Solution of the NLO BFKL Equation from Perturbative Eigenfunctions

Size: px
Start display at page:

Download "Solution of the NLO BFKL Equation from Perturbative Eigenfunctions"

Transcription

1 Solution of the NLO BFKL Equation from Perturbative Eigenfunctions Giovanni Antonio Chirilli The Ohio State University JLAB - Newport News - VA 0 December, 013 G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

2 Outline Leading-Log-Approximation at high-energy: general case. BFKL in N =4 SYM theory. Solution of the NLO BFKL equation in QCD. General Form of the Solution of Higher-Order BFKL equation. DGLAP anomalous dimension from solution of BFKL. NLO photon impact factor high-energy OPE γ -γ cross section. Conclusions. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, 013 / 8

3 Linear Evolution equations in QCD DGLAP evolution equation Resum α s ln Q Λ QCD Eigenfunctions at any order: Powers of x B G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

4 Linear Evolution equations in QCD DGLAP evolution equation Resum α s ln Q Λ QCD Eigenfunctions at any order: Powers of x B BFKL evolution equation LO: resum (α s ln s) n. NLO: resum α s (α s ln s) n Eigenfunctions: LO: (k ) γ 1 NLO and higher order: Perturbative eigenfunctions (G.A.C. and Kovchegov). G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

5 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

6 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

7 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. Resum α s (α s Y) n NLO BFKL eq. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

8 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. Resum α s (α s Y) n NLO BFKL eq. The kernel is real and symmetric: K(k, k ) = K(k, k) K(k, k ) is Hermitian and the eigenvalues are real. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

9 LO BFKL equation Y G(k, k, Y) = d q K LO (k, q) G(q, k, Y) d q K LO (k, q) (q ) 1+γ = ᾱ µ χ 0 (γ)(k ) 1+γ ᾱ µ α µn c π (k ) 1+γ are eigenfunctions. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

10 LO BFKL equation Y G(k, k, Y) = d q K LO (k, q) G(q, k, Y) d q K LO (k, q) (q ) 1+γ = ᾱ µ χ 0 (γ)(k ) 1+γ ᾱ µ α µn c π (k ) 1+γ are eigenfunctions. For γ = 1 + iν and ν real parameter (k ) 1+γ form a complete set. LO eigenvalues χ 0 (ν) = ψ(1) ψ( 1 + iν) ψ( 1 iν) are real and sym. ν ν LO BFKL is Conformal invariant. G(k, k, Y) = dν π k k ( k k ) iν eᾱµχ 0(ν) Y G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

11 BFKL equation in the N =4 SYM case In N = 4 SYM theory the coupling constant does not run. (k ) 1 +iν are eigenfunctions at any order. K(q, k) = ᾱ µ K LO (q, k) + ᾱ µ KNLO (q, k) +... G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

12 BFKL equation in the N =4 SYM case In N = 4 SYM theory the coupling constant does not run. (k ) 1 +iν are eigenfunctions at any order. K(q, k) = ᾱ µ K LO (q, k) + ᾱ µ KNLO (q, k) +... d q K(q, k)(q ) 1 +iν = [α s χ 0 (ν) + α s χ 1(ν)... ](k ) 1 +iν G(k, k, Y) = dν π k k e[αsχ 0(ν)+α s χ 1(ν)...] ( k k ) iν The eigenvalues ᾱ µ χ 0 (ν) + ᾱ µ χ 1 (ν) +... are real and symmetric for ν ν. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

13 NLO Amplitude in N =4 SYM I. Balitsky and G.A.C. (009) Factorization in rapidity and composite conformal operator x y Y A Y B <Y< Y A Y B x y G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

14 NLO Amplitude in N =4 SYM I. Balitsky and G.A.C. (009) Factorization in rapidity and composite conformal operator x y x y x y Y A Y B <Y< Y A Y B x y x y x y G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

15 NLO Amplitude in N =4 SYM I. Balitsky and G.A.C. (009) Factorization in rapidity and composite conformal operator x y x y x y Y A Y B <Y< Y A Y B x y x y x y (x y) 4 (x y ) 4 T{Ô(x)Ô (y)ô(x )Ô (y )} = d z 1 d z d z 1 d z (x, y; z IFa0 1, z )[DD] a0,b0 (z 1, z ; z 1, z ) (x, y ; z IFb0 1, z ) a 0 = x+ y + (x y), b 0 = x y (x y ) impact factors do not scale with energy all energy dependence is contained in [DD] a0,b0 G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

16 BFKL equation at NLO in QCD K LO+NLO (k, q) ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) d q K LO+NLO (k, q) q γ = [ᾱ µ χ 0 (γ) ᾱ µ β χ 0 (γ) ln k µ + ᾱ µ ] δ(γ) k γ 4 ᾱ µ = α µn c π, β = 11 N c N f 1 N c G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

17 BFKL equation at NLO in QCD K LO+NLO (k, q) ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) d q K LO+NLO (k, q) q γ = [ᾱ µ χ 0 (γ) ᾱ µ β χ 0 (γ) ln k µ + ᾱ µ ] δ(γ) k γ 4 ᾱ µ = α µn c π, β = 11 N c N f 1 N c ᾱ µ β χ 0 (γ) ln k µ 1-loop running coupling. δ(γ) = β χ 0 (γ) + 4χ 1(γ) NLO Conformal terms Fadin-Lipatov (1998) χ 1 (γ) Real and symmetric in γ 1 γ γ = 1 + iν. d dγ χ 0(γ) χ 0 (γ) imaginary and not symmetric. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

18 NLO BFKL eigenfunctions G.A.C. and Yu. Kovchegov Perturbative eigenfunctions H γ (k) = k γ + ᾱ µ F γ (k) we have to determine F γ (k) so that d q K LO+NLO (k, q) H γ (q) = (γ) H γ (k) (γ) eigenvalues to be determined. F γ (k) has to satisfy: χ 0 (γ) F γ (k) + d q K LO (k, q)f γ (q) β χ 0 (γ) H γ (k) ln k µ = c(γ) H γ(k) For some function c(γ). G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

