Matias Bargheer. Ultrafast X-ray Diffraction: Picosecond acoustics and related scientific cases

Size: px
Start display at page:

Download "Matias Bargheer. Ultrafast X-ray Diffraction: Picosecond acoustics and related scientific cases"

Transcription

1 Matias Bargheer Ultrafast X-ray Diffraction: Picosecond acoustics and related scientific cases Intro: Why femtosecond x-ray diffraction? Some important basics on x-ray diffraction. Available sources use what you need! Scienctific cases state of the art Recent developments UXRD on multilayers

2 Understand Function by Watching Movies Analyze a series of snapshots

3 Intro: Why femtosecond x-ray diffraction? Intro: Why femtosecond x-ray diffraction? Some important basics on x-ray diffraction. Available sources use what you need! Scienctific cases what do we learn from them?

4 Why do we need pump-probe? Watch an aimless crowd of people Watch dancers excited by music Only statistical observables: Mean amplitude Mean velocity (solution: single one out!) Additional observables: Phase lag of music and people Function: What happens when music stops

5 Atomic Movies Recorded by Ultrafast XRD

6 Coherent Motion Connected to Function What is the difference? Thermal motion Thermal + coherent motion

7 Coherent Motion Connected to Function What is the difference? Thermal motion at T = 0K Thermal + coherent motion

8 Structural Dynamics Thermal motion: Matter is in thermal (random) motion Energy E = ½ kt per degree of freedom (equipartition = stationary) Nonequilibrium motion: Pump-Probe techniques An external stimulus can induce particular motion in specific coordinates In condensed matter, energy will dissipate within 1 ps 1 ns The coherent motion (phase of motion reproducibly conected with the external stimulus) can be measured by pump-probe techniques. Structural Dynamics (atomic resolution): optical pump / x-ray probe X-ray absorption (EXAFS) X-ray diffraction (scattering)

9 Ultrafast X-ray Diffractometer X-ray diffraction Direct determination of structures Resolution 100 fm Stroboscope (Pump-Probe) Transition states, non-equilibrium Resolution 100 fs ~ 10 6 photons /s on sample Femtosecond Laser Delay Stage X-ray plasma 150 μm = 1ps X-ray optic Goniometer k 2θ X-ray detector k CCD G Shielded detection unit

10 Some important basics on x-ray diffraction. Intro: Why femtosecond x-ray diffraction? Some important basics on x-ray diffraction. Available sources use what you need! Scienctific cases what do we learn from them?

11 X-ray Imaging: Limited by Source Size Optical Microscope Resolution limited be wavelength: ~ 0.5 μm = m X-ray-wavelength m X-ray Shadow Image Resolution limited by source size: ~ 1 μm = 10-6 m We want atomic resolution ~ 1 pm = m

12 X-ray Diffraction Mainly core-electrons contribute to the scattered wave. Scattering cross-sections for ALL elements are tabulated!

13 X-ray Diffraction

14 } X-ray Diffraction k λ k k = k =2π/λ

15 X-ray Diffraction d{ k k G k = 2π/λ Laue-condition: k k = G Reciprocal lattice vector: G = 2π/d Bragg-law: λ = 2d sin(θ)

16 X-ray Diffraction = Fourier-Transformation The x-ray scattering amplitude is the Fourier-transform of the electron density Mathematically: iqr A( q) = ρ( r) e dr Fourier-Transformation is the Separation in plane waves. k The Laue-condition is fulfilled, when Wave-vectors change q = k k equals a reciprocal lattice vector. k q = G => Peak

17 X-ray Diffraction = Fourier-Transformation Photosynthetic reaction center Barium-Titanate crystal

18 Scattering from Crystal Structures Lattice: Basis: Crystal structure: a 1 a2 Lattice points at: Atoms at: Electron density: Scattering amplitude: iqr A( q) = ρ( r) e dr Peak Intensity Peak position

19 Available Sources use what you need Intro: Why femtosecond x-ray diffraction? Some important basics on x-ray diffraction. Available sources use what you need! Scienctific cases what do we learn from them?

