A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems

Size: px
Start display at page:

Download "A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems"

Transcription

1 A Hybrid LSQR Regularization Parameter Estimation Algorithm for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova SIAM Annual Meeting July 10, 2009 National Science Foundation: Division of Computational Mathematics 1 / 24

2 Outline 1 The Problem 2 The Chi Squared Principle: Some Results 3 A Hybrid Method for Large Scale Problems 4 Conclusions National Science Foundation: Division of Computational Mathematics 2 / 24

3 Least Squares for Ax = b: A Quick Review Consider discrete systems: A R m n, b R m, x R n Ax = b + e, Classical Approach Linear Least Squares (A full rank) x LS = arg min x Ax b 2 2 Difficulty x LS sensitive to changes in right hand side b when A is ill-conditioned. For convolutional models system is ill-posed. National Science Foundation: Division of Computational Mathematics 3 / 24

4 Example Signal Restoration (a) Original (b) Noisy (c) Unregularized (d) Regularized National Science Foundation: Division of Computational Mathematics 4 / 24

5 The Weighting Matrix: Statistical Information on Measurements Some Assumptions for Multiple Data Measurements Given multiple measurements of data b: Usually error in b, e is an m vector of random measurement errors with mean 0 and positive definite covariance matrix C b = E(ee T ). For uncorrelated measurements C b is diagonal matrix of standard deviations of the errors. (Colored noise) For white noise C b = σ 2 I. Weighting by W b = C b 1 in data fit term, theoretically, ẽ = W b 1/2 e are uncorrelated. Difficulty if W b increases ill-conditioning of A! National Science Foundation: Division of Computational Mathematics 5 / 24

6 Formulation: Generalized Tikhonov Regularization With Weighting Regularized Functional ˆx = argmin J(x) = argmin{ Ax b 2 W b + λ 2 D(x x 0 ) 2 }. (1) D is a suitable operator, often derivative approximation. Assume N (A) N (D) = {0} x 0 is a reference solution, often x 0 = 0. Given D, W b goal is to find regularization parameter λ National Science Foundation: Division of Computational Mathematics 6 / 24

7 Choice of λ crucial Different algorithms yield different solutions. Discrepancy Principle L-Curve (many solutions) Generalized Cross Validation (GCV) (Calculate a minimum) Unbiased Predictive Risk (UPRE) (Calculate a trace) Examine statistical properties of the residual χ 2 Principle - extends discrepancy National Science Foundation: Division of Computational Mathematics 7 / 24

8 Statistics of the Regularized Least Squares Problem Thm: χ 2 distribution of the regularized functional (Renaut/Mead 2008) (NOTE: Weighting Matrix on Regularization term.) ˆx = argmin J D (x) = argmin{ Ax b 2 W b + (x x 0 ) 2 W D }, W D = D T W x D. (2) Assume Then W b and W x are symmetric positive definite. Problem is uniquely solvable N (A) N (D) = {0}. Moore-Penrose generalized inverse of W D is C D Statistics: Errors in the right hand side e N(0, C b ), and x 0 is known so that (x x 0 ) = f N(0, C D ), x 0 is the mean vector of the model parameters. J D (ˆx(W D )) χ 2 (m + p n) National Science Foundation: Division of Computational Mathematics 8 / 24

9 Significance of the χ 2 result For sufficiently large m = m + p n J D χ 2 (m + p n) E(J(x(W D ))) = m + p n E(JJ T ) = 2(m + p n) Moreover m 2 mz α/2 < J(ˆx(W D )) < m + 2 mz α/2. (3) z α/2 is the relevant z-value for a χ 2 -distribution with m = m + p n degrees National Science Foundation: Division of Computational Mathematics 9 / 24

10 When mean of the parameters is not known, or x 0 = 0 is not the mean Corollary: non-central χ 2 distribution of the regularized functional Recall ˆx = argmin J D (x) = argmin{ Ax b 2 W b + (x x 0 ) 2 W D }, W D = D T W x D. Assume all assumptions as before, but x x 0 is the mean vector of the model parameters. Let c = c 2 2 = QU T W b 1/2 A(x x 0 ) 2 2 Then J D χ 2 (m + p n, c) The functional at optimum follows a non central χ 2 distribution National Science Foundation: Division of Computational Mathematics 10 / 24