19 NLO eigenfunctions ansatz At this order we can write the condition for F γ (k) as: χ 0 (γ)f γ (k) + d q K LO (k, q)f γ (q) β χ 0 (γ) k γ ln k = c(γ) kγ µ Ansatz [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ + c 3(γ) ln 3 k µ +... G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

20 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

21 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ For c (γ) = β χ 0 (γ) χ 0 (γ) and for any c 0 (γ) and c 1 (γ) the eigenfunction is [ ( )] H γ (k) = k γ β χ 0 (γ) k 1 + ᾱ µ ln (γ) µ + c 1(γ) ln k µ + c 0(γ) and eigenvalues (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 0 ( 1 β χ 0 (γ) + χ 1(γ) + c 1 (γ)χ 0 (γ) + β ) χ 0 (γ) χ 0 (γ) G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

22 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ For c (γ) = β χ 0 (γ) χ 0 (γ) and for any c 0 (γ) and c 1 (γ) the eigenfunction is [ ( )] H γ (k) = k γ β χ 0 (γ) k 1 + ᾱ µ ln (γ) µ + c 1(γ) ln k µ + c 0(γ) and eigenvalues (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 0 ( 1 β χ 0(γ) + χ 1 (γ) + c 1 (γ)χ 0(γ) + β ) χ 0 (γ) χ 0 (γ) Next step is to impose Completeness relation. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

23 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

24 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. Completeness relation at LO is satisfied with σ = 1 γ = 1 + iν with ν real parameter. we have to impose α µ -order to be 0 and Re[c 1 (ν)] = β χ 0 (ν) ν χ 0 (ν) ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

25 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. Completeness relation at LO is satisfied with σ = 1 γ = 1 + iν with ν real parameter. we have to impose α µ -order to be 0 and Re[c 1 (ν)] = β χ 0 (ν) ν χ 0 (ν) ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 If completeness relation is satisfied then orthogonality relation is also satisfied. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

26 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

27 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] and the eigenvalues are real (Im[c 1 (ν)]χ 0 (ν) is real function of ν) (ν) = ᾱ µ χ 0 (ν) + ᾱ µ [ ] χ 1 (ν) + Im[c 1 (ν)]χ 0(ν) G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

28 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] and the eigenvalues are real (Im[c 1 (ν)]χ 0 (ν) is real function of ν) (ν) = ᾱ µ χ 0 (ν) + ᾱ µ [ ] χ 1 (ν) + Im[c 1 (ν)]χ 0(ν) The imaginary term β ᾱ µχ 0 (γ) has canceled. We have freedom to chose Re[c 0 (ν)] and Im[c 1 (ν)] This freedom will not affect the solution. It is just an artifact of the phase and ν-reparametrization freedom of the H 1 +iν function. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

29 Phase freedom and ν-reparametrization Phase freedom of the H-functions: H 1 +iν(k) e iᾱµ(im[c 0(ν)] Im[c 1 (ν)] ln µ ) H 1 +iν(k) ν-reparametrization: ν = ν + ᾱ µ Im[c 1 (ν)] The Phase freedom and ν-reparametrization allow us to put c 0 (ν) = 0 and Im[c 1 (ν)] = 0. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

30 Solution of NLO BFKL equation NLO eigenfunctions: perturbation around the conformal LO eigenfunctions ( i ν H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ 0 (ν) k ln (ν) µ + 1 χ 0 ( ν ) )] χ 0 (ν) χ 0 (ν) ln k µ NLO eigenvalues (ν) = ᾱ µ χ 0 (ν) + ᾱ µ χ 1(ν) G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

31 Solution of NLO BFKL equation NLO eigenfunctions: perturbation around the conformal LO eigenfunctions ( i ν H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ 0 (ν) k ln (ν) µ + 1 χ 0 ( ν ) )] χ 0 (ν) χ 0 (ν) ln k µ NLO eigenvalues (ν) = ᾱ µ χ 0 (ν) + ᾱ µ χ 1(ν) Solution of NLO BFKL equation G.A.C. and Yu. Kovchegov G(k, k, Y) = dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] Y H 1 +i ν(k) H 1 +i ν(k ) The perturbative expansion is in both the exponent and in the eigenfunctions (contrary to DGLAP case and N =4 BFKL). G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

32 µ-independence of the NLO solution The H γ (k) eigenfunctions diagonalize the LO+NLO BFKL kernel ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) = 1 +i 1 i dγ π i (γ) H γ(k)h γ (q) LO+NLO BFKL kernel is µ-independent up to O(α 3 µ ) So is its diagonalization through H γ (k) eigenfunctions. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

33 µ-independence of the NLO solution G(k, k, Y) = = dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1 (ν)] Y H γ (k)h γ (q) dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1(ν)] Y ( k G(k, k, Y) is µ-independent up to order O(α 3 µ). k ) i ν ) (1 ᾱ µ β χ 0 (ν) Y ln kk µ G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

34 µ-independence of the NLO solution G(k, k, Y) = = dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1 (ν)] Y H γ (k)h γ (q) dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1(ν)] Y ( k G(k, k, Y) is µ-independent up to order O(α 3 µ). At NLO we may write the solution as k ) i ν ) (1 ᾱ µ β χ 0 (ν) Y ln kk µ G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k ) χ 1 (ν)] Y ( k k ) i ν At this order the scale ᾱ λ s (k ) ᾱ λ s (k )ᾱs 1 λ (k k ) (for real λ) works as well. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

35 General Form of the Solution of All-Order BFKL equation Ansatz G(k, k, Y) = dν π e[ᾱs(k k ) χ 0(ν)+ᾱ s (k k ) χ 1(ν)+ᾱ 3 s (k k ) χ (ν)+...] Y χ (ν) and higher-order coefficients indicated by the ellipsis in the exponent are the scale-invariant (conformal) (ν ν)-even (real-valued) parts of the prefactor function generated by the action of the next-to-next-to-leading-order (NNLO) (and higher-order) kernels on the LO eigenfunctions. ( k k ) i ν G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

