctio (si fo simlicity othe (9) whee the eel of the itegal tasfom is defied with the hel of omalized eigefctios of the slemetal eigevale oblem (5-8): y o y () y The the ivese tasfom I : ( ξ ) (,ξ ) y o y is defied by the ifiite seies: () This defiitio of the ivese tasfom ca be teated as the geealized Foie y othogoal with esect to seies based o the comlete set of fctios { } the weight fctio (see Stm-ioville Theoem). IX.5.4. Oeatioal Poety of the Fiite Itegal Tasfom Coside the alicatio of the itegal tasfom I : (, ξ ) ( ξ ) to q (4) Assme also that the fctio (omit fo simlicity the aamete ξ ) is sbject to the boday coditios: ( ) h( ) f (5) ( ) h( ) f (6) whee fctios f ad f ca deed, i geeal, o the aametes ξ. Fist establish the followig eslts: ) Becase the eel of the itegal tasfom is jst a mltile of the eigefctio y, it is also a eigefctio coesodig to the eigevale, ad, theefoe, it satisfies the eqatio o ( ) q Rewite this eqatio as ( ) q (7) also satisfies homogeeos boday coditios of SP ) The eel

16 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 87 h h Fom which, ovided that coefficiets,, yield h (8) h (9) Aly ow the itegal tasfom I to (4): { } I { } d defiitio (9) d q eqatio (4) d q simlify d d q ead [ ] d d q itegatio by ats [ ] [ ] [ ] d d q itegatio by ats [ ] [ ] [ ]d q d q se eqatio (7) [ ] [ ] [ ]d q d d q ead [ ] [ ] d two last tems cacelled [ ] [ ] defiitio (9) h h [ ] [ ] h h f f Theefoe, the followig oeato s oety is deived { } I f f () If boday coditios fo the PDE (5-6) ae homogeeos ( f f ), the oeato s oety edces to { } I () Theefoe, alicatio of the fiite itegal tasfom I to the PDE elimiates the coesodig diffeetial oeato fom the eqatio.

17 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 87 Geeal idea of the fiite itegal tasfom method: Give eqatio F (, ξ ) [ ] f (,) ξ, ξ G ξ Rewite i the fom: ( ) q F (, ξ ) ξ [ ] f (,), ξ G ξ Eigevale Poblem: X µ X SP: ( ) X qx µ X X [ µ ] X q X [ X] µ X X X Ie odct (,v) v d Nom X ( X,X ) Oeato is Hemitia (,v) (, v) if [ ] [ ], v Geealized Foie seies cx (,X ) X X X X, (,) X X eel X X Itegal Tasfom T { } (, ) Ivese Tasfom T { } T,,,, fo [ ] Oeatioal Poety { } Thee will be additioal tems if boday coditios ae o-homogeeos: [ ] f

18 87 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 IX.5.5. Tasiet Heat Tasfe i the Fi Coside heat tasfe fom the eteded sface (fi) oe ed of which is attached to the base at temeate T b ad the whole sface with the othe ed is eosed to the covective eviomet with the coefficiet of heat tasfe h ad temeate T. We assme that: a) Geometically, the system is cosideed to be oe-dimesioal i.e. i ay coss sectio cost temeate is ifom ad is eeseted fo each T,t. momet of time t by b) alog the fi heat is tasfeed by codctio oly (the Foie aw): T Qcod q Ac Ac c) fom the sface of the fi by covectio oly (adiative heat tasfe is egligible o the coefficiet h is a effective coefficiet which icldes cotibtio both fom covectio ad adiatio): qcov ht [ T ] d) thee is o heat geeatio iside a fi; e) the ate of heat stoage i the fi is give by T Qst Vρc ) Deivatio of the goveig eqatio Coside a fiite cotol volme small eogh to be cosideed aoimately as a cylide betwee coss sectios ad fo which we have: A aea of coss-sectio c P( ) eimete As P lateal sface aea eosed to covective eviomet V A volme c Eegy balace fo the cotol volme: Qcod,i Qcod,ot Qcov Qst ( ) Q Q h T,t T A A ρc cod cod s c T Divide the whole eqatio by Qcod ( ) Qcod As T h T (,t) T Ac ρc ad let, at the limit we get As T Qcod h T (,t) T Ac ρc Relace ate of codctio heat tasfe by the Foie aw T,t s Ac h T(,t) T A Ac ρc T The deived eqatio descibes the o-statioay temeate distibtio alog the fi. Also aly the coditios: T, iitial coditio T

