Chapter 7: Quantum Statistics

Size: px
Start display at page:

Download "Chapter 7: Quantum Statistics"

Transcription

1 Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 203 Fall

2 Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation of BEC How to realize the BEC The observation of BEC

3 From prediction to observation BEC and related phenomena BEC of photons (lasers) Townes Basov Prokhorov Nobel 964 BEC in a stronglyinteracting system (superfluid 4 He) BEC in a weaklyinteracting system (atomic gases) Nobel 200 Landau Nobel 962 Kapitsa Nobel : Einstein described the phenomenon of condensation in an ideal gas of particles with nonzero mass. 930 s Fritz London realized that superfluity 4 He can be understood on terms of BEC. However, the analysis of superfluity 4 He is complicated by the fact that the 4 He atoms in liquid strongly interact with each other. 70 years after the Einstein prediction, the BEC in weakly interacting Bose systems has been experimentally demonstrated - by laser cooling of a system of weakly-interacting alkali atoms in a magnetic trap.

4 The B.E. distribution. For Bosons that have zero chemical potential, like photons, the total number of them is determined by the condition of thermal equilibrium - which is basically determined by the temperature of the radiator. 2. For bosons that have non-zero chemical potential, the B.E. distribution: n BE = e (ɛ µ)/kt. One example is shown in this diagram: µ = 5.0 kt = 0, 5,

5 Why it is complicated? From this plot, one can see when T 0, more and more bosons will pile up on the state that has energy ɛ µ. Looking at the B.E. distribution n BE =, one can find: e (ɛ µ)/kt if ɛ µ = 0 + δ, n BE + if ɛ µ = 0 δ, n BE Since n BE 0, so, the area of interest is: 0 < (ɛ µ)/kt <<. For a given µ, the lower the temperature, the faster Bosons can pile up on the ground state. 2. At a given T, how many Bosons are on the ground state depends on how close the ground state energy ɛ 0 is to µ. So, it depends on µ. But it is more complicated because of µ is a nontrivial function of the density and temperature: µ = µ( n BE, T ). Here, n BE corresponding to density : high density more particles on a state.

6 When T is small B.E. distribution: n BE =. For condensation to happen on the e (ɛ µ)/kt ground state, we need 0 < (ɛ 0 µ)/kt <<. This leads to the following relations: e (ɛ0 µ)/kt + ɛ 0 µ + ( ɛ0 ) µ 2 kt 2! kt + n BE (ɛ 0) + ɛ 0 µ kt + kt n BE (ɛ 0) ɛ 0 µ( n BE, T ) So, at low T, in order to have n BE (ɛ 0), ɛ 0 µ( n BE, T ) has to be very small. µ( n BE, T ) = ɛ 0 kt n BE (ɛ 0) This tells us: () Condensation happens when µ approaches ɛ 0 from below. (2) When the number of particles n is large, µ depends only weakly on T. () (2)

7 When T is small - cnt. The question is, how low must be the temperature be in order for n BE (ɛ 0) to be very large so that condensation happens. µ is a characteristic of a system. Particles move from system with bigger µ to a system with smaller µ. The general condition that determines µ is that the sum of the B.E. distribution over all states must add up to the total number of atoms, N. g(ɛ) is the density of states. See the Figure on next slide. N = (3) e (ɛs µ)/kt all s Or, converting the sum to integration: N = g(ɛ) dɛ (4) e (ɛ µ)/kt 0

8 ... g(ε) g( ε ) ε n(ε) = g(ε) n(ε) ε ε ε g(ε) g( ε ) ε n(ε) = g(ε) n(ε) ε ε ε Density of states B.E. distribu3on Par3cle distribu3on

9 When T is small - cnt. N = g(ɛ) dɛ 0 e (ɛ µ)/kt The problem is not solved - This equation cannot be solved for µ analytically! Can we make some rough estimations by assuming something reasonable? - Yes. The logic is: When condensation happens, there are a large number of particles on the ground state. A large number of particles piling up on the ground state (N 0 ) happens only when the increase in mu is very very small: N 0µ 0. µ 0. Now we can use this approximation and see how the number of particles changes with the temperature.