36 General Form of the Solution of All-Order BFKL equation Ansatz G(k, k, Y) = dν π e[ᾱs(k k ) χ 0(ν)+ᾱ s (k k ) χ 1(ν)+ᾱ 3 s (k k ) χ (ν)+...] Y To check the ansatz we have to plug it in the evolution eq. and we need the two-loop beta-function β 3 : ( k k ) i ν and µ dᾱ µ dµ = β ᾱ µ + β 3ᾱ 3 µ { d q K LO+NLO+NNLO (k, q) q 1+iν = ᾱ µ χ 0 (ν) [1 ᾱ µ β ln k +ᾱ µ [ i β χ 0 (ν) + χ 1(ν) ] [1 ᾱ µ β ln k µ k ln µ + ᾱ µ β 3 ln k µ } µ + ᾱ µ β ] + ᾱ 3 µ [χ (ν) + iδ (ν)] ] k 1+iν G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

37 General Form of the Solution of All-Order BFKL equation The ansatz does not work, but it allows us to recover the structure of the NNLO solution G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k )χ 1 (ν)+ᾱ 3 s (k k ) χ (ν)]y {1 + (ᾱ µ β ) [ 1 4 (ᾱ µy) 3 χ 0 (ν) χ 0(ν) (ᾱ µy) χ 0 (ν) provided that the imaginary part iδ (γ) is ( k k ( χ 0 (ν) ) i ν χ 0 (ν) χ 0(ν) ) + ᾱ µ Y χ 0 (ν) 4 ] } iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β This solution satisfies also the initial condition: the solution is unique so it is the right one. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

38 General Form of the Solution of All-Order BFKL equation The ansatz does not work, but it allows us to recover the structure of the NNLO solution G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k )χ 1 (ν)+ᾱ 3 s (k k ) χ (ν)]y {1 + (ᾱ µ β ) [ 1 4 (ᾱ µy) 3 χ 0 (ν) χ 0(ν) (ᾱ µy) χ 0 (ν) provided that the imaginary part iδ (γ) is ( k k ( χ 0 (ν) ) i ν χ 0 (ν) χ 0(ν) ) + ᾱ µ Y χ 0 (ν) 4 ] } iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β This solution satisfies also the initial condition: the solution is unique so it is the right one. The imaginary part iδ (ν) has to be confirmed from the explicit calculation of the NNLO eigenfunction. So, let us calculate explicitly the NNLO eigenfunction. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

39 General Form of the Solution of All-Order BFKL equation The eigenfunction of the NNLO BFKL equation is ( i ν χ 0 (ν) k H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ ln 0 (ν) µ + 1 ( ) ] k + ᾱ µ f µ,ν +... ( ν ) ) χ 0 (ν) χ 0 (ν) ln k µ The function f (k/µ,ν) denotes the NNLO corrections to the eigenfunctions. Ansatz for f (k/µ,ν): f (k/µ,ν) = c () 0 k (ν) + c() 1 (ν) ln µ + c() k (ν) ln µ + c() 3 (ν) ln3 k µ +... G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

40 NNLO BFKL Solution: the NNLO eigenfunction This time we truncated the series up to c () 4 and proceeding similarly to the NLO case and we get ( Re[c () χ 1 ] = β 1 (ν)) χ 0 (ν) χ 1(ν)χ 0 (ν) χ 0 (ν) χ 1 (ν)χ 0 (ν) χ 0 (ν) + χ ) 0(ν)χ 1 (ν)χ 0 (ν) χ 3 0 ( (ν) 1 β 3 χ 0(ν)χ 0 (ν) ) χ 0 (ν) c () = β ( 5 χ 0 (ν)χ 0 (ν) 8 χ 4 0 (ν) χ0(ν)χ 0 (ν) 4χ 0 (ν) χ 0 (ν)χ 0 (ν) 4χ 3 0 (ν) 1 ) 8 ) χ 0 (ν) iβ 3 χ 0 (ν) ( χ1 (ν) +iβ χ 0 (ν) χ 0(ν)χ 1 (ν) χ 0 (ν) ( c () 3 = iβ 5 χ 0 (ν)χ 0 (ν) 1 χ 3 0 (ν) + χ ) 0(ν) 4χ 0 (ν) 4 = β χ 0 (ν) 8χ (ν) The Im[c () (ν)] is fixed to be 0 using again the ν-reparametrization. c () 1 G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

41 Structure of the NNLO BFKL Solution From explicit calculation of f (γ) we not only confirm the imaginary part iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β but also confirm the structure of the NNLO BFKL solution obtained above in an indirect way ( ) G(k, k dν, Y) = π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s(k k ) χ 1 (ν)+ᾱ 3 s(k k ) χ (ν)] Y k i ν k [ {1 + (ᾱ µ β ) 1 4 (ᾱ µ Y) 3 χ 0 (ν) χ 0 (ν) + 1 ( χ 4 (ᾱ µ Y) χ 0 (ν) 0 (ν) ) χ 0 (ν) χ 0 (ν) + ᾱ µ Y χ 0 (ν) ] } 4 It looks like QCD is not just conformal part and running coupling contributions. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, 013 / 8

42 BFKL at NNLO and higher orders VS. At NNLO there are Pomeron loop contributions which are inevitable in the symmetric case of γ -γ case a simple generalization of BFKL at NNLO (and higher) does not exist. In the asymmetric case of DIS, there are no pomeron loops. Linearization (with large N c limit) of the Balitsky-Kovchegov equation at any order provides a systematic procedure to consistently define a BFKL type of evolution equation at any order. From the Leading Log Approximation point of view is not easy to define a BFKL type of evolution equation at any order for the asymmetric case of DIS. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

43 BFKL equation in DIS case K BFKL is k k symmetric Y sym = ln s k k G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

44 BFKL equation in DIS case VS. K BFKL is k k symmetric Y sym = ln s k k NLO K DIS BFKL Y DIS = ln s k ln 1 x B is not Symmetric G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