11 A further result when A is not of full column rank The Rank Deficient Solution Suppose A is not full column rank. Then the filtered solution can be written in terms of the GSVD x FILT (λ) = p i=p+1 r γ 2 i υ i (γ 2 i + λ 2 ) s i x i + n i=p+1 s i x i = p i=1 f i υ i s i x i + n i=p+1 s i x i. Here f i = 0, i = 1 : p r, f i = γ 2 i /(γ2 i + λ 2 ), i = p r + 1 : p. This yields J(x FILT (λ)) χ 2 (m n + r, c) n r components are not regularized notice degrees of freedom are reduced. National Science Foundation: Division of Computational Mathematics 11 / 24

12 General Result The Cost Functional follows a χ 2 Statistical Distribution Suppose degrees of freedom m and centrality parameter c then E(J D ) = m + c E(J D J T D) = 2( m) + 4c Suggests: Try to find W D so that E(J) = m + c Mead/Renaut introduced efficient Newton algorithm, c = 0 general W D. First find λ only. Find W x = λ 2 I National Science Foundation: Division of Computational Mathematics 12 / 24

13 Relation Discrepancy and χ 2 Principles Suppose noise is white: C b = σ 2 b I. W b its inverse. Discrepancy: λ such that residual satisfies m = b Ax(λ) 2 W b. (4) χ 2 : λ such that regularized residual satisfies m = b Ax(λ) 2 W b + λ 2 x x 0 2. (5) Both can be implemented by a Newton root finding algorithm. But discrepancy principle typically oversmooths. National Science Foundation: Division of Computational Mathematics 13 / 24

14 Relationship to Discrepancy Principle: GSVD Formulation Use GSVD of [W 1/2 b A, D]. Let λ = 1/σ x. For γ i the generalized singular values, and s = U T W 1/2 b r m = m n + p s i = s i /(γi 2σ2 x + 1), i = 1,..., p, t i = s i γ i. Discrepancy principle solves p 1 m ( γi 2σ2 x + 1 )2 s 2 i + s 2 i = m, (6) χ 2 principle solves i=1 F(σ x ) = p 1 ( γi 2σ2 x + 1 )s2 i + i=1 Equivalently: solve F = 0, where i=n+1 m i=n+1 s 2 i m = 0 F(σ x ) = s T s m and F (σ x ) = 2σ x t 2 2. National Science Foundation: Division of Computational Mathematics 14 / 24

15 The Newton Algorithm Without the GSVD Newton to Solve F(σ) = J D (σ) m = 0 We use σ = 1/λ, and y(σ (k) ) is the current solution for which x(σ (k) ) = y(σ (k) ) + x 0 Then σ J(σ) = 2 σ 3 Dy(σ) 2 < 0 Hence we have a basic Newton Iteration σ (k+1) = σ (k) ( ( σ(k) Dy )2 (J D (σ (k) ) m)). Need to estimate y and J efficiently National Science Foundation: Division of Computational Mathematics 15 / 24

16 LSQR Algorithm (Paige and Saunders - Golub-Kahan bidiagonalization) Only requires matrix-vector multipliciations with matrices A and A T. Initial vectors g 0 0, h 1 b/β 1. where β 1 b 0. Orthonormal vectors g i, h i, i = 1, 2,... are columns of matrices H j [ h 1,..., h j ] R m j, G j [ g 1,..., g j ] R n j. Recurrences can be written in the matrix notation L j A T H j = G j Lj T, A G j = [ H j, h j+1 ] L j+. (7) α 1 β 2 α β j α j, [ L L j j+ β j+1 e T j The j steps of the bidiagonalization yield a subproblem L j+ y j e 1 β 1 and x j (σ) G j y j (σ). ], L j+ R (j+1) j. National Science Foundation: Division of Computational Mathematics 16 / 24

17 Regularizing the subproblem With regularization when D = I, y j (σ) solves regularized problem L j+ y j e 1 β /σ 2 y j 2 Note that x j (σ) 2 2 = G jy j (σ) 2 = y j (σ) 2 2. The regularized problem is of size j + 1 j. j m Standard Methods can be applied to find σ efficiently. Nagy uses a weighted GCV We propose the χ 2 principle. Note that we apply directly to subproblem. Degrees of freedom are j = j + 1 National Science Foundation: Division of Computational Mathematics 17 / 24