20 Ultrafast X-ray Diffractometer X-ray diffraction Direct determination of structures Resolution 100 fm Stroboscope (Pump-Probe) Transition states, non-equilibrium Resolution 100 fs ps / slicing 100 fs Femtosecond Laser Delay Stage X-ray plasma Storage ring 150 μm = 1ps X-ray optic Goniometer k 2θ X-ray detector k CCD G Shielded detection unit

21 Ultrafast Experiments in Potsdam Bessy II in Berlin X-ray plasma source Ultrafast optical (IR UV)

22 Generation of Ultrashort X-ray Pulses

23 UXRD: Setup and Signal 1 khz, 5 W 45 fs, 800 nm 1 khz, 5 W 45 fs, 800 nm delay stage delay stage x-ray CCD x-ray CCD SL peaks Thick SRO layer debris protection pump pump x-ray probe x-ray mirror Cu-band Cu-band target target SLsample SLsample ΔΘ / Θ 0 (x10-3 ) Reflectivity (0 0 55) (0 0 56) Θ(deg) Delay Time (ps) ΔR/R 0 ~ phonon amplitude Δd / d 0 (x10-3 )

24 Plasma Source vs. FEMTO-Slicing 0.05 Slicing beamline (I pump = 4 mj/cm 2 ) Plasma-Source (I pump = 8 mj/cm 2 ) ΔR / R ~ 30 min time (ps)

25 Scientific Cases Intro: Why femtosecond x-ray diffraction? Some important basics on x-ray diffraction. Available sources use what you need! Scienctific cases what do we learn from them?

26 UXRD: Technology X-ray diffraction Peak position Peak Intensity Fourier-Trafo of atomic positions Lattice constants Structure factor = position of atoms in unit cell Synchrotron: 100 ps time resolution kinetics of complex systems photons/s on sample (ID 9) Laser-Plasma Sources: 100 fs time resolution Dynamics of simple systems 10 6 photons/s on sample low-α mode slicing schemes x-ray optics tabletop synchrotron Free-Electron-Laser Stanford (LCLS), Hamburg (XFEL)?

27 Functions and Reactions Physics: Collective dynamics e - - phonon interaction Excitation Non-equilibrium Dynamics Energy relevant coordinate Soft matter: Photobiology Chemistry: Non-adiabatic molecular dynamics Quantum chemistry

28 UXRD: Experiments Physics: Coherent phonons in Bi UXRD Biology: Photodynamics of CO in Myoglobin Bild: M. Wulff K. Sokolowski-Tinten et al., Nature 422, 287 (2003) Chemistry: nonadiabatic molecular dynamics in solution Schotte et al., Science 300,1944 (2003) A. Plech et al. PRL 92, (2004)

29 Ultrafast X-ray Diffraction: Experiments Physics: Coherent Phonons Raman vs. DECP Soft matter: Small angle scattering from gold-nanoparticles Chemistry: C 2 H 4 I 2 dissociation Plech et al., Nature Physics 2, 44 (2006) Bargheer et al., Science 422, 287 (2004) Ihee, Science, 309, 1223 (2005) + JACS, 130, 5834 (2008)

30 Ultrafast Chemistry in Liquids

31 Signal Changes in Crystals (a) (b) (c) (d) disorder intensity reduction exp(-<u G 2 >G 2 ) hom. acoustic deformation tensile/compressive line shift LA phonon G lattice +/- Q phonon sidebands hom. optical deformation pos. / neg. intensity modulation α u (e) (f) (g) (h) d k G=2 π/d k Bargheer et al., ChemPhysChem 7, 783 (2006)

32 Ultrafast nonthermal melting of InSb Debye-Waller: Lindenberg et al., Science 308, 392 (2005)

33 Expansion in SrRuO 3 Thin Films Thin film substrate 2Θ K α1 K α2 Korff Schmising et al., Appl. Phys. B 88, 1 (2007) Woerner et al. Appl Phys A 96, 83 (2009)

34 Acoustic Phonons in GaAs Sidebands of Bragg Peaks White phonon spectrum is generated. Observe oscillation of LA phonon with wavevector selected by diffraction condition Lindenberg et al., PRL 84, 111 (1999)

35 Bismuth Plasma Source S(hkl) 2 (222) S hkl = i f i e ig hkl r i (111) x equilibrium distance x = 0.5 displaced quasi-equilibrium distance Sokolowski-Tinten et al., Nature 422, 287 (2003)