45 BFKL equation in DIS case VS. K BFKL is k k symmetric Y sym = ln s k k KNLO DIS = Ksym NLO 1 d D q K LO (q 1, q ) ln q q K LO(q, q ) NLO K DIS BFKL Y DIS = ln s k ln 1 x B is not Symmetric Fadin Lipatov(1998) KBFKL DIS is not symmetric eigenvalues not γ 1 γ symmetric. Eigenvalues get an extra term: DIS (γ) = sym (γ) 1 ᾱ µ χ 0 (γ)χ (γ) Reproduced lower order and predicted (and later confirmed) the 3-loop DGLAP anomalous dimension (Fadin-Lipatov (1998)) G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

46 DGLAP anomalous dimension from NLO BFKL solution G(k, k, Y) = dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] (Y DIS +ln k k ) H 1 +i ν(k) H 1 +i ν(k ) dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] Y DIS H 1 +i ν(k) H 1 +i ν(k ) (1 + ᾱ µ χ 0 (ν) ln k ) k perform partial integration and exponentiate the Y DIS -dependent terms [ )] G(k, k, Y DIS dν [ ] ) = π e ᾱ µ χ 0 (ν)+ᾱ µ (χ 1 (ν)+ i χ 0 (ν)χ 0 (ν) Y DIS H 1 +i ν(k) H 1 +i ν(k ) ( 1 + i ) ᾱµ χ 0(ν) DIS (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 1 (γ) 1 ᾱ µ χ 0 (γ)χ 0 (γ) Agrees with DGLAP 3-loop anomalous dimension. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

47 γ -γ scattering cross-section at NLO: work in progress x y Y A Y B <Y< Y A Y B x y Using high-energy Operator Product Expansion in composite Wilson line operator we get NLO Impact Factor that does non scale with energy. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

48 γ -γ scattering cross-section at NLO: work in progress x y x y x y Y A Y B <Y< Y A Y B x y x y x y Using high-energy Operator Product Expansion in composite Wilson line operator we get NLO Impact Factor that does non scale with energy. G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

49 Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. d 4 x e iq x p T{ĵ µ (x)ĵ ν (0)} p = s d k I µν (q, k )V a=xb (k ) k where the evolution of the dipole gluon distribution at NLO is a d da V a(k) = α sn c π ( 1 + α sb 4π [ Va (k ) (k k ) ln (k k ) + α sn c 4π d k {[ V a (k ) (k k ) (k, k )V a (k) ] k (k k ) [ ln µ k + N c(67 b 9 π 3 10n f ) ]) bα s 9N c 4π k V a (k) k k (k k ) ln (k k ) ] k [ ln (k /k ) (k k ) + F(k, k ) + Φ(k, k ) ] } V a (k ) + 3 α s N c π ζ(3)v a(k) V(k ) d z e i(k,z) V(z ) V(z ) = [1 1 N c Tr{U(z )U (0)}] G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

50 Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. I µν (q, k ) = N c dν sinh πν ( k ) 1 iν{[( 9 3 πν (1 + ν ) cosh πν Q 4 + ν)( 1 + α s π + α sn c ( ν)( 1 + α s π + α ) ] sn c π F (ν) P µν ν ( k 1 + α s π + α ) sn c π F 3(ν) [ P µν k + P µν k ]} ) π F 1(ν) P µν 1 P µν 1 = g µν q µq ν q P µν = 1 ( q q µ pµ q )( q ν pν q ) q p q p P µν = ( g µ1 ig µ p µ q )( g ν1 ig ν p ν q ) q p q p P µν = ( g µ1 + ig µ p µ q )( g ν1 + ig ν p ν q ) q p q p G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

51 Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. ( F 1() (ν) = Φ 1() (ν) + χ γ Ψ(ν), F 3 (ν) = F 6 (ν) + χ γ 1 ) Ψ(ν), γγ Ψ(ν) ψ( γ) + ψ( γ) ψ(4 γ) ψ( + γ), F 6 (γ) = F(γ) C γγ 1 γ γ 31 + χ γ 1 γ γ, + γγ Φ 1 (ν) = F(γ) + 3χ γ + γγ ( γ) + 1 γ 1 γ 7 18(1 + γ) (1 + γ) Φ (ν) = F(γ) + 3χ γ + γγ γγ 7 ( + 3 γγ) + χ γ 1 + γ + χ γ(1 + 3γ) + 3 γγ, F(γ) = π 3 π sin πγ Cχ γ + χ γ γγ γ = 1 + iν G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

52 Conclusions The NLO BFKL eigenfunctions have been constructed: they satisfy completeness and orthogonality condition NLO BFKL solution. NNLO Eigenfunctions has also been presented The structure of the NNLO solution has been found up to the still unknown conformal contribution χ (ν). Procedure to construct the solution of the BFKL equation to any order is now available. With the shift Y sym Y DIS + ln k k one can obtain the solution with non-symmetric kernel for DIS from the symmetric one. Using the High-Energy Product Expansion we have calculated the NLO photon impact factor for pomeron exchange in k T -factorized form (Linear case) and for DIS off a large nucleus (non-linear case for Electron Ion Collider). G. A. Chirilli (The Ohio State Uni.) Solution of the NLO BFKL Equation JLAB - 0 December, / 8

Rapidity evolution of Wilson lines

Rapidity evolution of Wilson lines Rapidity evolution of Wilson lines I. Balitsky JLAB & ODU QCD evolution 014 13 May 014 QCD evolution 014 13 May 014 1 / Outline 1 High-energy scattering and Wilson lines High-energy scattering and Wilson

More information

High-energy amplitudes in N=4 SYM

High-energy amplitudes in N=4 SYM High-energy amplitudes in N=4 SYM I. Balitsky JLAB & ODU Regensburg 15 July 014 I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 1 / 50 Outline Regge limit in a conformal

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

High energy scattering in QCD and in quantum gravity

High energy scattering in QCD and in quantum gravity High energy scattering in QCD and in quantum gravity. Gribov Pomeron calculus. BFKL equation L. N. Lipatov Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg, Russia Content 3. Integrability

