Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna

Size: px
Start display at page:

Download "Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna"

Transcription

1 Inverse Theory COST WaVaCS Winterschool Venice, February 2011 Stefan Buehler Luleå University of Technology Kiruna

2 Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) 2

3 Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) 3

4 Remote Sensing Systems Provide Indirect Measurements Why is this called an inverse problem? Figure: University of Bremen

5 Inverse Problem Notation y = F(x) + ε y: Measurement vector x: State vector F: Forward model ε: Noise Often: y = y 0 + Kx K: Jacobi matrix (df/dx) 5

6 Measurement Vector y and State Vector x x y Figure: University of Bremen, stolen from last weeks lecture by Uwe.

7 The Jacobi Matrix K y = y 0 + Kx Figure from Clive D. Rodgers, Inverse Methods for Atmospheric Sounding, World Scientific,

8 Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) 8

9 A Linear Equation System y = y 0 + K x For simplicity: y = K x If K is a n y *n x matrix, this defines a system of n y equations for the n x unknown elements of x. Mathematically, this system can be overdetermined (more equations than unknowns) or underdetermined (fewer equations than unknowns). If we have more equations than unknowns, the different equations will contradict each other, due to the noise, so that there is no solution to the equation system. 9

10 Matrix Inversion Approach y = K x We could get the idea to choose n x = n y. Then: y = K -1 x Problem solved? 10

11 Matrix Inversion Result Figure from Clive D. Rodgers, Inverse Methods for Atmospheric Sounding, World Scientific,

12 Matrix Inversion Result Small errors (noise) in y can lead to large differences in x. (Noise amplification.) The problem is that the information provided by the different equations is not independent. (They are linearly dependent, or almost so.) Mathematically, we say that the inversion problem is ill-posed, and that the K matrix is illconditioned. 12

13 Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) 13

14 The Least Squares Method Least-squares fitting is a technique that can be used if there are more equations than unknowns. Idea: Find the x that minimizes the disagreement between F(x) and y. Disagreement measured by a chi-square test: χ 2 = (y F(x))'S y 1 (y F(x)) The measurement error covariance matrix S y needs more explanation. 14

15 Describing Errors for Vectors Scalar: deviation) Vector: y = y ± σ y S y = 2 σ 11 (mean and standard 2 σ 1ny 2 σ ny 1 2 σ ny n y σ ij 2 = s (y s [i] y[i])(y s [ j] y[ j]) The covariance matrix is the generalization of the variance σ 2 for vectors. 15

16 Covariance Matrix Diagonal elements are variances for the individual vector elements. Off-diagonal elements describe correlations between the elements. S y = 2 σ 11 2 σ 1ny 2 σ ny 1 2 σ ny n y x[2] x[1] 16

17 Empirical Orthogonal Functions (EOF) Also called principal components. Can be obtained by finding a coordinate transformation that diagonalizes S. PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.878, 0.478) direction and of 1 in the orthogonal direction. Source: Ben FrantzDale (Wikipedia) 17

18 Back to the Least Squares Fits Idea: Find the x that minimizes the disagreement between F(x) and y. Disagreement measured by a chi-square test: χ 2 = (y F(x))'S 1 y (y F(x)) S y describes the measurement error (noise behavior of the instrument). The test measures the discrepancy between measurement and forward model for each element of y. Weighted by the measurement error for that element. 18

19 Multilinear Regression If the forward model is linear, then the least square solution for x given y, y 0 and K can be found by simple linear algebra. This is called (multi)linear regression. y = F(x) = y 0 + Kx Very easy to do in Matlab with the backslash operator. Works even if there are more equations than unknowns. Also suffers from noise amplification, like the direct matrix inversion method. 19

20 Singular Value Decomposition (SVD) Helps us to understand the noise amplification problem. K = UDV' U and V are orthogonal matrices, D is a diagonal matrix. If one has the SVD, then one gets the inverse of K for free: K 1 = VD 1 U' The elements of D are called singular values. 20

21 Singular Values Example for D -1 for n y =4, n x =3: If d ii are small, there will be numerical problems (division by zero). If all are small, we can simply scale the whole matrix, the problem is, if some are large and some are small. Condition number c = 1 d d d largest singular value smallest singular value 21

22 Ill-Conditioned Matrices The larger c, the more numerically unstable the matrix inversion will be. We say, matrix K is ill-conditioned, if c 1. If K is ill-conditioned, then the inverse problem y=kx is ill-posed. There is no stable solution, unless we make additional assumptions. We call these assumptions a-priori information. 22

23 Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) 23

24 Bayesian Methods Are methods that are consistent with probability theory. Bayes theorem states how different pieces of information can be combined. It can be used to derive the OEM method, but I will show you only the result, not the derivation. The OEM method is based on the assumption that both measurement error and climatology of x have Gaußian statistics. 24