36 Bismuth - SPPS Fritz et al., Science 315, 633 (2007)

37 Bismuth Grazing Incidence at SLS Johnson et al., PRL 100, (2008)

38 Signal Changes in Crystals (a) (b) (c) (d) disorder intensity reduction exp(-<u G 2 >G 2 ) hom. acoustic deformation tensile/compressive line shift LA phonon G lattice +/- Q phonon sidebands hom. optical deformation pos. / neg. intensity modulation α u (e) (f) (g) (h) d k G=2 π/d k Bargheer et al., ChemPhysChem 7, 783 (2006)

39 ZFLAP in Semiconductor Superlattices z Dispersion: Zone Folded Longitudinal Acoustic Phonons: ZFLAP pump CB VB ω t < 0 t = 0 t = T/2 t = T 0 π d SL Bargheer et al., Science 306, 1771 (2004) k π a 0

40 Ultrafast X-ray Diffraction on Superlattices ΔR / R 0 ΔΘ / Θ 0,01 0,00-0,01-0,02-0,03 1x x10-4 ν (THz) 0,0 0,5 1, THZ time delay (ps) FFT Power Measurement: Oscillation around displaced equilibrium Phase of oscillation: Cosine No lineshift Results: Time resolution t ~ 100 fs Structural resolution Δa B = 80 fm Δa B /a B = Excitation mechanism: DECP Bargheer et al., Science 306, 1771 (2004)

41 Raman vs. Displacive Excitation 1000 DECP Real carriers Dynamics in presence of carriers Cosine ε / J m S Amplitude Force time Strain S = Δa / a 0 Raman Virtual or resonant Dynamics in electronic ground state Sine ε / J m S Strain S = Δa / a 0 Amplitude Force time

42 All-Optical Detection of Superlattice Phonons InGaN / GaN Pump + probe below bandgap Pump + probe above bandgap Time delay (ps) Raman-Excitation Coherent phonons in ground state Free carriers screen piezoelectric field DECP (displacive excitation) T. E. Stevens, J. Kuhl, and R. Merlin, Phys. Rev. B., 2002, 65, Bartels et al., Phys. Rev. Lett. 82, 1044 (1999) Sun et al., Phys. Rev. Lett. 84, 179 (2000)

43 Metal/Dielectric Superlattice SRO/STO Independent of pump wavelength (800, 1280, 2200 nm) ~ c SRO Forced oscillator: x ~ Δc SRO d 2 +ω0 2 x 2 d t 1 x = m F( t) Rise time of force τ rise = 500 fs Pressure by hot phonons Woerner et al., Appl.Phys. A. 96, 83 (2009)

44 Potsdam-Berlin Berlin Potsdam Bessy II in Berlin

45

46

47

48 Team University of Potsdam Wolfram Leitenberger Roman Shayduk Hengameh Navirian Yevgeni Goldshteyn Mareike Kiel Lena Maerten Steffen Mitzscherling André Bojahr Madlen Klötze Peter Gaal Marc Herzog Daniel Schick Clemens v. Korff Schmising Matias Bargheer Financial support: BMBF, DFG Max-Born-Institute MBI: C. von Korff Schmising Z. Ansari A. Harpoeth F. Zamponi M. Woerner N. Zhavoronkov T. Elsaesser Swiss Light Source Chris J. Milne Renske Van der Veen Steven L. Johnson MPI für Mikrostrukturphysik Dietrich Hesse, Marin Alexe, Ionela Vrejoiu

49 Oxide Nanolayers Perovskite structure Ferromagnetic SRO /STO metals: SL 0,1 ΔR / R Vrejoiu et al., APL 92, (2008). ΔR / R 0,01 1E-3 1E-4 0,1 0,01 1E-3 1E-4 1E-5 1E-6 1E-7 SRO: SrRuO 3 T c 160 K (bulk) LSMO: (La 0.7 Sr 0.3 )MnO 3 T c 370 K (bulk) Insulators: 1E-5 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 STO: SrTiO 3 dielectric q / nm -1 PZT: LSMO Pb(Zr /PZT 0.2 Ti SL 0.8 )O 1 3 ferroelectric below T c 750 K Other perovskite oxides: Superconducting, giant magnetoresistance,.. Rich phase diagrams > Grown 19by Pulsed 20 Laser 21Deposition MPI Halle: D. Hesse, θ / M. degalexe, I. Vrejoiu

