Factorization and Fully Unintegrated Factorization

Size: px
Start display at page:

Download "Factorization and Fully Unintegrated Factorization"

Transcription

1 Factorization and Fully Unintegrated Factorization Ted C. Rogers Vrije Universiteit Amsterdam Factorization and unintegrated PDFs: open problems Fully unintegrated factorization INT 09 - September, 2009

2 Perturbative QCD Asymptotic freedom: Strong coupling becomes small over short time/distance scales! α s (Q 2 )<<1; Q>>Λ QCD Hard scale Use standard Feynman perturbation theory to make accurate first principles calculations. 2

3 pqcd and Factorization The Real World: Always involves both long and short time/distance scales. Factorization Theorem: Systematic separation of long and short distance scales in QFT. Short distance part: Well-defined perturbation series in small coupling. Long distance parts: Universal correlation functions. Access quark/gluon degrees of freedom. 3

4 DIS: Standard Approximations LO DIS: Before approximations: q k P l J(l) Φ(k, P) P = q= ( P +, M2 p 2P +,0 t ) ( xp +, ) Q 2 2xP,0 + t Parton model kinematics: k=(k +,k,k ) k + =xp + + M2 J +k2 t 2(q +k ) l=k+q=(k + xp +,q +k,k ) l 2 0 k + xp + x B P + 4

5 Standard Approximations (cont.) Unapproximated structure tensor: W µν (q,p)= e2 j d 4 k 4π (2π) 4Tr[γµ J(k+q)γ ν Φ(k,P)] l 5

6 Standard Approximations (cont.) Unapproximated structure tensor: W µν (q,p)= e2 j d 4 k 4π (2π) 4Tr[γµ J(k+q)γ ν Φ(k,P)] l Approximate momentum inside subgraphs: k (xp +,k,k ); k+q (l +,q,0 ) Inside target subgraph Inside jet subgraph 6

7 Standard Approximations (cont.) Unapproximated structure tensor: W µν (q,p)= e2 j d 4 k 4π (2π) 4Tr[γµ J(k+q)γ ν Φ(k,P)] l Approximate momentum inside subgraphs: k (xp +,k,k ); k+q (l +,q,0 ) Inside target subgraph Inside jet subgraph Use parton model approximation inside hard part. k ˆk=(xP +,0,0 ); l ˆl=(0,q,0 ) 7

8 Standard Approximations (cont.) Unapproximated structure tensor: W µν (q,p)= e2 j d 4 k 4π (2π) 4Tr[γµ J(k+q)γ ν Φ(k,P)] l Approximate momentum inside subgraphs: k (xp +,k,k ); k+q (l +,q,0 ) Inside target subgraph Inside jet subgraph Use parton model approximation inside hard part. k ˆk=(xP +,0,0 ); l ˆl=(0,q,0 ) Project out largest Dirac components. 8

9 Factorized Graph 2 = Parton Distribution??? LO partonic structure functions. Note shift in kinematics!! 9

10 Varieties of parton correlation functions Standard Integrated PCFs: All small momentum components are integrated in definitions. 10

11 Factorized Graph 2 = Parton Distribution??? LO partonic structure functions. Note shift in kinematics!! 11

12 Varieties of parton correlation functions Standard Integrated PCFs: All small momentum components are integrated in definitions. Transverse momentum dependent (TMD) PCFs. Only the minus component (smallest) is integrated in definition. Sivers, etc 12

13 Factorized Graph 2 = Parton Distribution??? LO partonic structure functions. Note shift in kinematics!! 13

14 Varieties of parton correlation functions Standard Integrated PCFs: All small momentum components are integrated in definitions. Transverse momentum dependent (TMD) PCFs. Only the minus component (smallest) is integrated in definition. Sivers, etc Fully unintegrated PCFs. Explicit dependence on exact parton momentum. 14