More information

arxiv:hep-ph/ v1 29 Oct 2005

arxiv:hep-ph/ v1 29 Oct 2005 1 Electroproduction of two light vector mesons in next-to-leading BFKL D.Yu. Ivanov 1 and A. Papa arxiv:hep-ph/0510397v1 9 Oct 005 1 Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia Dipartimento

More information

Azimuthal angle decorrelation of Mueller Navelet jets at NLO

Azimuthal angle decorrelation of Mueller Navelet jets at NLO Azimuthal angle decorrelation of Mueller Navelet jets at NLO Physics Department, Theory Division, CERN, CH- Geneva 3, Switzerland E-mail: Agustin.Sabio.Vera@cern.ch F. Schwennsen II. Institut für Theoretische

More information

A Matrix Formulation for Small-x RG Improved Evolution

A Matrix Formulation for Small-x RG Improved Evolution A Matrix Formulation for Small-x RG Improved Evolution Marcello Ciafaloni ciafaloni@fi.infn.it University of Florence and INFN Florence (Italy) In collaboration with: D. Colferai G.P. Salam A.M. Staśto

More information

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD Mihail Braun, Andrey Tarasov QCD at high energies Strong interaction at high energies is mediated by the exchange of BFKL pomerons

More information

Photon-Photon Diffractive Interaction at High Energies

Photon-Photon Diffractive Interaction at High Energies Photon-Photon Diffractive Interaction at High Energies Cong-Feng Qiao Graduate University Chinese Academy of Sciences December 17,2007 1 Contents Brief About Diffractive Interaction Leading Order Photon

More information

Symmetric and Non-Symmetric Saturation. Overview

Symmetric and Non-Symmetric Saturation. Overview Symmetric and Non-Symmetric Saturation Leszek Motyka DESY Theory, Hamburg & Jagellonian University, Kraków motyka@mail.desy.de Overview BFKL Pomeron and Balitsky Kovchegov formalism Field theoretical formulation

More information

Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/ v1 17 Mar 1999

Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/ v1 17 Mar 1999 CERN-TH/99-64 MC-TH-99-4 SHEP-99/2 March 999 Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/99339v 7 Mar 999 J.R. Forshaw, D.A. Ross 2 and A. Sabio Vera 3 Theory Division, CERN, 2 Geneva 23,

More information

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit PACIFIC 2015 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12-19, 2015, Moorea, French Polynesia Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills

More information

arxiv:hep-ph/ v1 15 Jul 1998

arxiv:hep-ph/ v1 15 Jul 1998 The DLLA limit of BFKL in the Dipole Picture arxiv:hep-ph/9807389v1 15 Jul 1998 M. B. Gay Ducati and V. P. Gonçalves Instituto de Física, Univ. Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

High Energy QCD and Pomeron Loops

High Energy QCD and Pomeron Loops High Energy QCD and Pomeron Loops Dionysis Triantafyllopoulos Saclay (CEA/SPhT) Based on : E. Iancu, D.N.T., Nucl. Phys. A 756 (2005) 419, Phys. Lett. B 610 (2005) 253 J.-P. Blaizot, E. Iancu, K. Itakura,

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

arxiv: v2 [hep-th] 29 May 2014

arxiv: v2 [hep-th] 29 May 2014 Prepared for submission to JHEP DESY 14-057 Wilson loop OPE, analytic continuation and multi-regge limit arxiv:1404.6506v hep-th] 9 May 014 Yasuyuki Hatsuda DESY Theory Group, DESY Hamburg, Notkestrasse

More information

Renormalon approach to Higher Twist Distribution Amplitudes

Renormalon approach to Higher Twist Distribution Amplitudes Renormalon approach to Higher Twist Distribution Amplitudes Einan Gardi (Cambridge) plan conformal expansion: why, why not cancellation of ambiguities in the OPE example: quadratic UV divergence of twist

More information

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude with L.N. Lipatov, D.A. Ross and G. Watt arxiv 1005.0355 Short overview of HERA data - evidence for Pomeron Discreet Pomeron of

More information

High-energy amplitudes and impact factors at next-to-leading order

High-energy amplitudes and impact factors at next-to-leading order High-energ amplitudes and impact factors at net-to-leading order CPHT, École Poltechnique, CNRS, 9118 Palaiseau Cede, France & LPT, Université Paris-Sud, CNRS, 91405 Orsa, France E-mail: giovanni.chirilli@cpht.poltechnique.fr

More information

arxiv: v1 [hep-ph] 27 Dec 2018

arxiv: v1 [hep-ph] 27 Dec 2018 Rare fluctuations of the S-matrix at NLO in QCD arxiv:8.739v hep-ph] 7 Dec 8 Wenchang Xiang,,, Yanbing Cai,, Mengliang Wang,, and Daicui Zhou 3, Guizhou Key Laboratory in Physics and Related Areas, Guizhou

More information

QCD saturation predictions in momentum space: heavy quarks at HERA

QCD saturation predictions in momentum space: heavy quarks at HERA QCD saturation predictions in momentum space: heavy quarks at HERA J. T. S. Amaral, E. A. F. Basso and M. B. Gay Ducati thiago.amaral@ufrgs.br, andre.basso@if.ufrgs.br, beatriz.gay@ufrgs.br High Energy

More information

The growth with energy of vector meson photo-production cross-sections and low x evolution

The growth with energy of vector meson photo-production cross-sections and low x evolution The growth with energy of vector meson photo-production cross-sections and low x evolution Departamento de Actuaria, Física y Matemáticas, Universidad de las Américas Puebla, Santa Catarina Martir, 78,

More information

Integrability of Conformal Fishnet Theory

Integrability of Conformal Fishnet Theory Integrability of Conformal Fishnet Theory Gregory Korchemsky IPhT, Saclay In collaboration with David Grabner, Nikolay Gromov, Vladimir Kazakov arxiv:1711.04786 15th Workshop on Non-Perturbative QCD, June

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

Gluon density and gluon saturation

Gluon density and gluon saturation Gluon density and gluon saturation Narodowe Centrum Nauki Krzysztof Kutak Supported by NCN with Sonata BIS grant Based on: Small-x dynamics in forward-central dijet decorrelations at the LHC A. van Hameren,