50 Phonon Lattice Electrons Spins Orbitals Multiferroics / correlated sytems: Coupling strengths Interaction timescales strain ε polarization P piezoelectric screening electrons Stoner excitation magnetoelectic Electron- magnetostrictive magnetiziation M 50

51 Optical Excitation of Oxide Nano-Layers SRO PZT SRO PZTSRO PZT SRO Expectation: Excitation of electrons in metal (SRO) Expansion of SRO compression of PZT standing Wave Layer-thickness / sound-velocity ~ 2 ps Questions: How does electron-excitation induce nuclear motion? (e ph coupling) Are specific modes coupled? Magnetization? Polarization?

52 All-optical pump-probe setup beam splitter BBO / NOPA probe beam pump beam Ti:Sa fs laser + regenerative amplifier reflection detector delay line white light generation focussing Element sample transmission detector 52

53 All optical data: Transient reflectivity SRO / STO multilayer, pump 800 nm, 40.2 mj/cm 2 probe white light Probe wavelength 3,2 ps time

54 Sound Waves: Phonon Simulations Aplitude of mode / arb. u. 1 0,1 0,01 1E-3 1E-4 1E-5 1E-6 50 nm abs. depth w/ substrate hom. abs. w/ substrate hom. abs. only SL 0 1 ω / ωsl 2

55 Sound Waves: Phonon Simulations 0,12 0,10 0,08 0,06 0,04 Only SL SL with substrat position z / unit cells ,10 0,05 0,00-0,05-0,10 amplitude amplitude 0,02 0,00-0,02-0,04-0,06-0,08-0,10 superlattice substrate position z / unit cells

56 Sound Waves: Phonon Simulations

57 Sound Waves: Phonon Simulations 1. Electronic excitation (intraband) 2. Phonon modes and photoelastic effect (dn/dε) 3. Interference of light reflected off surface and traveling strain pulse time depth Spatio temporal strain distribution

58 Measure Lattice Deformation Directly Additional parameter: expansion of structure Measure shift + intensity to get STO and SRO change Korff Schmising et al., Physics Procedia. 3, 333 (2010)

59 Fluence Dependence Δη / η after 1.5 ps after 200 ps η ~ ΔR/R 0 SRO PZT Excitation Fluence (mj/cm 2 ) Δη / η SRO STO Excitation Fluence (mj/cm 2 ) Strain vs. fluence linear up to η = c/a = 2% 1 GPa pressure switched on in 550 fs Expansion is non-thermal (Temperature different in SRO/STO) Even after 200 ps!! Superlattice phonon dispersion is flat no propagation No wavelength dependence: Hot phonons in SRO Woerner et al., Appl.Phys. A. 96, 83 (2009)

60 Heat Dissipation - Nanoseconds LSMO/STO SL on STO substrate temperature change, C T SL, calculated T sub, calculated T SL, SL T sub, Substrate Temperatures experimentally derived from peak position and bulk expansion coefficient Temperature calculated from bulk heat conductivities Initially fast cooling? Stress from electrons? delay, ns

61 X ray diffraction from Multilayers Convolution Theorem: FT ( f g ) = FT ( f ) FT ( g ) D SL Fourier Transf. d SRO d STO Diffraction Intensity D SL g SL = 2π/D SL Θ (deg) 61 Double- SL- = SLlayer Period Structure

62 X ray diffraction from Multilayers Convolution Theorem: FT ( f g ) = FT ( f ) FT ( g ) D SL Fourier Transf. d SRO d STO Diffraction Intensity D SL g SL = 2π/D SL Θ (deg) 62 Double- SL- = SLlayer Period Structure

63 BESSY and SLS- FEMTO-Slicing ΔR / R 0,1 0,01 1E-3 1E-4 SRO/STO SL 1.6 ps after excitation! 1E-5 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 q / nm -1 Herzog et al., Appl.Phys. Lett. 96, (2010)

64 ΔR / R 0,1 SRO/STO SL 1.6 ps 0,01 1E-3 1E-4 1E-5 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 q / nm -1 tot Expansion of entire superlattice: (oscillations damped out) intensity (a.u.) Expanison and Inhomogeneous Excitation unpumped 7.3 mj/cm mj/cm mj/cm mj/cm ,8 36,9 37,0 37,1 37,2 37,3 37,4 Θ / T 800 nm excitation shift = D v LA 37ps From deposited energy/ heat capacity ΔT = 600 K Observed shift + Debye Waller factor: Lattice temperature ΔT ~ 1800 K Expansion three times larger than bulk? Epitaxial condition?