10 When T is small - cnt. N = 0 µ 0 g(ɛ) dɛn e (ɛ µ)/kt 0 g(ɛ) dɛ (5) e ɛ/kt Let s take spin-zero bosons confined in a volume V as an example: For electron, spin=/2: g(ɛ) = π(8m)3/2 V ɛ 2h 3 For spin=0 boson: g(ɛ) = π(8m) 3/2 V ( ɛ = 2 2 2h 3 2πm ) 3/2 π V ɛ h 2 So, N 2 ( ) 3/2 2πm ɛ V dɛ (6) π h 2 0 e ɛ/kt ( ) 3/2 N x=ɛ/kt 2 2πm x V kt ktdx (7) π h 2 0 e x N 2 ( ) 3/2 2πmkT x V dx (8) π h 2 0 e x N 2 ( ) 3/2 2πmkT V (2.35) (9) π h 2

11 The Condensation Temperature We arrive at N ( ) 3/2 2πmkT V (0) π This says, the total number of particles in the system is a function of temperature. Given a N, you have T : h 2 ( ) ( ) h 2 2/3 N T = () 2πmk V We call this T the condensation temperature, noted as T c. This should be a spacial solution to Eq.(4).

12 The Condensation Temperature We obtained one special solution T c under assumption of µ = 0. N = g(ɛ) 0 eɛ/ktc dɛ Let s see what happens when T T c. We have to take a look at Eq.(4): N = g(ɛ) 0 e (ɛ µ)/kt dɛ T > T c: To keep the equation valid for a given N in Eq.(4), µ should become smaller (than zero!). Since generally speaking, increasing the density of particles in a system always increases the chemical potential, this means particles are not gathering together when T becomes bigger than T c. T < T c: To keep the equation valid for a given N in Eq.(4), µ should become positive (larger than zero!). ( This odd because We know µ = S ) 0. The cause of this is T N U,V the transition from to.

13 The Condensation Temperature - cnt. What is WRONG in the transition from to? Let s look at this original formula again: N = all s e (ɛs µ)/kt When T is small and µ 0, the number of particles in the ground state will become enormous. This is NOT reflected in the integration: N = g(ɛ) 0 e (ɛ µ)/kt dɛ On the other hand, this transition can still be VALID if we only count the particles on the EXCITED states: N excited = g(ɛ) 0 e (ɛ µ)/kt dɛ So, at T T c, we can write: ( N excited πmkT ) 3/2 π V, when T < Tc. ( Using T c = h 2 h 2 2πmk ) ( N ) 2/3, Nexcited can be written as V ( ) 3/2 T N excited N (T < T c) (2) T c

14 BEC - cnt. In this case, the number of particles on the ground state becomes: [ ( ) ] 3/2 T N 0 = N N excited N (T < T c). (3) T c N N 0 N excited T C T

15 BEC - cnt. The chemical potential as a function of temperature looks like this. µ (n,t)/kt c T C T

16 The observation of BEC Each frame corresponds to the distance the atoms have moved in about /20 s after turning off the trap.

17 The observation of BEC For T > T c, atoms are distributed among many energy levels of the system, and have a Gaussian distribution of velocities. With cooling of the cloud, a spike appears right in its middle. It corresponds to atoms which are hardly moving at all Atoms are first trapped and cooled down in the system, using magnetic trap To observe the distribution of velocities of atoms in the system, the magnetic trap is turned off. Because they have some residual velocity, they just fly apart. Use a laser beam to take a snapshot of atoms after they have flown apart for some time: photons scattered by the atom cloud. How to cool the gas of atoms down to 0.µK? Laser Cooling + Evaporative Cooling.

18 Cooling - Laser Cooling If the laser frequency is tuned slightly below E2-E, an atom scatters (absorbs and re-emits) photons only is it moves towards the laser (Doppler effect). Atom at rest or moving in the opposite direction doesn t scatter. Works for a dilute gas of neutral atoms (cannot be applied to cool solids) E 2 E For photon absorption or emission, the photon energy hν must be equal to E 2 -E The limit on T achieved by laser cooling is reached when an atom s recoil energy from absorbing or emitting a single photon is comparable to its total E k. The single-photon recoil temperature limit (for Na) ~ T!! 0 "0 ev #0 4 K / ev =µk "=kt, k=8.67#0 "5 ev / K ~ 0 "4 ev / K. (for Na)

19 Cooling - Evaporative Cooling Radio-frequency forced evaporative cooling: The resonance excitation flips the spins and those atoms with higher energies are ejected (evaporated). In other words, the magnetic trapping potential can be modified by a radio frequency (RF) signal.

20 Experiment Aparatus The picture to the right shows the velocity distribution of atoms in the cloud at the time of its release, instead of the spatial distribution. A view of the BEC setup For T < T c, the concentration of atoms in the lowest state gives rise to a pronounced peak in the distribution at low velocities (condensation in the momentum space).