19 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, Tb T (,t) T,t Diichlet boday coditio h T,t T Robi (covective) boday coditio et s mae fthe assmtios. Assme the fi to be of costat cosssectio ad the eimete with costat themal codctivity: P P A Ac As As P the P The the goveig eqatio ca be edced with T (,t) T Ac hp T (,t) T Acρ c T (,t) hp ρc T T (,t) T A c cost Itodce the followig otatios: m hp A c ρc a θ,t T,t T ecess temeate θ (,t) T (,t) θ (,t) T (,t) θ,t θ T T b b The we have the followig IBVP fo the ecess temeate: θ m θ a θ θ (,) iitial coditio θ (,t) θb Diichlet θ hθ Robi This eqatio is ot a classical Heat Eqatio becase it icldes a additioal tem with a ow fctio. et s develo the Fiite Foie Itegal Tasfom (9) secifically fo this oblem. ) Rewite the eqatio with the diffeetial oeato i self-adjoit fom θ ( θ ) m θ a θ θ a,

20 874 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 3) Slemetal Stm-ioville oblem fo oeato : y y y y ( ) hy ( ) Fid eigevales ad eigefctios: solve ODE y m y y y ( ) hy ( ) y ( m ) y Ailiay eqatio ( ) M ± m M m Geeal soltio: ccosh m csih m m > y c c m ccos m c si m m < Aly fist boday coditio: c c m > c m > y c c m c m c c m < c m < The the geeal soltio edces to c sih m m > y c m c si m m < Deivative of geeal soltio is c m cosh m m > y c m c m cos m m < Aly secod boday coditio c m cosh m h sih m m > c ( h) m c ( m cos m h si m ) m < Becase we eed a o-tivial soltio the secod costat caot be eqal to zeo, c. Theefoe, it yields that > < m cosh m h sih m m h m m cos m h si m m The secod eqatio caot be satisfied, becase,h, >. Theefoe, the eigevales have to be the ositive oots of eqatios:

21 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, ae ositive oots of > m cosh m h sih m m m cos m h si m m < eigefctios y itegal tasfom :θ θ The coesodig eigefctios ae sih m m > si m m < 4) Costct the itegal tasfom ai: I θ θ t,t y d y I :θ θ θ(,t) θ ( t) N Oeatioal oety: I { θ } θ θ y N y y d m m > θ θb m m < 5) Tasfomed eqatio I θ a θ m m > θ θb a m m < θ tasfomed eqatio θ θ b θ a a m m > m m < with tasfomed iitial coditio: θ ( ) 6) Soltio of the tasfomed eqatio (vaiatio of aamete): θ ( t) t t t m m > θ a a b e e dt a m m <

22 876 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 m m > t t t θ b a a e e dt a m m < m m > t t θ b a a e e m m < m m > θ t b a e m m < 7) Soltio of IBVP ivese tasfom: θ θ t b y a,t e N m m < Soltio: m m > Ret to the oigial fctios: m m > t y a T (,t) T ( Tb T) e N m m < The soltio ca be seaated ito steady state ad tasiet ats: m m > y T,t T ( Tb T) N m m < t a e y b N m m < ( T T ) s t m m > Fo this oblem, the steady state soltio is ow to be [Icoea]: h cosh m( ) sih m( ) s T ( Tb T ) m h cosh m sih m m Theefoe, the soltio ca be witte also as h cosh m( ) sih m( ) T (,t ) T ( Tb T ) m h cosh m sih m m t m a m > e y ( Tb T ) N m m <