65 Expanison and Inhomogeneous Excitation time depth Peak-shift Expansion of SL ~ 1.1% Peak-Broadening Variation of layer-thickness Peak-Assymetry Exponentially decaying exc. increased for 400nm pump T shift = D v tot LA 37ps intensity (a.u.) unpumped 7.3 mj/cm mj/cm mj/cm mj/cm nm excitation unpumped 400 nm excitation -0,015-0,010-0,005 0,000 ΔΘ / Θ 0 intensity (a.u.) mj/cm mj/cm mj/cm 2-0,005 0,000 Θ /

66 Strain Wave In Substrate intensity (a.u.) mj/cm mj/cm 2 unpumped 0-0,005 0,000 0, ps 74 ps 800 nm excitation 400 nm excitation 37 ps intensity / a.u unpumped 39 ps, 240mW 39 ps, 330mW 73 ps, 330mW -0,005 0,000 0,005 ΔΘ / Θ 0 ΔΘ / Θ 0

67 R p -R 0 R p -R 0 counts 0,06 0,04 0,02 0,00-0,02-0,04 0,03 0, ,03 No Shift! Splitting! 30 LSMO/STO SL, peak +1 unpumped ~ 20 mj/cm 2 10 ps 20 ps M 25 Y 30 ps V S P O 40 ps 300 ps 15 B C C8 C32 C42 C51 Electrode layer expansion Watch sound wave propagate through superlattice R p = I p /I ,04 5 0,02 0,00 0 3,19 3,20 q / nm substrate 1,45 1,50 1,55 1,60 1,65 1,70 pitch ( )

68 ΔR / R ΔR / R depth 0,0-0,2-0,4-0,6-0,8 Standing Wave: Period 3.2 ps time 0,1 0,01 1E-3 1E-4 1E-5 3,16 3,17 3,18 3,19 3,20 Ultrafast 3,21Bragg-switch! 3,22 3,23 3,24 3,25 3,26 q / nm % increase! 20.6 mj/cm mj/cm mj/cm 2-1, time delay (ps) Amplitude of wave: SRO expanded by 1.8%! Decay time: 10 ps Period 3.2 ps Structure factor depends nonlinearly on amplitude! ΔR / R delay time (ps) 39.2 mj/cm mj/cm 2

69 Switching on the Structure Factor Nonlinear response to strain Spikes rather than oscillations Temporal width of 1 ps!! 1 ps rise factor strain Δc/c 0 Herzog et al., Appl.Phys. Lett. 96, (2010) The phonon Bragg switch: Bucksbaum+Merlin, Sol.Stat.Commun. 111, 535 (1999) Shepphard et al., Sol.Stat.Commun. 136, 181 (2005)

70 New Beamline Layout Schematic experimental setup at EDR beamline (bending magnet) at BESSY II for time resolved XRD and XAS ( kev) Monochromator incl. Laser driven X ray switch (2) No timing jitter Use swiched X rays in hybrid or single bunch mode ~10 8 photons/s More at undulator 70

71 Optical Excitation of the Metal SRO ~ c SRO Independent of pump wavelength (800, 1280, 2200 nm) Forced oscillator: x ~ Δc SRO d 2 +ω0 2 x 2 d t x 1 m F( t) Rise time of force τ rise = 500 fs ~1 GPa in 1 ps. Reversible. Pressure by hot phonons = Woerner et al., Appl.Phys. A. 96, 83 (2009)

72 Optical Excitation of Magnons in SRO SRO is ferromagnetic for T < T C = 160K Reduced phonon amplitude Contraction by magnetostriction partially compensating thermal expansion Amplitude Korff Schmising, Phys Rev. B. 78, (R) (2008)

73 Optical Excitation of Magnons in SRO Amplitude mimics magnetization energy ~ M 2 Wavelength dependence! 1.0 Amplitude Amplitude T C = 160 K 0.4 λ ex = 0.8 μm λ ex = 2.2 μm T (K) Korff Schmising, Phys Rev. B. 78, (R) (2008)