18 Alternative Implementing on the Global problem The Hybrid projects to a subproblem and then regularizes A modified hybrid does the Newton iteration during the bidiagonalization For each subproblem created through the iteration, σ is updated. One step of Newton is taken each subproblem The degrees of freedom are determined by the original problem. m - strictly that is not correct. National Science Foundation: Division of Computational Mathematics 18 / 24

19 Illustrating Deblurring Result (Global hybrid): Problem Size Example taken from RESTORE TOOLS Nagy et al : 15% Noise Computational Cost is Minimal: Projected Problem Size is 15, λ =.58 National Science Foundation: Division of Computational Mathematics 19 / 24

20 Problem Grain noise 15% added for increasing subproblem size Signal to noise ratio 10 log 10 (1/e) relative error e Regularization parameter σ in each case. National Science Foundation: Division of Computational Mathematics 20 / 24

21 Illustrating the progress of the Newton algorithm with LSQR National Science Foundation: Division of Computational Mathematics 21 / 24

22 Illustrating the progress of the Newton algorithm Hybrid LSQR National Science Foundation: Division of Computational Mathematics 22 / 24

23 Signal to noise ratio 10 log 10 (1/e) relative error e National Science Foundation: Division of Computational Mathematics 23 / 24 Problem Grain noise 15% added for increasing subproblem size

24 Conclusions Observations χ 2 principle can be used for large scale problems. Preconditioning can be applied to weighted problem. PROBLEM SIZE of Hybrid LSQR USED IS VERY SMALL Method is very efficient, Newton method is robust and fast. a priori information is needed. Can be obtained directly from the data. e.g. Use local statistical information of image. National Science Foundation: Division of Computational Mathematics 24 / 24

Statistically-Based Regularization Parameter Estimation for Large Scale Problems

Statistically-Based Regularization Parameter Estimation for Large Scale Problems Statistically-Based Regularization Parameter Estimation for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova March 1, 2010 National Science Foundation: Division of Computational

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut Collaborators: Jodi Mead and Iveta Hnetynkova DEPARTMENT OF MATHEMATICS

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut DEPARTMENT OF MATHEMATICS AND STATISTICS Prague 2008 MATHEMATICS AND STATISTICS

More information

Newton s method for obtaining the Regularization Parameter for Regularized Least Squares

Newton s method for obtaining the Regularization Parameter for Regularized Least Squares Newton s method for obtaining the Regularization Parameter for Regularized Least Squares Rosemary Renaut, Jodi Mead Arizona State and Boise State International Linear Algebra Society, Cancun Renaut and

More information

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Rosemary Renaut, Jodi Mead Arizona State and Boise State Copper Mountain Conference on Iterative Methods

More information

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Rosemary Renaut, Jodi Mead Arizona State and Boise State September 2007 Renaut and Mead (ASU/Boise) Scalar

More information

Towards Improved Sensitivity in Feature Extraction from Signals: one and two dimensional

Towards Improved Sensitivity in Feature Extraction from Signals: one and two dimensional Towards Improved Sensitivity in Feature Extraction from Signals: one and two dimensional Rosemary Renaut, Hongbin Guo, Jodi Mead and Wolfgang Stefan Supported by Arizona Alzheimer s Research Center and

More information

SIGNAL AND IMAGE RESTORATION: SOLVING

SIGNAL AND IMAGE RESTORATION: SOLVING 1 / 55 SIGNAL AND IMAGE RESTORATION: SOLVING ILL-POSED INVERSE PROBLEMS - ESTIMATING PARAMETERS Rosemary Renaut http://math.asu.edu/ rosie CORNELL MAY 10, 2013 2 / 55 Outline Background Parameter Estimation

More information

A Newton Root-Finding Algorithm For Estimating the Regularization Parameter For Solving Ill- Conditioned Least Squares Problems

A Newton Root-Finding Algorithm For Estimating the Regularization Parameter For Solving Ill- Conditioned Least Squares Problems Boise State University ScholarWorks Mathematics Faculty Publications and Presentations Department of Mathematics 1-1-2009 A Newton Root-Finding Algorithm For Estimating the Regularization Parameter For