23 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, ) Male Eamle (GFIT-.mws ): Cylidical Coe Rod > R:.5;Ac:3.4*R^;P:*3.4*R; > Tb:;Tif:; R :.5 Ac :.785 P :.34 Tb : Tif : Mateial coe (oeties i the table ): > :4;h:5; : 4 h : 5 > M:sqt(h*P//Ac);M^; Note: Hee, M is M : M m hp A c > :; : > ho:89.;c:39; ρ : 89. c : 39 > alha:/ho/c; α : > a:/sqt(alha); a : > s:tif(tb-tif)*(cosh(m*(-)) (h/m/)*sih(m*(-)))/(cosh(m*)(h/m/)*sih(m*)); s :.7377 cosh( ) sih( ) CASE < < M > w():*sqt(-m^)*cosh(sqt(-m^)*)h*sih(sqt(m^)*); w( ) : cosh( ) 5 sih( ) > lot(w(),..*m^,y-..5); thee ae o eigevales i M the iteval < < M

24 878 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9 CASE M < > w():*sqt(-m^)*cos(sqt(-m^)*)h*si(sqt(-m^)*); w( ) : cos( ) 5 si( ) > lot(w(),m^..*m^); thee ae ifiitly may eigevales fo M < Eigevales: > :: fo m fom to do y:fsolve(w(),m^*m..m^*(m)): if tye(y,float) the lambda[]:y: : fi od: > fo i to 4 do lambda[i] od; > N:-; N : > :'':i:'i':m:'m':y:'y'::'': Eigefctios: > Y[]():si(sqt(lambda[]-M^)*); Y ( ) : si ( ) > N[]:it(Y[]()^,..): Eamle of Geealized Foie Seies: > f():^; f( ) : > b[]:it(f()*y[](),..): > ():sm(b[]*y[]()/n[],..n): > lot({(),f()},..,coloblac); this eamle demostates the ability of obtaied eigefctios to aoimate fctios by the tcated geealized Foie seies f b y y b f y d

25 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, > theta[]:(tb-tif)*sqt(lambda[]-m^)/lambda[]*(-e(- lambda[]/a^*t)); 8 θ : ( t ) ( e ) Solto: > T(,t):Tifsm(theta[]*Y[]()/N[],..N): Soltio with elicitly witte steady state soltio: > TT(,t):ssm((Tb-Tif)*sqt(lambda[]-M^)/lambda[]*(-e(- lambda[]/a^*t))*y[]()/n[],..n): > aimate({s,tt(,t),t(,t)},..,t..36fames); T b steady state soltio s fo aimatio of the temeate ofile see the website T t. iitial coditio > T:sbs(t,TT(,t)):T:sbs(t6,TT(,t)): T3:sbs(t8,TT(,t)): > lot({s,tif,tb,t,t,t3},..,coloblac,aesboed); T b steady state soltio s t 3 mi Note that the soltio with the elicitly witte steady state at odces o Gibb's effect t mi T t.

26 88 Chate IX The Itegal Tasfom Methods IX.5 Geealizatio of the Itegal Tasfom Method Jaay 3, 9

ADDITIONAL INTEGRAL TRANSFORMS

ADDITIONAL INTEGRAL TRANSFORMS Chapte IX he Itegal asfom Methods IX.7 Additioal Itegal asfoms August 5 7 897 IX.7 ADDIIONAL INEGRAL RANSFORMS 6.7. Solutio of 3-D Heat Equatio i Cylidical Coodiates 6.7. Melli asfom 6.7.3 Legede asfom

More information

CONJUGATE INTEGRAL TRANSFORM

CONJUGATE INTEGRAL TRANSFORM Chate I The Itegal Tasfo Methods I.6 Cojugate Itegal Tasfo August,7 869 I.6 COJUGATE ITEGRA TRASFORM I.6. Cojugate Poble I.6. Suleetal Stu-iouville Poble I.6.3 Cojugate Itegal Tasfo I.6.4 Oeatioal Poety