More information

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory PACIFIC 2014 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 15-20, 2014, Moorea, French Polynesia N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable

More information

arxiv: v1 [hep-ph] 3 May 2010

arxiv: v1 [hep-ph] 3 May 2010 DESY 1-61 SHEP-1-4 CERN-PH-TH/21-91 arxiv:15.355v1 [hep-ph] 3 May 21 Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude H. Kowalski 1, L.N. Lipatov 2,3, D.A. Ross 4, and G. Watt

More information

arxiv:hep-ph/ v1 5 Jun 1998

arxiv:hep-ph/ v1 5 Jun 1998 Highlights of the Theory arxiv:hep-ph/9806285v1 5 Jun 1998 Boris Z. Kopeliovich 1,2 and Robert Peschanski 3 1 Max-Planck-Institut für Kernphysik Postfach 30980, 69029 Heidelberg, Germany 2 Joint Institute

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

High Energy Scattering in QCD: from small to large distances

High Energy Scattering in QCD: from small to large distances High Energy Scattering in QCD: from small to large distances Functional Methods in Hadron and Nuclear Physics, ECT*,Trento, Aug.21-26, 2017 Collaboration with C.Contreras and G.P.Vacca Introduction: the

More information

JIMWLK evolution: from principles to NLO

JIMWLK evolution: from principles to NLO JIMWLK evolution: from principles to NLO Alex Kovner University of Connecticut, Storrs, CT JLab, March 3, 2014 with... Misha Lublinsky, Yair Mulian Alex Kovner (UConn) JIMWLK evolution: from principles

More information

arxiv:hep-ph/ v1 1 Mar 2000

arxiv:hep-ph/ v1 1 Mar 2000 1 SPbU-IP-00-06 arxiv:hep-ph/0003004v1 1 Mar 2000 Nucleus-nucleus scattering in perturbative QCD with N c M.Braun Department of High Energy physics, University of S.Petersburg, 198904 S.Petersburg, Russia

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

Triumvirate of Running Couplings in Small-x Evolution

Triumvirate of Running Couplings in Small-x Evolution Triumvirate of Running Couplings in Small-x Evolution arxiv:hep-ph/699v1 8 Sep 6 Yuri V. Kovchegov and Heribert Weigert Department of Physics, The Ohio State University Columbus, OH 431,USA September 6

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

arxiv:hep-ph/ v1 22 Dec 1999

arxiv:hep-ph/ v1 22 Dec 1999 DTP/99/4 DAMTP-999-79 Cavendish-HEP-99/9 BFKL Dynamics at Hadron Colliders arxiv:hep-ph/992469v 22 Dec 999 Carlo Ewerz a,b,, Lynne H. Orr c,2, W. James Stirling d,e,3 and Bryan R. Webber a,f,4 a Cavendish

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

Small-x Scattering and Gauge/Gravity Duality

Small-x Scattering and Gauge/Gravity Duality Small-x Scattering and Gauge/Gravity Duality Marko Djurić University of Porto work with Miguel S. Costa and Nick Evans [Vector Meson Production] Miguel S. Costa [DVCS] Richard C. Brower, Ina Sarcevic and

More information

Resummation at small x

Resummation at small x Resummation at small Anna Stasto Penn State University & RIKEN BNL & INP Cracow 09/13/0, INT Workshop, Seattle Outline Limitations of the collinear framework and the fied order (DGLAP) calculations. Signals

More information

Mueller Navelet jets at LHC: a clean test of QCD resummation effects at high energy?

Mueller Navelet jets at LHC: a clean test of QCD resummation effects at high energy? Mueller Navelet jets at LHC: a clean test of QCD resummation effects at high energy? LPT, Université Paris-Sud, CNRS, 945, Orsay, France E-mail: Bertrand.Ducloue@th.u-psud.fr Lech Szymanowski National

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Workshop on Hot and dense matter in the RHIC-LHC era, TIFR, Mumbai, February 2008 - p. 1 Outline

More information

arxiv: v1 [hep-th] 25 Apr 2011

arxiv: v1 [hep-th] 25 Apr 2011 DESY--05 Collinear and Regge behavior of 4 MHV amplitude in N = 4 super Yang-Mills theory J. Bartels, L. N. Lipatov, and A. Prygarin arxiv:04.4709v [hep-th] 5 Apr 0 II. Institute of Theoretical Physics,

More information

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF MSYM amplitudes in the high-energy limit Vittorio Del Duca INFN LNF Gauge theory and String theory Zürich 2 July 2008 In principio erat Bern-Dixon-Smirnov ansatz... an ansatz for MHV amplitudes in N=4

More information

arxiv:hep-ph/ v1 31 Aug 1999

arxiv:hep-ph/ v1 31 Aug 1999 The AGL Equation from the Dipole Picture arxiv:hep-ph/9908528v1 31 Aug 1999 M. B. Gay Ducati and V. P. Gonçalves Instituto de Física, Univ. Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 Porto

More information

Functional RG for few-body physics

Functional RG for few-body physics Functional RG for few-body physics Michael C Birse The University of Manchester Review of results from: Schmidt and Moroz, arxiv:0910.4586 Krippa, Walet and Birse, arxiv:0911.4608 Krippa, Walet and Birse,

More information

arxiv:hep-ph/ v1 19 Mar 1998

arxiv:hep-ph/ v1 19 Mar 1998 DFF302/0398 Energy Scale(s) and Next-to-leading BFKL Equation 1 arxiv:hep-ph/9803389v1 19 Mar 1998 Marcello Ciafaloni and Gianni Camici Dipartimento di Fisica dell Università, Firenze and INFN, Sezione

More information

Precision theoretical predictions for hadron colliders

Precision theoretical predictions for hadron colliders Precision theoretical predictions for hadron colliders giuseppe bozzi Università degli Studi di Milano and INFN, Sezione di Milano IPN Lyon 25.02.2010 giuseppe bozzi (Uni Milano) Precision theoretical

More information

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Spiky strings, light-like Wilson loops and a pp-wave anomaly Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arxiv:080.039 A. Tseytlin, M.K. arxiv:0804.3438 R. Ishizeki, A. Tirziu, M.K. Summary Introduction