More information

Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion

Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion Regularization parameter estimation for underdetermined problems by the χ principle with application to D focusing gravity inversion Saeed Vatankhah, Rosemary A Renaut and Vahid E Ardestani, Institute

More information

Regularization Parameter Estimation for Underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion

Regularization Parameter Estimation for Underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion Regularization Parameter Estimation for Underdetermined problems by the χ principle with application to D focusing gravity inversion Saeed Vatankhah, Rosemary A Renaut and Vahid E Ardestani, Institute

More information

THE χ 2 -CURVE METHOD OF PARAMETER ESTIMATION FOR GENERALIZED TIKHONOV REGULARIZATION

THE χ 2 -CURVE METHOD OF PARAMETER ESTIMATION FOR GENERALIZED TIKHONOV REGULARIZATION THE χ -CURVE METHOD OF PARAMETER ESTIMATION FOR GENERALIZED TIKHONOV REGULARIZATION JODI MEAD AND ROSEMARY A RENAUT Abstract. We discuss algorithms for estimating least squares regularization parameters

More information

Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Golub-Kahan iterative bidiagonalization and determining the noise level in the data Golub-Kahan iterative bidiagonalization and determining the noise level in the data Iveta Hnětynková,, Martin Plešinger,, Zdeněk Strakoš, * Charles University, Prague ** Academy of Sciences of the Czech

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b?

COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b? COMPUTATIONAL ISSUES RELATING TO INVERSION OF PRACTICAL DATA: WHERE IS THE UNCERTAINTY? CAN WE SOLVE Ax = b? Rosemary Renaut http://math.asu.edu/ rosie BRIDGING THE GAP? OCT 2, 2012 Discussion Yuen: Solve

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

unbiased predictive risk estimator for regularization

unbiased predictive risk estimator for regularization submitted to Geophys. J. Int. 3-D Projected L inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation Saeed Vatankhah, Rosemary A. Renaut 2

More information

Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact

Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact Zdeněk Strakoš Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/ strakos Hong Kong, February

More information

Inverse Ill Posed Problems in Image Processing

Inverse Ill Posed Problems in Image Processing Inverse Ill Posed Problems in Image Processing Image Deblurring I. Hnětynková 1,M.Plešinger 2,Z.Strakoš 3 hnetynko@karlin.mff.cuni.cz, martin.plesinger@tul.cz, strakos@cs.cas.cz 1,3 Faculty of Mathematics

More information

ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS

ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS BIT Numerical Mathematics 6-3835/3/431-1 $16. 23, Vol. 43, No. 1, pp. 1 18 c Kluwer Academic Publishers ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS T. K. JENSEN and P. C. HANSEN Informatics

More information

estimator for determining the regularization parameter in

estimator for determining the regularization parameter in submitted to Geophys. J. Int. Application of the χ 2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion Saeed Vatankhah, Vahid

More information

Application of the χ 2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion

Application of the χ 2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion Application of the χ principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion arxiv:48.7v [math.na] 4 Aug 4 Saeed Vatankhah, Vahid

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 28, pp. 49-67, 28. Copyright 28,. ISSN 68-963. A WEIGHTED-GCV METHOD FOR LANCZOS-HYBRID REGULARIZATION JULIANNE CHUNG, JAMES G. NAGY, AND DIANNE P.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed

More information

Old and new parameter choice rules for discrete ill-posed problems

Old and new parameter choice rules for discrete ill-posed problems Old and new parameter choice rules for discrete ill-posed problems Lothar Reichel Giuseppe Rodriguez Dedicated to Claude Brezinski and Sebastiano Seatzu on the Occasion of Their 70th Birthdays. Abstract

More information

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna Inverse Theory COST WaVaCS Winterschool Venice, February 2011 Stefan Buehler Luleå University of Technology Kiruna Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Tikhonov Regularization of Large Symmetric Problems

Tikhonov Regularization of Large Symmetric Problems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 11 [Version: 2000/03/22 v1.0] Tihonov Regularization of Large Symmetric Problems D. Calvetti 1, L. Reichel 2 and A. Shuibi

More information

Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization

Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization Fermín S. Viloche Bazán, Maria C. C. Cunha and Leonardo S. Borges Department of Mathematics, Federal University of Santa