15 Varieties of parton correlation functions Standard Integrated PCFs: All small momentum components are integrated in definitions. Transverse momentum dependent (TMD) PCFs. Only the minus component (smallest) is integrated in definition. Sivers, etc Fully unintegrated PCFs. Explicit dependence on exact parton momentum. How to set up factorization that treats kinematics more accurately? 15

16 Hadron Kinematics Explicit sample: cc photoproduction Try: Parton model kinematics. Keeping k T dependence, but approximating minus component. (TMD PDFs) Exact kinematics. (Fully unintegrated PDFs) 16

17 Errors in final state kinematics Cascade Compare: Parton model kinematics TMD kinematics (From Collins and Jung, 2005) 17

18 Errors in final state kinematics Cascade Compare: TMD kinematics Fully Unintegrated kinematics (From Collins and Jung, 2005) 18

19 Errors in final state kinematics Cascade Compare: TMD kinematics Fully Unintegrated kinematics Fully Unintegrated TMD (From Collins and Jung, 2005) 19

20 Large-x (SI)DIS But k T runs to order Q in the def. of the integrated PDF! Definition of standard PDF becomes inconsistent. Sensitive to remnant mass. Fully unintegrated PDFs needed. (Accardi, Qiu, JHEP 0807:090,2008)

21 Wilson lines Ward identity: Target collinear gluons decouple from hard part. Ward identity collinear lines extracted into overall factor. Wilson line becomes trivial in light-cone gauge. 21

22 Standard (Integrated) PDF Operator definition: f(x,µ)= dw 4π e ixp+ w p ψ(0,w,0 t )V w(u J )γ + V 0 (u J )ψ(0) p u J =(0,1,0 t ) Light-like Wilson lines enforce gauge invariance. 22

23 TMD PDFs: Generally accepted definition: P(x,k t,µ)= Link at infinity dw dw t 16π 3 e ixp+ w +ik t w t p ψ(0,w,w t )V w(n)i n;w,0 γ + V 0 (n)ψ(0) p n=u J =(0,1,0 t ) Fields are no longer evaluated along light-like separation. Connection at infinity needed for closed Wilson line / gauge invariance. 23

24 Complications with K T - Factorization: Uncanceled light-cone divergences corresponding to gluons moving with infinite rapidity in minus direction. + Use non-light-like Wilson lines. Introduces new arbitrary parameter. Predictability recovered with new evolution equations (e.g. CSS). 24

25 TMD PDFs: Wilson Lines Paths of Wilson lines: + + w w,w t Standard (Integrated) Unintegrated First Try _ w,w t + Same issues arise in treating fully unintegrated PCFs Unintegrated tilted Wilson line directions 25

26 Hadron-Hadron Scattering: Modified Universality? Unintegrated-factorization generally fails in hadroproduction of high-p T hadrons. No simple Wilson line structure in PDFs. (Bomhof et al., Phys.Lett.B596: ,2004) (Collins and Qiu, PRD75:114014,2007) Recall Piet Mulders talk + 26

27 Modified Universality? Consider one correlator at a time. Wilson line structure emerges. (Bomhof et al, Eur.Phys.J.C47: , 2006, Bomhof, Mulders Nucl.Phys.B795: ,2008) Φ [,( )] q Φ [+] q 27

28 Modified Universality? (Mulders et al, Eur.Phys.J.C47: , 2006) Consider one correlator at a time. Wilson line structure emerges. Φ [,( )] q Φ [+] q σ N2 N 2 1 H 2 Φ [,( )] q Φ [+][ ] g [ ] q 1 N 2 1 H 2 Φ [+] q Φ [+][ ] g [ ] (Boer et al, Phys.Lett.B660: , 2008) q 28