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u Natioal Jio College Mathematics Depatmet 00 Natioal Jio College 00 H Mathematics (Seio High ) Seqeces ad Seies (Lecte Notes) Topic : Seqeces ad Seies Objectives: At the ed of this topic, stdets shold be

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe 7, 7 65 VIII.3 Method of Sepaatio of Vaiables Tasiet Iitial-Bouday Value Poblems VIII.3. Heat equatio i Plae Wall -D 67 VIII.3. Heat Equatios

More information

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES O completio of this ttoial yo shold be able to do the followig. Eplai aithmetical ad geometic pogessios. Eplai factoial otatio

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems

VIII.3 Method of Separation of Variables. Transient Initial-Boundary Value Problems Chapte VIII PDE VIII.3 Tasiet Iitial-Bouday Value Poblems Novembe, 8 65 VIII.3 Method of Sepaatio of Vaiables Tasiet Iitial-Bouday Value Poblems VIII.3. Heat equatio i Plae Wall -D 67 VIII.3. Heat Equatios

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Chapter 10 Partial Differential Equations and Fourier Series

Chapter 10 Partial Differential Equations and Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7 Chapter Partial Differetial Equatios ad Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7. Boudary Value Problems for

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

MAT2400 Assignment 2 - Solutions

MAT2400 Assignment 2 - Solutions MAT24 Assigmet 2 - Soltios Notatio: For ay fctio f of oe real variable, f(a + ) deotes the limit of f() whe teds to a from above (if it eists); i.e., f(a + ) = lim t a + f(t). Similarly, f(a ) deotes the

More information

Partial Differential Equations

Partial Differential Equations EE 84 Matematical Metods i Egieerig Partial Differetial Eqatios Followig are some classical partial differetial eqatios were is assmed to be a fctio of two or more variables t (time) ad y (spatial coordiates).

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Joual of Rajastha Academy of Physical Scieces ISSN : 972-636; URL : htt://aos.og.i Vol.5, No.&2, Mach-Jue, 26, 89-96 FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION Jiteda Daiya ad Jeta Ram

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

been assumed to be stationary. He also observed that when

been assumed to be stationary. He also observed that when . INODUCION he flo of a viscos flid cotaied betee to paallel disks, oe of hich is pefomig sisoidal oscillatio i omal diectio is of iteest i may pactical sitatios. he peiodic motio of gea teeth is oe sch

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

ON THE BOUNDEDNESS OF CAUCHY SINGULAR OPERATOR FROM THE SPACE L p TO L q, p > q 1

ON THE BOUNDEDNESS OF CAUCHY SINGULAR OPERATOR FROM THE SPACE L p TO L q, p > q 1 Geogia Mathematical Joual 1(94), No. 4, 395-403 ON THE BOUNDEDNESS OF CAUCHY SINGULAR OPERATOR FROM THE SPACE L TO L q, > q 1 G. KHUSKIVADZE AND V. PAATASHVILI Abstact. It is oved that fo a Cauchy tye

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice oals EL252 Cotol Theoy ad Pactice Lecte 2: The closed-loop system Mikael Johasso School of Electical Egieeig KTH, Stockholm, Sede Afte this lecte, yo shold: Ko that the closed-loop is chaacteied by 6 tasfe

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

Fuzzy Erlangian Queuing System with State Dependent Service Rate, Balking, Reneging and Retention of Reneged customers

Fuzzy Erlangian Queuing System with State Dependent Service Rate, Balking, Reneging and Retention of Reneged customers Iteatioa Joa of Basic & Aied Scieces IJBAS-IJENS Vo:4 No: 6 Fzzy Eagia Qeig System with State Deedet Sevice Rate Bakig Reegig ad Retetio of Reeged cstomes MS E Paomy Deatmet of Statistics Facty of Commece

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION

THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION Zho, J., et al.: The Coservative Differece Scheme for the Geeralized THERMAL SCIENCE, Year 6, Vol., Sppl. 3, pp. S93-S9 S93 THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION by

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable.