More information

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Zdeněk Strakoš Charles University, Prague http://www.karlin.mff.cuni.cz/ strakos 16th ILAS Meeting, Pisa, June 2010. Thanks

More information

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Silvia Gazzola Dipartimento di Matematica - Università di Padova January 10, 2012 Seminario ex-studenti 2 Silvia Gazzola

More information

Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration

Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration D. Calvetti a, B. Lewis b and L. Reichel c a Department of Mathematics, Case Western Reserve University,

More information

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 31, pp. 204-220, 2008. Copyright 2008,. ISSN 1068-9613. ETNA NOISE PROPAGATION IN REGULARIZING ITERATIONS FOR IMAGE DEBLURRING PER CHRISTIAN HANSEN

More information

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Seung Keun Park and Hae Sung Lee ABSTRACT This paper presents a system identification (SI) scheme

More information

UPRE Method for Total Variation Parameter Selection

UPRE Method for Total Variation Parameter Selection UPRE Method for Total Variation Parameter Selection Youzuo Lin School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287 USA. Brendt Wohlberg 1, T-5, Los Alamos National

More information

Generalized MINRES or Generalized LSQR?

Generalized MINRES or Generalized LSQR? Generalized MINRES or Generalized LSQR? Michael Saunders Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering (ICME) Stanford University New Frontiers in Numerical

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information

Structured Linear Algebra Problems in Adaptive Optics Imaging

Structured Linear Algebra Problems in Adaptive Optics Imaging Structured Linear Algebra Problems in Adaptive Optics Imaging Johnathan M. Bardsley, Sarah Knepper, and James Nagy Abstract A main problem in adaptive optics is to reconstruct the phase spectrum given

More information

2017 Society for Industrial and Applied Mathematics

2017 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 39, No. 5, pp. S24 S46 2017 Society for Industrial and Applied Mathematics GENERALIZED HYBRID ITERATIVE METHODS FOR LARGE-SCALE BAYESIAN INVERSE PROBLEMS JULIANNE CHUNG AND ARVIND

More information

Inverse scattering problem from an impedance obstacle

Inverse scattering problem from an impedance obstacle Inverse Inverse scattering problem from an impedance obstacle Department of Mathematics, NCKU 5 th Workshop on Boundary Element Methods, Integral Equations and Related Topics in Taiwan NSYSU, October 4,

More information

An interior-point method for large constrained discrete ill-posed problems

An interior-point method for large constrained discrete ill-posed problems An interior-point method for large constrained discrete ill-posed problems S. Morigi a, L. Reichel b,,1, F. Sgallari c,2 a Dipartimento di Matematica, Università degli Studi di Bologna, Piazza Porta S.

More information

Arnoldi-Tikhonov regularization methods

Arnoldi-Tikhonov regularization methods Arnoldi-Tikhonov regularization methods Bryan Lewis a, Lothar Reichel b,,1 a Rocketcalc LLC, 100 W. Crain Ave., Kent, OH 44240, USA. b Department of Mathematical Sciences, Kent State University, Kent,

More information

On nonstationary preconditioned iterative regularization methods for image deblurring

On nonstationary preconditioned iterative regularization methods for image deblurring On nonstationary preconditioned iterative regularization methods for image deblurring Alessandro Buccini joint work with Prof. Marco Donatelli University of Insubria Department of Science and High Technology

More information

Solving discrete ill posed problems with Tikhonov regularization and generalized cross validation

Solving discrete ill posed problems with Tikhonov regularization and generalized cross validation Solving discrete ill posed problems with Tikhonov regularization and generalized cross validation Gérard MEURANT November 2010 1 Introduction to ill posed problems 2 Examples of ill-posed problems 3 Tikhonov

More information

Discontinuous parameter estimates with least squares estimators

Discontinuous parameter estimates with least squares estimators Discontinuous parameter estimates with least squares estimators J.L. Mead Boise State University, Department of Mathematicss, Boise, ID 8375-1555. Tel: 846-43, Fax: 8-46-1354 Email jmead@boisestate.edu.