More information

Analytical properties of NLL-BK equation

Analytical properties of NLL-BK equation Guillaume Beuf Brookhaven National Laboratory Institute for Nuclear Theory, Seattle, September 28, 2010 Outline 1 Introduction 2 Traveling wave solutions of BK with fixed coupling 3 Asymptotic behavior

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec Jets at the LHC New Possibilities Jeppe R. Andersen in collaboration with Jennifer M. Smillie Blois workshop, Dec 17 2011 Jeppe R. Andersen (CP 3 -Origins) Jets at the LHC Blois Workshop, Dec. 17 2011

More information

Inclusive di-hadron production at 7 and 13 TeV LHC in the full NLA BFKL approach

Inclusive di-hadron production at 7 and 13 TeV LHC in the full NLA BFKL approach Inclusive di-hadron production at 7 and 3 TeV LHC in the full NLA BFKL approach Francesco Giovanni Celiberto francescogiovanni.celiberto@fis.unical.it Università della Calabria - Dipartimento di Fisica

More information

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion Three-loop evolution equation for non-singlet leading-twist operator based on: V. M. Braun, A. N. Manashov, S. Moch, M. S., not yet published, arxiv:1703.09532 Matthias Strohmaier University of Regensburg

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Multiplicity distribution of colour dipoles. at small x. G.P. Salam. Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK

Multiplicity distribution of colour dipoles. at small x. G.P. Salam. Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK Cavendish-HEP-95/01 hep-ph/9504284 April 1995 Multiplicity distribution of colour dipoles at small x G.P. Salam Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK e-mail:

More information

Resumming large collinear logarithms in the non-linear QCD evolution at high energy

Resumming large collinear logarithms in the non-linear QCD evolution at high energy Resumming large collinear logarithms in the non-linear QCD evolution at high energy Institut de physique théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France E-mail: edmond.iancu@cea.fr

More information

Decay constants and masses of light tensor mesons (J P = 2 + )

Decay constants and masses of light tensor mesons (J P = 2 + ) Decay constants and masses of light tensor mesons (J P = + ) R. Khosravi, D. Hatami Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran Abstract We calculate the masses and

More information

arxiv: v2 [hep-th] 26 Feb 2008

arxiv: v2 [hep-th] 26 Feb 2008 CERN-PH-TH/008-07 DESY-08-05 BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes J. Bartels, L. N. Lipatov,, A. Sabio Vera 3 arxiv:080.065v [hep-th] 6 Feb 008 II. Institut Theoretical Physics,

More information

Evolution equations beyond one loop from conformal symmetry. V. M. Braun

Evolution equations beyond one loop from conformal symmetry. V. M. Braun Evolution equations beyond one loop from conformal symmetry V. M. Braun University of Regensburg based on V. Braun, A. Manashov, Eur. Phys. J. C 73 2013 2544 [arxiv:1306.5644 [hep-th V. Braun, A. Manashov,

More information

Top Quarks, Unstable Particles... and NRQCD

Top Quarks, Unstable Particles... and NRQCD Top Quarks, Unstable Particles... and NRQCD André H. Hoang Max-Planck-Institute for Physics Munich (Thanks to A. Manohar, I. Stewart, T. Teubner, C. Farrell, C. Reisser, M. Stahlhofen ) INT Workshop, May

More information

Measurements of Proton Structure at Low Q 2 at HERA

Measurements of Proton Structure at Low Q 2 at HERA Measurements of Proton Structure at Low Q 2 at HERA Victor Lendermann Kirchhoff-Institut für Physik, Universität Heidelberg Im Neuenheimer Feld 227, 69120 Heidelberg Germany Abstract. Inclusive ep scattering

More information

arxiv:hep-ph/ v4 24 Feb 1999

arxiv:hep-ph/ v4 24 Feb 1999 NUC-MN-99/-T TPI-MINN-99/5 Small x F Structure Function of a Nucleus Including Multiple Pomeron Exchanges arxiv:hep-ph/998v4 4 Feb 999 Yuri V. Kovchegov School of Physics and stronomy, University of Minnesota,

More information

Nonperturbative QCD in pp scattering at the LHC

Nonperturbative QCD in pp scattering at the LHC Nonperturbative QCD in pp scattering at the LHC IX Simpósio Latino Americano de Física de Altas Energias SILAFAE Jochen Bartels, Hamburg University and Universidad Tecnica Federico Santa Maria Introduction:

More information

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Di-hadron Angular Correlations as a Probe of Saturation Dynamics Di-hadron Angular Correlations as a Probe of Saturation Dynamics Jamal Jalilian-Marian Baruch College Hard Probes 2012, Cagliari, Italy Many-body dynamics of universal gluonic matter How does this happen?

More information

arxiv:hep-ph/ v1 8 Jul 1996

arxiv:hep-ph/ v1 8 Jul 1996 Resummation at Large Q and at Small x CCUTH-96-04 arxiv:hep-ph/960756v1 8 Jul 1996 Hsiang-nan Li Department of Physics, National Chung-Cheng University, Chia-Yi, Taiwan, Republic of China PACS numbers:

More information

CTEQ6.6 pdf s etc. J. Huston Michigan State University

CTEQ6.6 pdf s etc. J. Huston Michigan State University CTEQ6.6 pdf s etc J. Huston Michigan State University 1 Parton distribution functions and global fits Calculation of production cross sections at the LHC relies upon knowledge of pdf s in the relevant

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Fall and rise of the gluon splitting function (at small x)

Fall and rise of the gluon splitting function (at small x) Fall and rie of the gluon plitting function (at mall ) Gavin Salam LPTHE Univ. Pari VI & VII and CNRS In collaboration with M. Ciafaloni, D. Colferai and A. Staśto 8 th workhop on non-perturbative QCD

More information

arxiv:hep-ph/ v1 13 Jan 2003

arxiv:hep-ph/ v1 13 Jan 2003 Preprint typeset in JHEP style - HYPER VERSION Cavendish HEP 2002 21 DAMTP 2002 154 IPPP/02/80 DCPT/02/160 arxiv:hep-ph/0301081v1 13 Jan 2003 Energy Consumption and Jet Multiplicity from the Leading Log