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable. COPUTERS AND STRUCTURES, INC., BERKEEY, CAIORNIA DECEBER 001 COPOSITE BEA DESIGN AISC-RD93 Techical te This Techical te descibes how the ogam calculates the momet caacit of a ocomosite steel beam, icludig

More information

is monotonically decreasing function of Ω, it is also called maximally flat at the

is monotonically decreasing function of Ω, it is also called maximally flat at the Le.8 Aalog Filte Desig 8. Itodtio: Let s eview aalog filte desig sig lowpass pototype tasfomatio. This method ovets the aalog lowpass filte with a toff feqey of adia pe seod, alled the lowpass pototype,

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

The z Transform. The Discrete LTI System Response to a Complex Exponential

The z Transform. The Discrete LTI System Response to a Complex Exponential The Trasform The trasform geeralies the Discrete-time Forier Trasform for the etire complex plae. For the complex variable is sed the otatio: jω x+ j y r e ; x, y Ω arg r x + y {} The Discrete LTI System

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

LINEARIZATION OF NONLINEAR EQUATIONS By Dominick Andrisani. dg x. ( ) ( ) dx

LINEARIZATION OF NONLINEAR EQUATIONS By Dominick Andrisani. dg x. ( ) ( ) dx LINEAIZATION OF NONLINEA EQUATIONS By Domiick Adrisai A. Liearizatio of Noliear Fctios A. Scalar fctios of oe variable. We are ive the oliear fctio (). We assme that () ca be represeted si a Taylor series

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials It. Joual of Math. Aalysis, Vol. 7, 2013, o. 43, 2117-2128 HIKARI Ltd, www.m-hiai.com htt://dx.doi.og/10.12988/ima.2013.36166 -Adic Ivaiat Itegal o Z Associated with the Chaghee s -Beoulli Polyomials J.

More information

Minimal order perfect functional observers for singular linear systems

Minimal order perfect functional observers for singular linear systems Miimal ode efect fuctioal obseves fo sigula liea systems Tadeusz aczoek Istitute of Cotol Idustial lectoics Wasaw Uivesity of Techology, -66 Waszawa, oszykowa 75, POLAND Abstact. A ew method fo desigig

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

In this document, if A:

In this document, if A: m I this docmet, if A: is a m matrix, ref(a) is a row-eqivalet matrix i row-echelo form sig Gassia elimiatio with partial pivotig as described i class. Ier prodct ad orthogoality What is the largest possible

More information

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers O the Explicit Detemiats Sigulaities of -ciculat Left -ciculat Matices with Some Famous Numbes ZHAOLIN JIANG Depatmet of Mathematics Liyi Uivesity Shuaglig Road Liyi city CHINA jzh08@siacom JUAN LI Depatmet

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

The Discrete Fourier Transform

The Discrete Fourier Transform (7) The Discete Fouie Tasfom The Discete Fouie Tasfom hat is Discete Fouie Tasfom (DFT)? (ote: It s ot DTFT discete-time Fouie tasfom) A liea tasfomatio (mati) Samples of the Fouie tasfom (DTFT) of a apeiodic

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

Unit 6: Sequences and Series

Unit 6: Sequences and Series AMHS Hoors Algebra 2 - Uit 6 Uit 6: Sequeces ad Series 26 Sequeces Defiitio: A sequece is a ordered list of umbers ad is formally defied as a fuctio whose domai is the set of positive itegers. It is commo

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

An Estimate of Incomplete Mixed Character Sums 1 2. Mei-Chu Chang 3. Dedicated to Endre Szemerédi for his 70th birthday.