25 The Optimal Estimation Method (OEM) Make the a-priori assumption, that the solution x should be close to a climatological mean value. For the least square approach, the costfunction becomes: (y F(x))'S 1 y (y F(x)) κ (x) = (x x 0 )'S 1 0 (x x 0 ) The x that minimizes this cost function is the OEM solution. Can be found by simple algebra for the linear problem. + 25

26 OEM Solution for Linear Problem Is given by: ˆx = x 0 + (K'S 1 y K + S 1 0 ) 1 K'S 1 y (y Kx 0 ) or ˆx = x 0 + S 0 K'(KS 0 K'+ S y ) 1 (y Kx 0 ) Looks tough, but all quantities are known. Easy to calculate with Matlab. Expensive part: One matrix inversion. 26

27 Averaging Kernel Matrix Jacobian: K = dy dx Contribution function matrix: Averaging kernel matrix: Connects true state to retrieved state: D = dˆx dy A = DK A OEM = (K'S 1 y K + S 1 0 ) 1 K'S 1 y K ˆx x 0 = A(x x 0 ) + Dε 27

28 Example: Groundbased Microwave H2O Radiometer 28

29 29

30 30

31 31

32 32

33 33

34 Dealing with Non-Linearity Completely linear: y=kx Almost completely linear: y-y 0 =K(x-x 0 ) Moderately nonlinear (typical trace gas retrieval) Iterative methods, particularly Levenberg-Marquardt iteration (recalculate K(x i ) as x i is iteratively improved) Strongly nonlinear: Neural Nets, 34

35 Summary Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3 Less Simple Minded Approach (Linear Regression, SVD, Condition Number) 4 Optimal Estimation (Bayesian Methods) Perhaps a bit abstract, we will try out the different concepts in the practical! 35

36 Questions? 36

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute Inversion basics y = Kx + ε x ˆ = (K T K) 1 K T y Erkki Kyrölä Finnish Meteorological Institute Day 3 Lecture 1 Retrieval techniques - Erkki Kyrölä 1 Contents 1. Introduction: Measurements, models, inversion

More information

Inverse Problems, Information Content and Stratospheric Aerosols

Inverse Problems, Information Content and Stratospheric Aerosols Inverse Problems, Information Content and Stratospheric Aerosols May 22, 214 Table of contents 1 Inverse Problems 2 Aerosols 3 OSIRIS 4 Information Content 5 Non-Linear Techniques 6 Results Inverse Problems

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation Prof. om Overbye Dept. of Electrical and Computer Engineering exas A&M University overbye@tamu.edu Announcements

More information

Application of Principal Component Analysis to TES data

Application of Principal Component Analysis to TES data Application of Principal Component Analysis to TES data Clive D Rodgers Clarendon Laboratory University of Oxford Madison, Wisconsin, 27th April 2006 1 My take on the PCA business 2/41 What is the best

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 27, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

Least squares: the big idea

Least squares: the big idea Notes for 2016-02-22 Least squares: the big idea Least squares problems are a special sort of minimization problem. Suppose A R m n where m > n. In general, we cannot solve the overdetermined system Ax

More information

Satellite Retrieval Assimilation (a modified observation operator)

Satellite Retrieval Assimilation (a modified observation operator) Satellite Retrieval Assimilation (a modified observation operator) David D. Kuhl With Istvan Szunyogh and Brad Pierce Sept. 21 2009 Weather Chaos Group Meeting Overview Introduction Derivation of retrieval

More information

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Rosemary Renaut, Jodi Mead Arizona State and Boise State September 2007 Renaut and Mead (ASU/Boise) Scalar

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry

Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry René Bleisch Institute of Applied Physics 26..212 1 / 45 Outline 1 Introduction Measuring water

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Rosemary Renaut, Jodi Mead Arizona State and Boise State Copper Mountain Conference on Iterative Methods

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

Inverse problems and uncertainty quantification in remote sensing

Inverse problems and uncertainty quantification in remote sensing 1 / 38 Inverse problems and uncertainty quantification in remote sensing Johanna Tamminen Finnish Meterological Institute johanna.tamminen@fmi.fi ESA Earth Observation Summer School on Earth System Monitoring

More information

5 Linear Algebra and Inverse Problem

5 Linear Algebra and Inverse Problem 5 Linear Algebra and Inverse Problem 5.1 Introduction Direct problem ( Forward problem) is to find field quantities satisfying Governing equations, Boundary conditions, Initial conditions. The direct problem

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 1 MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 2 Linear Systems and solutions Systems of linear

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

Concentration Ellipsoids

Concentration Ellipsoids Concentration Ellipsoids ECE275A Lecture Supplement Fall 2008 Kenneth Kreutz Delgado Electrical and Computer Engineering Jacobs School of Engineering University of California, San Diego VERSION LSECE275CE

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

8 - Continuous random vectors

8 - Continuous random vectors 8-1 Continuous random vectors S. Lall, Stanford 2011.01.25.01 8 - Continuous random vectors Mean-square deviation Mean-variance decomposition Gaussian random vectors The Gamma function The χ 2 distribution