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Proton structure functions at small x

Proton structure functions at small x Journal of Physics: Conference Series PAPER OPEN ACCESS Proton structure functions at small To cite this article: Martin Hentschinski 5 J. Phys.: Conf. Ser. 65 Related content - ON VARIABLE 39 IN IC 63

More information

Violation of a simple factorized form of QCD amplitudes and Regge cuts

Violation of a simple factorized form of QCD amplitudes and Regge cuts Violation of a simple factorized form of QCD amplitudes and Regge cuts Author affiliation Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk Russia Novosibirsk State University, 630090 Novosibirsk,

More information

arxiv:hep-ph/ v1 27 Jul 2006

arxiv:hep-ph/ v1 27 Jul 2006 xxx-xxx-xxx Event generation from effective field theory Christian W. Bauer 1 and Matthew D. Schwartz 1 1 Ernest Orlando Lawrence Berkeley National Laboratory and University of California, Berkeley, CA

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Diffusive scaling and the high energy limit of DDIS

Diffusive scaling and the high energy limit of DDIS RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: hatta@quark.phy.bnl.gov After reviewing the recent developments on the high energy evolution equation beyond the

More information

Factorization and Fully Unintegrated Factorization

Factorization and Fully Unintegrated Factorization Factorization and Fully Unintegrated Factorization Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Factorization and unintegrated PDFs: open problems Fully unintegrated factorization INT 09

More information

arxiv:hep-ph/ v1 5 Jan 1996

arxiv:hep-ph/ v1 5 Jan 1996 SLAC PUB 95 763 December 1995 Renormalization Scale Setting for Evolution Equation of Non-Singlet Structure Functions and Their Moments Wing Kai Wong arxiv:hep-ph/961215v1 5 Jan 1996 Stanford Linear Accelerator

More information

arxiv: v2 [hep-ph] 17 May 2010

arxiv: v2 [hep-ph] 17 May 2010 Heavy χ Q tensor mesons in QCD arxiv:00.767v [hep-ph] 7 May 00 T. M. Aliev a, K. Azizi b, M. Savcı a a Physics Department, Middle East Technical University, 0653 Ankara, Turkey b Physics Division, Faculty

More information

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE THE RENORMALIZATION GROUP AND WEYL-INVARIANCE Asymptotic Safety Seminar Series 2012 [ Based on arxiv:1210.3284 ] GIULIO D ODORICO with A. CODELLO, C. PAGANI and R. PERCACCI 1 Outline Weyl-invariance &

More information

NONLINEAR EVOLUTION EQUATIONS IN QCD

NONLINEAR EVOLUTION EQUATIONS IN QCD Vol. 35 (24) ACTA PHYSICA POLONICA B No 2 NONLINEAR EVOLUTION EQUATIONS IN QCD Anna M. Staśto Physics Department, Brookhaven National Laboratory Upton, NY 973, USA and H. Niewodniczański Institute of Nuclear

More information

arxiv: v1 [hep-ph] 28 May 2012

arxiv: v1 [hep-ph] 28 May 2012 Evidence for the higher twists effects in diffractive DIS at HERA M. Sadzikowski, L. Motyka, W. S lomiński Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 3-59 Kraków, Poland We

More information

arxiv: v1 [hep-ph] 3 Apr 2015

arxiv: v1 [hep-ph] 3 Apr 2015 IPMU 15-0038 KANAZAWA-15-0 FTPI-MINN-15/16 QCD Effects on Direct Detection of Wino Dark Matter arxiv:1504.00915v1 hep-ph] 3 Apr 015 Junji Hisano a,b,c), Koji Ishiwata d), Natsumi Nagata c,e) a) Kobayashi-Maskawa

More information

Fall and rise of the gluon splitting function (at small x)

Fall and rise of the gluon splitting function (at small x) Fall and rie of the gluon plitting function (at mall ) Gavin Salam LPTHE Univ. Pari VI & VII and CNRS In collaboration with M. Ciafaloni, D. Colferai and A. Staśto DIS 24 Štrbké Pleo 16 April 24 Fall and

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution

PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution Path-integral Formulation of Hadronic Tensor in DIS Parton Degrees of Freedom Numerical Challenges Evolution of Connected Sea Partons

More information

High Energy Scattering in Quantum Chromodynamics

High Energy Scattering in Quantum Chromodynamics High Energy Scattering in Quantum Chromodynamics University of Jyväskylä, August 2012 François Gelis IPhT, Saclay t z Goal : understand as much as we can of hadronic collisions in terms of the microscopic

More information

Mueller-Navelet jets at LHC: the first complete NLL BFKL study

Mueller-Navelet jets at LHC: the first complete NLL BFKL study Mueller-Navelet jets at LHC: the first complete NLL BFKL study B. Ducloué LPT, Université Paris-Sud, CNRS, 945, Orsay, France E-mail: Bertrand.Ducloue@th.u-psud.fr L. Szymanowski National Center for Nuclear

More information

Mueller-Navelet jets at LHC: an observable to reveal high energy resummation effects?

Mueller-Navelet jets at LHC: an observable to reveal high energy resummation effects? Mueller-Navelet jets at LHC: an observable to reveal high energy resummation effects? LPT, Université Paris-Sud, CNRS, 945, Orsay, France E-mail: Bertrand.Ducloue@th.u-psud.fr Lech Szymanowski National

More information

Studies of TMD resummation and evolution

Studies of TMD resummation and evolution Studies of TMD resummation and evolution Werner Vogelsang Univ. Tübingen INT, 0/7/014 Outline: Resummation for color-singlet processes Contact with TMD evolution Phenomenology Conclusions Earlier work

More information

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev Four-point functions in the AdS/CFT correspondence: Old and new facts Emery Sokatchev Laboratoire d Annecy-le-Vieux de Physique Théorique LAPTH Annecy, France 1 I. The early AdS/CFT correspondence The

More information