An Estimate of Incomplete Mixed Character Sums 1 2. Mei-Chu Chang 3. Dedicated to Endre Szemerédi for his 70th birthday. An Estimate of Incomlete Mixed Chaacte Sums 2 Mei-Chu Chang 3 Dedicated to Ende Szemeédi fo his 70th bithday. 4 In this note we conside incomlete mixed chaacte sums ove a finite field F n of the fom x

More information

Spherical Space Bessel-Legendre-Fourier Mode Solver for Electromagnetic Fields. Mohammed A. Alzahrani, B.Sc., M.A.Sc.

Spherical Space Bessel-Legendre-Fourier Mode Solver for Electromagnetic Fields. Mohammed A. Alzahrani, B.Sc., M.A.Sc. Sheical Sace Bessel-Legede-Fouie Mode Solve fo Electomagetic Fields. by Mohammed A. Alzahai, B.Sc., M.A.Sc. A Thesis submitted to the Faculty of Gaduate Studies ad eseach i atial fulfilmet of the equiemets

More information

( ) New Fastest Linearly Independent Transforms over GF(3)

( ) New Fastest Linearly Independent Transforms over GF(3) New Fastest Liealy deedet Tasfoms ove GF( Bogda Falkowski ad Cicilia C Lozao School of Electical ad Electoic Egieeig Nayag Techological Uivesity Block S 5 Nayag Aveue Sigaoe 69798 Tadeusz Łuba stitute

More information

Special Modeling Techniques

Special Modeling Techniques Colorado School of Mies CHEN43 Secial Modelig Techiques Secial Modelig Techiques Summary of Toics Deviatio Variables No-Liear Differetial Equatios 3 Liearizatio of ODEs for Aroximate Solutios 4 Coversio

More information

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ =

Electron states in a periodic potential. Assume the electrons do not interact with each other. Solve the single electron Schrodinger equation: KJ = Electo states i a peiodic potetial Assume the electos do ot iteact with each othe Solve the sigle electo Schodige equatio: 2 F h 2 + I U ( ) Ψ( ) EΨ( ). 2m HG KJ = whee U(+R)=U(), R is ay Bavais lattice

More information

L8b - Laplacians in a circle

L8b - Laplacians in a circle L8b - Laplacias i a cicle Rev //04 `Give you evidece,' the Kig epeated agily, `o I'll have you executed, whethe you'e evous o ot.' `I'm a poo ma, you Majesty,' the Hatte bega, i a temblig voice, `--ad

More information

Latticed pentamode acoustic cloak (supplementary Info)

Latticed pentamode acoustic cloak (supplementary Info) Lattied petamode aousti loak (supplemetay Ifo) Yi Che, Xiaoig Liu ad Gegkai Hu Key Laboatoy of yamis ad Cotol of Flight Vehile, Miisty of Eduatio, Shool of Aeospae Egieeig, Beiig Istitute of Tehology,

More information

Solutions to Problem Sheet 1

Solutions to Problem Sheet 1 Solutios to Problem Sheet ) Use Theorem. to rove that loglog for all real 3. This is a versio of Theorem. with the iteger N relaced by the real. Hit Give 3 let N = [], the largest iteger. The, imortatly,

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers Novembe 4, 2016 Beoulli, oly-beoulli, ad Cauchy olyomials i tems of Stilig ad -Stilig umbes Khisto N. Boyadzhiev Deatmet of Mathematics ad Statistics, Ohio Nothe Uivesity, Ada, OH 45810, USA -boyadzhiev@ou.edu

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jue 005. A cuve has equatio blak x + xy 3y + 16 = 0. dy Fid the coodiates of the poits o the cuve whee 0. dx = (7) Q (Total 7 maks) *N03B034* 3 Tu ove physicsadmathstuto.com

More information

Zero Level Binomial Theorem 04

Zero Level Binomial Theorem 04 Zeo Level Biomial Theoem 0 Usig biomial theoem, epad the epasios of the Fid the th tem fom the ed i the epasio of followig : (i ( (ii, 0 Fid the th tem fom the ed i the epasio of (iii ( (iv ( a (v ( (vi,