More information

Discrete ill posed problems

Discrete ill posed problems Discrete ill posed problems Gérard MEURANT October, 2008 1 Introduction to ill posed problems 2 Tikhonov regularization 3 The L curve criterion 4 Generalized cross validation 5 Comparisons of methods Introduction

More information

Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank

Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank Numerical Methods for Separable Nonlinear Inverse Problems with Constraint and Low Rank Taewon Cho Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

Numerical Linear Algebra and. Image Restoration

Numerical Linear Algebra and. Image Restoration Numerical Linear Algebra and Image Restoration Maui High Performance Computing Center Wednesday, October 8, 2003 James G. Nagy Emory University Atlanta, GA Thanks to: AFOSR, Dave Tyler, Stuart Jefferies,

More information

Greedy Tikhonov regularization for large linear ill-posed problems

Greedy Tikhonov regularization for large linear ill-posed problems International Journal of Computer Mathematics Vol. 00, No. 00, Month 200x, 1 20 Greedy Tikhonov regularization for large linear ill-posed problems L. Reichel, H. Sadok, and A. Shyshkov (Received 00 Month

More information

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

Parameter estimation: A new approach to weighting a priori information

Parameter estimation: A new approach to weighting a priori information c de Gruyter 27 J. Inv. Ill-Posed Problems 5 (27), 2 DOI.55 / JIP.27.xxx Parameter estimation: A new approach to weighting a priori information J.L. Mead Communicated by Abstract. We propose a new approach

More information

Unfolding Methods in Particle Physics

Unfolding Methods in Particle Physics Unfolding Methods in Particle Physics Volker Blobel University of Hamburg, Hamburg, Germany 1 Inverse problems Abstract Measured distributions in particle physics are distorted by the finite resolution

More information

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS JODI MEAD AND ROSEMARY A RENAUT. Introduction. The linear least squares problems discussed here are often used to incorporate

More information

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring Marco Donatelli Dept. of Science and High Tecnology U. Insubria (Italy) Joint work with M. Hanke

More information

Uncertainty Quantification for Inverse Problems. November 7, 2011

Uncertainty Quantification for Inverse Problems. November 7, 2011 Uncertainty Quantification for Inverse Problems November 7, 2011 Outline UQ and inverse problems Review: least-squares Review: Gaussian Bayesian linear model Parametric reductions for IP Bias, variance

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Laboratorio di Problemi Inversi Esercitazione 2: filtraggio spettrale

Laboratorio di Problemi Inversi Esercitazione 2: filtraggio spettrale Laboratorio di Problemi Inversi Esercitazione 2: filtraggio spettrale Luca Calatroni Dipartimento di Matematica, Universitá degli studi di Genova Aprile 2016. Luca Calatroni (DIMA, Unige) Esercitazione

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

Dedicated to Adhemar Bultheel on the occasion of his 60th birthday.

Dedicated to Adhemar Bultheel on the occasion of his 60th birthday. SUBSPACE-RESTRICTED SINGULAR VALUE DECOMPOSITIONS FOR LINEAR DISCRETE ILL-POSED PROBLEMS MICHIEL E. HOCHSTENBACH AND LOTHAR REICHEL Dedicated to Adhemar Bultheel on the occasion of his 60th birthday. Abstract.

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Discrete Ill Posed and Rank Deficient Problems. Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1

Discrete Ill Posed and Rank Deficient Problems. Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1 Discrete Ill Posed and Rank Deficient Problems Alistair Boyle, Feb 2009, SYS5906: Directed Studies Inverse Problems 1 Definitions Overview Inversion, SVD, Picard Condition, Rank Deficient, Ill-Posed Classical

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

Modifying A Linear Support Vector Machine for Microarray Data Classification

Modifying A Linear Support Vector Machine for Microarray Data Classification Modifying A Linear Support Vector Machine for Microarray Data Classification Prof. Rosemary A. Renaut Dr. Hongbin Guo & Wang Juh Chen Department of Mathematics and Statistics, Arizona State University

More information

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2 HE SINGULAR VALUE DECOMPOSIION he SVD existence - properties. Pseudo-inverses and the SVD Use of SVD for least-squares problems Applications of the SVD he Singular Value Decomposition (SVD) heorem For

More information

Lecture 1: Numerical Issues from Inverse Problems (Parameter Estimation, Regularization Theory, and Parallel Algorithms)