74 Optical Excitation of Magnons in SRO SRO is ferromagnetic for T < T C = 160K Reduced phonon amplitude Contraction by magnetostriction partially componsating thermal expansion Magnetostrictive force faster than ~ 500fs Korff Schmising, Phys Rev. B. 78, (R) (2008)

75 Reviews: Clemens v. Korff Schmising et al, Z. Kristallogr. 223, (2008) M. Bargheer, Atombewegung im Röntgenkino Physik Journal 8, (2007) M. Bargheer et al., ChemPhysChem, 7, (2006) Klaus Sokolowski-Tinten, J. Phys.: Condens. Matter 16, R1517 R1536 (2004) A.Rousse et al., Rev. Mod. Phys. 73, 17 (2001)

76 Summary Basics X-ray diffraction Plasma source vs. FEMTO-sliing Classification of ultrafast changes UXRD amplitude + phase Scientific cases from chemistry and physics Sound in SL Sound = Interference of Eigenmodes Raman vs. displacive excitation Heat expansion: phonon-phonon interact. Oxide superlattices: 1.8% strain! Ultrafast nonlinear X-ray Bragg switch Ultrafast magnetostriction 1000 (a) (b) (c) (d) 500 ε / J m -3 0 disorder intensity reduction exp(-<u 2 G >G 2 ) (e) hom. acoustic deformation tensile/compressive (f) line shift LA phonon G lattice +/- Q phonon sidebands (g) hom. optical deformation pos. / neg. intensity modulation α u (h) S

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Matias Bargheer Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Some details of the setup: BESSYII + Plasma VSR Ultrafast heat transport on nm length scale Inhomogeneous

More information

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Institut für Experimentelle Physik STI Round-Table Meeting, Hamburg, 22. - 24. Juni 2004 Outline motivation: why short pulses and the XFEL

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

DIFFRACTION UNDER LASER IRRADIATION. ANF RECIPROCS C. Mariette

DIFFRACTION UNDER LASER IRRADIATION. ANF RECIPROCS C. Mariette DIFFRACTION UNDER LASER IRRADIATION ANF RECIPROCS- 2018 C. Mariette Okhoshi et al., Nat. Chem.(2010) Calculated DOS of photo-switchable Ti 3 O 5 Photochromism Conductivity Insulating Metal This also

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Structural dynamics of PZT thin films at the nanoscale

Structural dynamics of PZT thin films at the nanoscale Mater. Res. Soc. Symp. Proc. Vol. 902E 2006 Materials Research Society 0902-T06-09.1 Structural dynamics of PZT thin films at the nanoscale Alexei Grigoriev 1, Dal-Hyun Do 1, Dong Min Kim 1, Chang-Beom

More information

Holcomb Group Capabilities

Holcomb Group Capabilities Holcomb Group Capabilities Synchrotron Radiation & Ultrafast Optics West Virginia University mikel.holcomb@mail.wvu.edu The Physicists New Playground The interface is the device. - Herbert Kroemer, beginning

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

Ultrafast Dynamics in Complex Materials

Ultrafast Dynamics in Complex Materials Ultrafast Dynamics in Complex Materials Toni Taylor MPA CINT, Center for Integrated Nanotechnologies Materials Physics and Applications Division Los Alamos National Laboratory Workshop on Scientific Potential

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Scientific opportunities with ultrafast electron diffraction & microscopy

Scientific opportunities with ultrafast electron diffraction & microscopy Scientific opportunities with ultrafast electron diffraction & microscopy Jim Cao Frontier of ultrafast science MeV UED Transition pathways Rate and time scale Elementary steps Probe dynamics on the atomic

More information

Ultrafast structural dynamics of perovskite superlattices

Ultrafast structural dynamics of perovskite superlattices Appl Phys A (2009) 96: 83 90 DOI 10.1007/s00339-009-5174-6 Ultrafast structural dynamics of perovskite superlattices M. Woerner C. v. Korff Schmising M. Bargheer N. Zhavoronkov I. Vrejoiu D. Hesse M. Alexe

More information

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

Ultrafast X-ray Science at the Sub-Picosecond Pulse Source Technical Report Ultrafast X-ray Science at the Sub-Picosecond Pulse Source Kelly J. Gaffney for the SPPS collaboration Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, CA,