21 Classical Physics Analogy BE Condensation vs. Phase transition - Gas-to-Liquid Condensation. A container filled with a non-ideal gas Start lowering the temperature The gas density remains constant until the condensation of gas (vapor) occurs Since the density of liquid is much higher than that of gas, the gas density decreases with T. The Bose-Einstein condensation is an entirely different phenomenon. One essential difference: In the gas-to-liquid transition, which is due to inter-particle attraction, the liquid and gas phases occupy different regions of space. The BE condensation is driven by exchange interactions - each particle in the BE condensate has a wave function that fills the entire volume of the container.

22 Two examples 7-0. Bose-Einstein Condensation: Problem Thermal Quantities of Bose Gas: Problem 7.70.

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 204 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the so-called laser cooling and optical molasses phenomena. This

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 213 Fall 1 Fermi Gas Fermi-Dirac Distribution, Degenerate Fermi Gas Electrons in Metals 2 Properties at T = K Properties at T = K Total energy of all electrons 3 Properties

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2014 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Physics Nov Bose-Einstein Gases

Physics Nov Bose-Einstein Gases Physics 3 3-Nov-24 8- Bose-Einstein Gases An amazing thing happens if we consider a gas of non-interacting bosons. For sufficiently low temperatures, essentially all the particles are in the same state

More information

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell Science 14 Jul 1995; Vol. 269, Issue 5221, pp. 198-201 DOI:

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 7a: Class Notes Lecture 4: Bose Condensation Ideal Bose Gas We consider an gas of ideal, spinless Bosons in three dimensions. The grand potential (T,µ,V) is given by kt = V y / ln( ze y )dy, ()

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 Historical Overview 9.2 Maxwell Velocity Distribution 9.3 Equipartition Theorem 9.4 Maxwell Speed Distribution 9.5 Classical and Quantum Statistics 9.6 Fermi-Dirac Statistics

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101 Phys463.nb 101 10 Supercondcutor 10.1. Experimental phenomena 10.1.1. zero resistivity The resistivity of some metals drops down to zero when the temperature is reduced below some critical value T C. Such

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

EFFECTIVE PHOTON HYPOTHESIS, SELF FOCUSING OF LASER BEAMS AND SUPER FLUID

EFFECTIVE PHOTON HYPOTHESIS, SELF FOCUSING OF LASER BEAMS AND SUPER FLUID EFFECTIVE PHOTON HYPOTHESIS, SELF FOCUSING OF LASER BEAMS AND SUPER FLUID arxiv:0712.3898v1 [cond-mat.other] 23 Dec 2007 Probhas Raychaudhuri Department of Applied Mathematics, University of Calcutta,

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2013 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Realization of Bose-Einstein Condensation in dilute gases

Realization of Bose-Einstein Condensation in dilute gases Realization of Bose-Einstein Condensation in dilute gases Guang Bian May 3, 8 Abstract: This essay describes theoretical aspects of Bose-Einstein Condensation and the first experimental realization of

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

PHYS 3313 Section 001 Lecture # 24

PHYS 3313 Section 001 Lecture # 24 PHYS 3313 Section 001 Lecture # 24 Wednesday, April 29, Dr. Alden Stradling Equipartition Theorem Quantum Distributions Fermi-Dirac and Bose-Einstein Statistics Liquid Helium Laser PHYS 3313-001, Spring

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 7: Quantum Statistics SDSMT, Physics 2013 Fall 1 Introduction 2 The Gibbs Factor Gibbs Factor Several examples 3 Quantum Statistics From high T to low T From Particle States to Occupation Numbers

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Pure Substance Properties and Equation of State

Pure Substance Properties and Equation of State Pure Substance Properties and Equation of State Pure Substance Content Pure Substance A substance that has a fixed chemical composition throughout is called a pure substance. Water, nitrogen, helium, and

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

OPTICAL METHODS. A SIMPLE WAY TO INTERROGATE AND TO MANIPULATE ATOMSI CLAUDE COHEN-TANNOUDJI

OPTICAL METHODS. A SIMPLE WAY TO INTERROGATE AND TO MANIPULATE ATOMSI CLAUDE COHEN-TANNOUDJI OPTICAL METHODS. A SIMPLE WAY TO INTERROGATE AND TO MANIPULATE ATOMSI CLAUDE COHEN-TANNOUDJI OPTICAL METHODS By letting atoms interact with resonant light, one can - prepare atoms in interesting states