29 Modified Universality? Complex Wilson Lines:?? σ C Φ [WL 1] q Φ [WL 2] g [WL 3] q + Sum over color structures

30 Modified Universality? P B 0 P A?? σ Φ [+( )] Φ [+( )] One gluon contribution gives zero! 30

31 Modified Universality? Open questions: Can a generalization of K T -factorization be formulated with well-defined but non-standard Wilson lines??? σ C P A F1 WL 1 F 1 P A P B F2 WL 2 F 2 P B + Or,?? σ C P A P B F1 F2 WL 1 WL 2 F 1 F 2 P A P B + After P T weighting? 31

32 Summary So Far Details of kinematic approximations in standard factorization. 32

33 Summary So Far Details of kinematic approximations in standard factorization. Motivation for more exact formalism. 33

34 Summary So Far Details of kinematic approximations in standard factorization. Motivation for more exact formalism. Emphasis on need for well-defined operator definition. Problems 34

35 Summary So Far Details of kinematic approximations in standard factorization. Motivation for more exact formalism. Emphasis on need for well-defined operator definition. Problems Basic Problem: In standard treatment, factorization works after integrations, but final states are changed! 35

36 Fully Unintegrated Factorization Back to Deep Inelastic Scattering Proposal: Set up a factorization formalism with exact kinematics for initial and final states. (Collins, TCR, Stasto, PRD77:085009,2008) 36

37 Fully Unintegrated Factorization Back to Deep Inelastic Scattering Proposal: Set up a factorization formalism with exact kinematics for initial and final states. (Collins, TCR, Stasto, PRD77:085009,2008) Factorization should work point-by-point in phase space. (correct of up to power suppressed terms.) 37

38 Fully Unintegrated Factorization Back to Deep Inelastic Scattering Proposal: Set up a factorization formalism with exact kinematics for initial and final states. (Collins, TCR, Stasto, PRD77:085009,2008) Factorization should work point-by-point in phase space. (correct of up to power suppressed terms.) To obtain factorization, only apply approximations to the hard part. 38

39 Fully Unintegrated Factorization Back to Deep Inelastic Scattering Proposal: Set up a factorization formalism with exact kinematics for initial and final states. (Collins, TCR, Stasto, PRD77:085009,2008) Factorization should work point-by-point in phase space. (correct of up to power suppressed terms.) To obtain factorization, only apply approximations to the hard part. Hard scattering should involve ordinary functions. 39

40 Fully Unintegrated Factorization Back to Deep Inelastic Scattering Proposal: Set up a factorization formalism with exact kinematics for initial and final states. (Collins, TCR, Stasto, PRD77:085009,2008) Factorization should work point-by-point in phase space. (correct of up to power suppressed terms.) To obtain factorization, only apply approximations to the hard part. Hard scattering should involve ordinary functions. Need well-defined fully unintegrated parton correlation functions. 40

41 Factorization Strategy Consider general unapproximated Feynman diagrams. Classify leading regions. 41

42 Factorization Strategy Consider general unapproximated Feynman diagrams. Classify leading regions. Apply approximations appropriate for each region starting with the smallest (but never changing final state momentum!). 42

43 Factorization Strategy Consider general unapproximated Feynman diagrams. Classify leading regions. Apply approximations appropriate for each region starting with the smallest (but never changing final state momentum!). Obtain contribution from larger regions by subtracting smaller regions. 43

44 Factorization Strategy Consider general unapproximated Feynman diagrams. Classify leading regions. Apply approximations appropriate for each region starting with the smallest (but never changing final state momentum!). Obtain contribution from larger regions by subtracting smaller regions. Use Ward identities to disentangle soft and collinear gluons from hard part in sum over graphs. 44

45 Factorization Strategy Consider general unapproximated Feynman diagrams. Classify leading regions. Apply approximations appropriate for each region starting with the smallest (but never changing final state momentum!). Obtain contribution from larger regions by subtracting smaller regions. Use Ward identities to disentangle soft and collinear gluons from hard part in sum over graphs. Identify well-defined operator definitions for the PCFs. 45