More information

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Robert Schoenlein Materials Sciences Division Chemical Sciences Division - UXSL Matteo Rini ils Huse F. Reboani &

More information

Jitter measurement by electro-optical sampling

Jitter measurement by electro-optical sampling Jitter measurement by electro-optical sampling VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David

More information

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules Outline Raman Scattering Spectroscopy Resonant Raman Scattering: RRS in crystals RRS in molecules Surface Enhaced Raman Scattering Applications Charging and discharging of single molecules probed by SERS

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

Picosecond X-ray diffraction studies of laserexcited

Picosecond X-ray diffraction studies of laserexcited See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226568673 Picosecond X-ray diffraction studies of laserexcited acoustic phonons in InSb Article

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS. Vimal Deepchand.

CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS. Vimal Deepchand. CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS By Vimal Deepchand Thesis Submitted to the Faculty of the Graduate School of

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Opportunities and Challenges for X

Opportunities and Challenges for X Opportunities and Challenges for X -ray Free Electron Lasers for X-ray Ultrafast Science J. Hastings Stanford Linear Accelerator Center June 22, 2004 European XFEL Laboratory How Short is short? defined

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

ULTRAFAST DYNAMICS OF FOLDED ACOUSTIC PHONONS FROM SEMICONDUCTOR SUPERLATTICES

ULTRAFAST DYNAMICS OF FOLDED ACOUSTIC PHONONS FROM SEMICONDUCTOR SUPERLATTICES ULTRAFAST DYNAMICS OF FOLDED ACOUSTIC PHONONS FROM SEMICONDUCTOR SUPERLATTICES by Mariano Trigo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement IMPACT 2016, Cargese, France ICQM International Center for Quantum Materials Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement Nan-Lin Wang

More information

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 1-fs Pulse S. Koshihara, K. Onda, Y. Matsubara, T. Ishikawa, Y. Okimoto, T. Hiramatsu, G. Saito,

More information

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium Max Planck Institute for Solid State Research Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium co-workers and papers: (1) (2) (3) (4) Dirk Manske A. Knorr (TU Berlin),

More information

L YBCO è di MODA! U. Scotti di Uccio

L YBCO è di MODA! U. Scotti di Uccio L YBCO è di MODA! U. Scotti di Uccio Coherentia-CNR-INFM Napoli, Italy Prof. R. Vaglio F. Miletto Granozio, M. Radovic, N. Lampis, P. Perna, A. Sambri M. Salluzzo, G. De Luca, R. Di Capua, A. Gambardella,

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Tuning of 2-D Silicon Photonic Crystals

Tuning of 2-D Silicon Photonic Crystals Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Tuning of 2-D Silicon Photonic Crystals H. M. van Driel, S.W. Leonard, J. Schilling 1 and R.B. Wehrspohn 1 Department of Physics, University

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Making Functional Surfaces and Thin Films: Where are the Atoms?

Making Functional Surfaces and Thin Films: Where are the Atoms? Making Functional Surfaces and Thin Films: Where are the Atoms? K. Ludwig, A. DeMasi, J. Davis and G. Erdem Department of Physics Materials Science and Engineering Program Why x-rays? λ ~10-10 m ~ distance

More information

Ultrafast XPCS. Gerhard Grübel

Ultrafast XPCS. Gerhard Grübel . Ultrafast XPCS Gerhard Grübel W.Roseker, S. Lee, F. Lehmkühler, I. Steinke, H. Schulte-Schrepping, M. Walther, G.B. Stephenson, P. Fuoss, M. Sikorski, and A. Robert DESY Deutsches Elektronen Synchrotron,

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Nanosecond Structural Visualization of the Reproducibility of Polarization Switching in Ferroelectrics

Nanosecond Structural Visualization of the Reproducibility of Polarization Switching in Ferroelectrics Integrated Ferroelectrics, 85: 165 173, 2006 Copyright Taylor & Francis Group, LLC ISSN 1058-4587 print / 1607-8489 online DOI: 10.1080/10584580601085842 Nanosecond Structural Visualization of the Reproducibility

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Toward Fourier-limited X-ray Science

Toward Fourier-limited X-ray Science XDL2011 RPCC, Cornell Univ. June 20-21, 2011 GRC X-ray Science 2009 Colby College August 2-7, 2009 Toward Fourier-limited X-ray Science Photon Factory, KEK & PREST, JST Shin-ichi Adachi outline Time-domain