Lecture 1: Numerical Issues from Inverse Problems (Parameter Estimation, Regularization Theory, and Parallel Algorithms) Lecture 1: Numerical Issues from Inverse Problems (Parameter Estimation, Regularization Theory, and Parallel Algorithms) Youzuo Lin 1 Joint work with: Rosemary A. Renaut 2 Brendt Wohlberg 1 Hongbin Guo

More information

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS JODI MEAD AND ROSEMARY A RENAUT Abstract. Linear least squares problems with box constraints are commonly solved to find model

More information

S.F. Xu (Department of Mathematics, Peking University, Beijing)

S.F. Xu (Department of Mathematics, Peking University, Beijing) Journal of Computational Mathematics, Vol.14, No.1, 1996, 23 31. A SMALLEST SINGULAR VALUE METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS 1) S.F. Xu (Department of Mathematics, Peking University, Beijing)

More information

Automatic stopping rule for iterative methods in discrete ill-posed problems

Automatic stopping rule for iterative methods in discrete ill-posed problems Comp. Appl. Math. DOI 10.1007/s40314-014-0174-3 Automatic stopping rule for iterative methods in discrete ill-posed problems Leonardo S. Borges Fermín S. Viloche Bazán Maria C. C. Cunha Received: 20 December

More information

VECTOR EXTRAPOLATION APPLIED TO TRUNCATED SINGULAR VALUE DECOMPOSITION AND TRUNCATED ITERATION

VECTOR EXTRAPOLATION APPLIED TO TRUNCATED SINGULAR VALUE DECOMPOSITION AND TRUNCATED ITERATION VECTOR EXTRAPOLATION APPLIED TO TRUNCATED SINGULAR VALUE DECOMPOSITION AND TRUNCATED ITERATION A. BOUHAMIDI, K. JBILOU, L. REICHEL, H. SADOK, AND Z. WANG Abstract. This paper is concerned with the computation

More information

Mathematical Beer Goggles or The Mathematics of Image Processing

Mathematical Beer Goggles or The Mathematics of Image Processing How Mathematical Beer Goggles or The Mathematics of Image Processing Department of Mathematical Sciences University of Bath Postgraduate Seminar Series University of Bath 12th February 2008 1 How 2 How

More information

Downloaded 06/11/15 to Redistribution subject to SIAM license or copyright; see

Downloaded 06/11/15 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. B332 B359 c 2015 Society for Industrial and Applied Mathematics A FRAMEWORK FOR REGULARIZATION VIA OPERATOR APPROXIMATION JULIANNE M. CHUNG, MISHA E. KILMER, AND

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

Lecture 9 Least Square Problems

Lecture 9 Least Square Problems March 26, 2018 Lecture 9 Least Square Problems Consider the least square problem Ax b (β 1,,β n ) T, where A is an n m matrix The situation where b R(A) is of particular interest: often there is a vectors

More information

LSMR: An iterative algorithm for least-squares problems

LSMR: An iterative algorithm for least-squares problems LSMR: An iterative algorithm for least-squares problems David Fong Michael Saunders Institute for Computational and Mathematical Engineering (icme) Stanford University Copper Mountain Conference on Iterative

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Linear inversion methods and generalized cross-validation

Linear inversion methods and generalized cross-validation Online supplement to Using generalized cross-validation to select parameters in inversions for regional caron fluxes Linear inversion methods and generalized cross-validation NIR Y. KRAKAUER AND TAPIO

More information

UNIFYING LEAST SQUARES, TOTAL LEAST SQUARES AND DATA LEAST SQUARES

UNIFYING LEAST SQUARES, TOTAL LEAST SQUARES AND DATA LEAST SQUARES UNIFYING LEAST SQUARES, TOTAL LEAST SQUARES AND DATA LEAST SQUARES Christopher C. Paige School of Computer Science, McGill University, Montreal, Quebec, Canada, H3A 2A7 paige@cs.mcgill.ca Zdeněk Strakoš

More information

Least squares: introduction to the network adjustment

Least squares: introduction to the network adjustment Least squares: introduction to the network adjustment Experimental evidence and consequences Observations of the same quantity that have been performed at the highest possible accuracy provide different

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Computing least squares condition numbers on hybrid multicore/gpu systems

Computing least squares condition numbers on hybrid multicore/gpu systems Computing least squares condition numbers on hybrid multicore/gpu systems M. Baboulin and J. Dongarra and R. Lacroix Abstract This paper presents an efficient computation for least squares conditioning