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

MATHEMATICS I COMMON TO ALL BRANCHES

MATHEMATICS I COMMON TO ALL BRANCHES MATHEMATCS COMMON TO ALL BRANCHES UNT Seqeces ad Series. Defiitios,. Geeral Proerties of Series,. Comariso Test,.4 tegral Test,.5 D Alembert s Ratio Test,.6 Raabe s Test,.7 Logarithmic Test,.8 Cachy s

More information

Recursion. Algorithm : Design & Analysis [3]

Recursion. Algorithm : Design & Analysis [3] Recusio Algoithm : Desig & Aalysis [] I the last class Asymptotic gowth ate he Sets Ο, Ω ad Θ Complexity Class A Example: Maximum Susequece Sum Impovemet of Algoithm Compaiso of Asymptotic Behavio Aothe

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem adial diffsio eqaio Febay 4 9 Diffsio Eqaios i ylidical oodiaes ay aeo Mechaical Egieeig 5B Seia i Egieeig Aalysis Febay 4, 9 Olie eview las class Gadie ad covecio boday codiio Diffsio eqaio i adial coodiaes

More information

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8 Poblem Set #0 Math 47 Real Analysis Assignment: Chate 8 #2, 3, 6, 8 Clayton J. Lungstum Decembe, 202 xecise 8.2 Pove the convese of Hölde s inequality fo = and =. Show also that fo eal-valued f / L ),

More information

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem!

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem! Liea Algeba fo Wieless Commuicatios Lectue: 8 Sigula Value Decompositio SVD Ove Edfos Depatmet of Electical ad Ifomatio echology Lud Uivesity it 00-04-06 Ove Edfos A bit of epetitio A vey useful matix

More information

Rotational symmetry applied to boundary element computation for nuclear fusion plasma

Rotational symmetry applied to boundary element computation for nuclear fusion plasma Bouda Elemets ad Othe Mesh Reductio Methods XXXII 33 Rotatioal smmet applied to bouda elemet computatio fo uclea fusio plasma M. Itagaki, T. Ishimau & K. Wataabe 2 Facult of Egieeig, Hokkaido Uivesit,

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

Parameter Selections in Simulating the Physical Diffusion Phenomena of Suspended Load by Low Order Differential Scheme Numerical Dispersion

Parameter Selections in Simulating the Physical Diffusion Phenomena of Suspended Load by Low Order Differential Scheme Numerical Dispersion www.seipb.og/scea Stdy of Civil Egieeig ad Achitecte (SCEA) Volme Isse 1, Mach 013 Paamete Selectios i Simlatig the Physical Diffsio Pheomea of Sspeded Load by Low Ode Diffeetial Scheme Nmeical Dispesio

More information

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by Chapter DACS Lok 004/05 CHAPTER DIFFERENTIATION. THE GEOMETRICAL MEANING OF DIFFERENTIATION (page 54) Defiitio. (The Derivative) (page 54) Let f () is a fctio. The erivative of a fctio f with respect to,

More information

W = mgdz = mgh. We can express this potential as a function of z: V ( z) = gz. = mg k. dz dz

W = mgdz = mgh. We can express this potential as a function of z: V ( z) = gz. = mg k. dz dz Electoagetic Theoy Pof Ruiz, UNC Asheville, doctophys o YouTube Chapte M Notes Laplace's Equatio M Review of Necessay Foe Mateial The Electic Potetial Recall i you study of echaics the usefuless of the

More information

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI avtei EXAMPLES Solutios of AVTE by AVTE (avtei) lass XI Leade i BSE oachig 1 avtei SHORT ANSWER TYPE 1 Fid the th tem i the epasio of 1 We have T 1 1 1 1 1 1 1 1 1 1 Epad the followig (1 + ) 4 Put 1 y

More information

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS Loukas Gafakos and Stehen Montgomey-Smith Univesity of Missoui, Columbia Abstact. We ecisely evaluate the oeato nom of the uncenteed Hady-Littlewood maximal

More information