46 General Graphical Structure Should start with: Must disentangle soft and collinear gluons to get factorization 46

47 Graphical Example: Single extra gluon: real emission Jet Collinear Soft Target Collinear y J y Q y p 47

48 Soft Region: Factorized Structure 48

49 Graphical Example (Cont.): Subtractions Consider target-collinear region After applying Ward identities. The contribution to the PDF (target PCF) requires double counting subtractions. 49

50 Recall the starting point: Factorization After steps outlined above, this becomes (Ward identities + subtractions) 50

51 Topological Factorization: A formula of this type is the goal. Also need double counting subtractions. 51

52 Full Factorization 52

53 Next-to-Leading Order (TCR, PRD78:074018,2008) Wide angle jets: Non-trivial hard scattering matrix element. + Cross terms Relies on details of LO treatment. 53

54 Next-to-Leading Order (Cont.) NLO hard scattering overlaps with LO. Factorization requires double counting subtractions. Standard integrated factorization: Hard scattering involves generalized functions (distributions)! Exactly analogous subtractive formalism used in fully unintegrated case. (Collins, Zu, JHEP 03 (2005) 059) Double counting subtractions give factorized expression with power suppressed errors point-by-point in phase. 54

55 Fully Unintegrated Approach: Full factorization for scalar theory. Collins, Zu, JHEP 03 (2005) 059 Abelian Gauge Theory: Detailed treatment of factorization for case of a single outgoing jet in DIS (SIDIS). (Collins, TCR, Stasto, PRD77:085009,2008) Suggestive of complete all-orders treatment in QCD Simplest NLO wide-angle hard scattering calculation in DIS. LO + NLO consistent with factorization point-by-point in phase space (TCR, PRD78:074018,2008) 55

56 Outlook Practical Issues: Fully Unintegrated PDFs: Need to finish calculation of NLO hard scattering. Simplifications? Implementation in MCEGs. Open problems in unintegrated formalism: Hadron-hadron scattering? Definitions of TMD/Fully Unintegrated PDFs. Do we have consistent definitions? Other UV divergences? (Cherednikov et al., arxiv: ) Evolution equations (CSS formalism??). Relationship to other approaches? Full extension to non-abelian case. 56

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and Nobuo Sato arxiv:1702.03955

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Why Glauber Gluons Are Relevant?

Why Glauber Gluons Are Relevant? Why Glauber Gluons Are Relevant? Ahmad Idilbi MIT, March 09 A.I and A. Majumder, arxiv:0808.1087 [hep-ph] Semi-Inclusive Deep-Inelastic Scattering (SIDIS) and Transverse Momentum Parton Distribution (TMDPDF)

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Kinematics and Parton Correlation Functions in the Parton Model. Paul McCullough Supervisors: Piet Mulders and Ted Rogers

Kinematics and Parton Correlation Functions in the Parton Model. Paul McCullough Supervisors: Piet Mulders and Ted Rogers Kinematics and Parton Correlation Functions in the Parton Model Paul McCullough Supervisors: Piet Mulders and Ted Rogers August 30, 2009 Abstract In the Standard Model of Particle Physics, QCD is the

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS

Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS Graduate School of Science and Technology, Niigata University, Ikarashi -8050, Niigata 950-8, Japan Department

More information

Transverse Momentum Dependent Distribution Functions of Definite Rank

Transverse Momentum Dependent Distribution Functions of Definite Rank QCD204: QCD Evolution 204 Workshop Santa Fe, 2-6 May 204 ransverse Momentum Dependent Distribution Functions of Definite Rank Piet Mulders mulders@few.vu.nl ABSRAC MDs of definite rank Piet Mulders (Nikhef/VU

More information

Ted Conant Rogers curriculum vitae

Ted Conant Rogers curriculum vitae Ted Conant Rogers curriculum vitae C.N. Yang Institute for Theoretical Physics Stony Brook University Math Tower, Rm: 5-105, Stony Brook, New York 11794-3840, USA Phone: 646-532-8443, E-mail: rogers@insti.physics.sunysb.edu