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Time-resolved spectroscopy

Time-resolved spectroscopy Time-resolved spectroscopy Chih-Wei Luo ( 羅志偉 ) Department of Electrophysics, National Chiao Tung University, Taiwan Ultrafast Dynamics Lab Outline 1. Introduction of pulses. Spectroscopic methods for

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Molecular Dynamics Studied by Picosecond X-ray Diffraction

Molecular Dynamics Studied by Picosecond X-ray Diffraction Paris 17-3-25 Molecular Dynamics Studied by Picosecond X-ray Diffraction Experiments: Theory: Maciej Lorenc, Qingyu Kong, Manuela Lo Russo, Marco Cammarata, Michael Wulff Savo Bratos, Rodolphe Vuilleumier,

More information

Time-resolved spectroscopy

Time-resolved spectroscopy Time-resolved spectroscopy Chih-Wei Luo ( 羅志偉 ) Department of Electrophysics, National Chiao Tung University, Taiwan Ultrafast Dynamics Lab Outline 1. Introduction of pulses 2. Spectroscopic methods for

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

X-Ray Scattering Studies of Thin Polymer Films

X-Ray Scattering Studies of Thin Polymer Films X-Ray Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

Ultrafast spectroscopy of a single metal nanoparticle. Fabrice Vallée FemtoNanoOptics group

Ultrafast spectroscopy of a single metal nanoparticle. Fabrice Vallée FemtoNanoOptics group CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Ultrafast spectroscopy of a single metal nanoparticle Fabrice Vallée FemtoNanoOptics group LASIM, CNRS - Université Lyon 1, France Metal Nanoparticles: from

More information

Ultrafast Electron Crystallography: Principles and Dynamics

Ultrafast Electron Crystallography: Principles and Dynamics 15 Chapter 2 Ultrafast Electron Crystallography: Principles and Dynamics Part of this chapter was adapted from D.-S. Yang, N. Gedik, A. H. Zewail, J. Phys. Chem. C 111, 4889 (2007). 16 Introduction The

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

X-ray diffraction and Crystal Structure Solutions from Thin Films

X-ray diffraction and Crystal Structure Solutions from Thin Films X-ray diffraction and Crystal Structure Solutions from Thin Films Ingo Salzmann Humboldt-Universität zu Berlin Institut für Physik Overview Experimental technique X-ray diffraction The principal phenomenon

More information

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Benjamin Stadtmüller Department of Physics and Research Center OPTIMAS,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Magnetization Dynamics: Relevance to Synchrotron. Experiments C.H. Back

Magnetization Dynamics: Relevance to Synchrotron. Experiments C.H. Back Magnetization Dynamics: Relevance to Synchrotron Experiments C.H. Back Universität Regensburg Eigenmodes in confined magnetic structures (TR-XPEEM) Spin Dynamics of the AF/FM phase transition in FeRh Conclusion

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 )

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 ) Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy Chih Wei Luo ( 羅志偉 ) Outline Introduction of femtosecond (fs) laser pulses Ultrafast dynamics in multiferroics HoMnO 3 Summary I

More information

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés Dynamics of electrons in surface states with large spin-orbit splitting L. Perfetti, Laboratoire des Solides Irradiés Outline Topology of surface states on the Bi(111) surface Spectroscopy of electronic

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Ultrafast x-ray studies of structural dynamics at SLAC

Ultrafast x-ray studies of structural dynamics at SLAC SLAC-PUB-11509 August, 2005 Ultrafast x-ray studies of structural dynamics at SLAC K.J. Gaffney a, A.M. Lindenberg a, J. Larsson b, K. Sokolowski-Tinten c,d, C. Blome e, O. Synnergren b, J. Sheppard f,

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea Supporting Information for Coherent Lattice Vibrations in Mono- and Few-Layer WSe 2 Tae Young Jeong, 1,2 Byung Moon Jin, 1 Sonny H. Rhim, 3 Lamjed Debbichi, 4 Jaesung Park, 2 Yu Dong Jang, 1 Hyang Rok

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

The generation of terahertz frequency radiation by optical rectification

The generation of terahertz frequency radiation by optical rectification University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 29 The generation of terahertz frequency radiation by optical

More information