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

component risk analysis

component risk analysis 273: Urban Systems Modeling Lec. 3 component risk analysis instructor: Matteo Pozzi 273: Urban Systems Modeling Lec. 3 component reliability outline risk analysis for components uncertain demand and uncertain

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: June 11, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material (ideas,

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Forecast comparison of principal component regression and principal covariate regression

Forecast comparison of principal component regression and principal covariate regression Forecast comparison of principal component regression and principal covariate regression Christiaan Heij, Patrick J.F. Groenen, Dick J. van Dijk Econometric Institute, Erasmus University Rotterdam Econometric

More information

Retrieval problems in Remote Sensing

Retrieval problems in Remote Sensing Maarten Krol August 2006 m.c.krol@phys.uu.nl 1. Goal To show that remote sensing is an indirect measurement, i.e. that we do not measure directly, but by means of (for instance) electromagnetic radiation

More information

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014 Lecture 7 Gaussian Elimination with Pivoting David Semeraro University of Illinois at Urbana-Champaign February 11, 2014 David Semeraro (NCSA) CS 357 February 11, 2014 1 / 41 Naive Gaussian Elimination

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems

A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova SIAM Annual Meeting July 10, 2009 National Science Foundation:

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques. I assume the reader is familiar with basic linear algebra, including the

More information

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University Chemometrics Matti Hotokka Physical chemistry Åbo Akademi University Linear regression Experiment Consider spectrophotometry as an example Beer-Lamberts law: A = cå Experiment Make three known references

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Principal Component Analysis

Principal Component Analysis I.T. Jolliffe Principal Component Analysis Second Edition With 28 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition Acknowledgments List of Figures List of Tables

More information

Learning with Singular Vectors

Learning with Singular Vectors Learning with Singular Vectors CIS 520 Lecture 30 October 2015 Barry Slaff Based on: CIS 520 Wiki Materials Slides by Jia Li (PSU) Works cited throughout Overview Linear regression: Given X, Y find w:

More information

ISTINA - : Investigation of Sensitivity Tendencies and Inverse Numerical Algorithm advances in aerosol remote sensing

ISTINA - : Investigation of Sensitivity Tendencies and Inverse Numerical Algorithm advances in aerosol remote sensing STNA - : nvestigation of Sensitivity Tendencies and nverse Numerical Algorithm advances in aerosol remote sensing B. Torres, O. Dubovik, D. Fuertes, and P. Litvinov GRASP- SAS, LOA, Universite Lille-1,

More information

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra CS227-Scientific Computing Lecture 4: A Crash Course in Linear Algebra Linear Transformation of Variables A common phenomenon: Two sets of quantities linearly related: y = 3x + x 2 4x 3 y 2 = 2.7x 2 x

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

CS540 Machine learning Lecture 5

CS540 Machine learning Lecture 5 CS540 Machine learning Lecture 5 1 Last time Basis functions for linear regression Normal equations QR SVD - briefly 2 This time Geometry of least squares (again) SVD more slowly LMS Ridge regression 3

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

CS6964: Notes On Linear Systems

CS6964: Notes On Linear Systems CS6964: Notes On Linear Systems 1 Linear Systems Systems of equations that are linear in the unknowns are said to be linear systems For instance ax 1 + bx 2 dx 1 + ex 2 = c = f gives 2 equations and 2

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016 Lecture 8 Principal Component Analysis Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 13, 2016 Luigi Freda ( La Sapienza University) Lecture 8 December 13, 2016 1 / 31 Outline 1 Eigen

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

Calculation and Application of MOPITT Averaging Kernels

Calculation and Application of MOPITT Averaging Kernels Calculation and Application of MOPITT Averaging Kernels Merritt N. Deeter Atmospheric Chemistry Division National Center for Atmospheric Research Boulder, Colorado 80307 July, 2002 I. Introduction Retrieval

More information

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

Linear Methods in Data Mining

Linear Methods in Data Mining Why Methods? linear methods are well understood, simple and elegant; algorithms based on linear methods are widespread: data mining, computer vision, graphics, pattern recognition; excellent general software

More information

Least-Squares Rigid Motion Using SVD

Least-Squares Rigid Motion Using SVD Least-Squares igid Motion Using SVD Olga Sorkine Abstract his note summarizes the steps to computing the rigid transformation that aligns two sets of points Key words: Shape matching, rigid alignment,

More information

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 74 6 Summary Here we summarize the most important information about theoretical and numerical linear algebra. MORALS OF THE STORY: I. Theoretically

More information

STATISTICAL LEARNING SYSTEMS

STATISTICAL LEARNING SYSTEMS STATISTICAL LEARNING SYSTEMS LECTURE 8: UNSUPERVISED LEARNING: FINDING STRUCTURE IN DATA Institute of Computer Science, Polish Academy of Sciences Ph. D. Program 2013/2014 Principal Component Analysis

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information