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

Photoelectric effect

Photoelectric effect Laboratory#3 Phys4480/5480 Dr. Cristian Bahrim Photoelectric effect In 1900, Planck postulated that light is emitted and absorbed in discrete but tiny bundles of energy, E = hν, called today photons. Here

More information

Statistical and Low Temperature Physics (PHYS393) 6. Liquid Helium-4. Kai Hock University of Liverpool

Statistical and Low Temperature Physics (PHYS393) 6. Liquid Helium-4. Kai Hock University of Liverpool Statistical and Low Temperature Physics (PHYS393) 6. Liquid Helium-4 Kai Hock 2011-2012 University of Liverpool Topics to cover 1. Fritz London s explanation of superfluidity in liquid helium-4 using Bose

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Investigating the Dynamics of a Bose Einstein Condensate on an Atom Chip

Investigating the Dynamics of a Bose Einstein Condensate on an Atom Chip Investigating the Dynamics of a Bose Einstein Condensate on an Atom Chip Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Physics Department Imperial College

More information

Chemistry 101 Chapter 11 Modern Atomic Theory

Chemistry 101 Chapter 11 Modern Atomic Theory Chemistry 101 Chapter 11 Modern Atomic Theory Electromagnetic radiation: energy can be transmitted from one place to another by lightmore properly called electromagnetic radiation. Many kinds of electromagnetic

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Chapter4: Quantum Optical Control

Chapter4: Quantum Optical Control Chapter4: Quantum Optical Control Laser cooling v A P3/ B P / C S / Figure : Figure A shows how an atom is hit with light with momentum k and slows down. Figure B shows atom will absorb light if frequency

More information

It s a wave. It s a particle It s an electron It s a photon. It s light!

It s a wave. It s a particle It s an electron It s a photon. It s light! It s a wave It s a particle It s an electron It s a photon It s light! What they expected Young s famous experiment using a beam of electrons instead of a light beam. And, what they saw Wave-Particle Duality

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Standing Sound Waves in a Bose-Einstein Condensate

Standing Sound Waves in a Bose-Einstein Condensate Standing Sound Waves in a Bose-Einstein Condensate G.A.R. van Dalum Debye Institute - Universiteit Utrecht Supervisors: P. van der Straten, A. Groot and P.C. Bons July 17, 2012 Abstract We study two different

More information

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Tian Ma and Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid Outline

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012) Superfluidity E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN-90014 University of Oulu, Finland (Dated: June 8, 01) PACS numbers: 67.40.-w, 67.57.-z, 74., 03.75.-b I. INTRODUCTION Fluids

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab

More information

A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications

A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications Bates College SCARAB Honors Theses Capstone Projects Spring 5-2014 A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications Yang Guo Bates College, yguo@bates.edu

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Bose-Einstein condensates & tests of quantum mechanics

Bose-Einstein condensates & tests of quantum mechanics Bose-Einstein condensates & tests of quantum mechanics Poul Lindholm Pedersen Ultracold Quantum Gases Group PhD day, 31 10 12 Bose-Einstein condensation T high Classical particles T = 0 Pure condensate

More information

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Lecture - 39 Zeeman Effect Fine Structure, Hyperfine Structure Elemental, Rudimentary

More information

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 8.044, LECTURE 33, SPRING 2004 BOSE-EINSTEIN CONDENSATION IS A QUANUM MECHANICAL EFFECT Image removed due to copyright

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA 1959-11 Workshop on Supersolid 2008 18-22 August 2008 Brief introduction to the field M. Chan Pennsylvania State University, USA Superfluid and supersolid An introduction at the ICTP Supersolid 2008 workshop

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

The non-interacting Bose gas

The non-interacting Bose gas Chapter The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? What determines the critical temperature and the condensate fraction? What changes for trapped

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

16.55 Ionized Gases Problem Set #5

16.55 Ionized Gases Problem Set #5 16.55 Ionized Gases Problem Set #5 Problem 1: A probe in a non-maxellian plasma The theory of cold probes, as explained in class, applies to plasmas with Maxwellian electron and ion distributions. However,

More information

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

Vegard B. Sørdal. Thermodynamics of 4He-3He mixture and application in dilution refrigeration

Vegard B. Sørdal. Thermodynamics of 4He-3He mixture and application in dilution refrigeration Vegard B. Sørdal Thermodynamics of 4He-3He mixture and application in dilution refrigeration 1. Introduction 2. Crogenic methods Contents of the presentation 3. Properties of Helium 4. Superfluid Helium

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information