More information

Regularization with Randomized SVD for Large-Scale Discrete Inverse Problems

Regularization with Randomized SVD for Large-Scale Discrete Inverse Problems Regularization with Randomized SVD for Large-Scale Discrete Inverse Problems Hua Xiang Jun Zou July 20, 2013 Abstract In this paper we propose an algorithm for solving the large-scale discrete ill-conditioned

More information

1. Introduction. We are concerned with the approximate solution of linear least-squares problems

1. Introduction. We are concerned with the approximate solution of linear least-squares problems FRACTIONAL TIKHONOV REGULARIZATION WITH A NONLINEAR PENALTY TERM SERENA MORIGI, LOTHAR REICHEL, AND FIORELLA SGALLARI Abstract. Tikhonov regularization is one of the most popular methods for solving linear

More information

The Inversion Problem: solving parameters inversion and assimilation problems

The Inversion Problem: solving parameters inversion and assimilation problems The Inversion Problem: solving parameters inversion and assimilation problems UE Numerical Methods Workshop Romain Brossier romain.brossier@univ-grenoble-alpes.fr ISTerre, Univ. Grenoble Alpes Master 08/09/2016

More information

Experiments with iterative computation of search directions within interior methods for constrained optimization

Experiments with iterative computation of search directions within interior methods for constrained optimization Experiments with iterative computation of search directions within interior methods for constrained optimization Santiago Akle and Michael Saunders Institute for Computational Mathematics and Engineering

More information

Principles of the Global Positioning System Lecture 11

Principles of the Global Positioning System Lecture 11 12.540 Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Statistical approach to estimation Summary Look at estimation from statistical point

More information

An l 2 -l q regularization method for large discrete ill-posed problems

An l 2 -l q regularization method for large discrete ill-posed problems Noname manuscript No. (will be inserted by the editor) An l -l q regularization method for large discrete ill-posed problems Alessandro Buccini Lothar Reichel the date of receipt and acceptance should

More information

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems Charles University Faculty of Mathematics and Physics DOCTORAL THESIS Iveta Hnětynková Krylov subspace approximations in linear algebraic problems Department of Numerical Mathematics Supervisor: Doc. RNDr.

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

AN NONNEGATIVELY CONSTRAINED ITERATIVE METHOD FOR POSITRON EMISSION TOMOGRAPHY. Johnathan M. Bardsley

AN NONNEGATIVELY CONSTRAINED ITERATIVE METHOD FOR POSITRON EMISSION TOMOGRAPHY. Johnathan M. Bardsley Volume X, No. 0X, 0X, X XX Web site: http://www.aimsciences.org AN NONNEGATIVELY CONSTRAINED ITERATIVE METHOD FOR POSITRON EMISSION TOMOGRAPHY Johnathan M. Bardsley Department of Mathematical Sciences

More information

APPLICATIONS OF A NONNEGATIVELY CONSTRAINED ITERATIVE METHOD WITH STATISTICALLY BASED STOPPING RULES TO CT, PET, AND SPECT IMAGING

APPLICATIONS OF A NONNEGATIVELY CONSTRAINED ITERATIVE METHOD WITH STATISTICALLY BASED STOPPING RULES TO CT, PET, AND SPECT IMAGING APPLICATIONS OF A NONNEGATIVELY CONSTRAINED ITERATIVE METHOD WITH STATISTICALLY BASED STOPPING RULES TO CT, PET, AND SPECT IMAGING JOHNATHAN M. BARDSLEY Abstract. In this paper, we extend a nonnegatively

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Vector and Matrix Norms. Vector and Matrix Norms

Vector and Matrix Norms. Vector and Matrix Norms Vector and Matrix Norms Vector Space Algebra Matrix Algebra: We let x x and A A, where, if x is an element of an abstract vector space n, and A = A: n m, then x is a complex column vector of length n whose

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

c 1999 Society for Industrial and Applied Mathematics

c 1999 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 21, No. 1, pp. 185 194 c 1999 Society for Industrial and Applied Mathematics TIKHONOV REGULARIZATION AND TOTAL LEAST SQUARES GENE H. GOLUB, PER CHRISTIAN HANSEN, AND DIANNE

More information