More information

季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland

季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland 季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland 1. Gauge symmetry and Feynman parton distributions 2. TMDs in light of gauge symmetry 3. Wigner distributions and angular momentum

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Factorisation in Double Parton Scattering: Glauber Gluons

Factorisation in Double Parton Scattering: Glauber Gluons Factorisation in Double Parton Scattering: Glauber Gluons Jonathan Gaunt, Nikhef & VU Amsterdam MPI@LHC 2015, ICTP Trieste, Italy, 24/11/2015 Based on [arxiv:1510.08696], Markus Diehl, JG, Daniel Ostermeier,

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

FOUNDATIONS OF PERTURBATIVE QCD

FOUNDATIONS OF PERTURBATIVE QCD FOUNDATIONS OF PERTURBATIVE QCD The most non-trivial of the established microscopic theories of physics is QCD: the theory of the strong interaction. A critical link between theory and experiment is provided

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

Cancellation of Glauber gluon exchange in the double Drell-Yan process arxiv: v1 [hep-ph] 29 Oct 2015

Cancellation of Glauber gluon exchange in the double Drell-Yan process arxiv: v1 [hep-ph] 29 Oct 2015 Prepared for submission to JHEP DESY 15-187 Cancellation of Glauber gluon exchange in the double Drell-Yan process arxiv:1510.08696v1 [hep-ph] 29 Oct 2015 Markus Diehl, a Jonathan R. Gaunt, a,1 Daniel

More information

arxiv: v1 [hep-ph] 4 Aug 2010

arxiv: v1 [hep-ph] 4 Aug 2010 1 RUB-TPII-06/2010 arxiv:1008.0725v1 [hep-ph] 4 Aug 2010 TRANSVERSE-MOMENTUM PARTON DENSITIES: GAUGE LINKS, DIVERGENCES AND SOFT FACTOR I. O. CHEREDNIKOV INFN Cosenza, Università della Calabria I-87036

More information

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering QCD Evolution 2017, JLab, May 22-26, 2017 Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering Marc Schlegel Institute for Theoretical Physics University of Tübingen in collaboration

More information

Parton-hadron duality and PDF fits

Parton-hadron duality and PDF fits Parton-hadron duality and PDF fits Alberto Accardi Hampton U. and Jefferson Lab Topical Meeting on Parton Hadron Duality University of Virginia, 13 March 2015 Why PDFs at large x? Accardi, Mod.Phys.Lett.

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Transverse Momentum Distributions: Matches and Mismatches

Transverse Momentum Distributions: Matches and Mismatches Transverse Momentum Distributions: Matches and Mismatches Ahmad Idilbi ECT* M.G. Echevarría, Ahmad Idilbi, Ignazio Scimemi. [arxiv:.947] MGE, AI, Andreas Schäfer, IS. [arxiv: 08.8] MGE, AI, IS. JHEP 07

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics Probing collinear and TMD fragmentation functions through hadron distribution inside the jet Zhongbo Kang UCLA The 7 th Workshop of the APS Topical Group on Hadronic Physics February 1-3, 2017 Jets are

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta A complete NLO calculation of the J/ψ production at Tevatron and LHC Ma Yan-Qing ( 马滟青 ) Department of physics, Peking University yqma.cn@gmail.com In collaboration with Wang Kai and Chao Kuang-Ta p.1

More information

TMDs at small-x: an Operator Treatment

TMDs at small-x: an Operator Treatment TMDs at small-x: an Operator Treatment Yuri Kovchegov The Ohio State University work with Dan Pitonyak and Matt Sievert, arxiv:76.436 [nucl-th] and 5 other papers + papers in preparation Outline Goal:

More information

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014 Introduction to Jets Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei at CTEQ School, Beijing July. 11, 2014 1 Outlines Introduction e+e annihilation and jets Jets in experiment Jets in theory Summary 2 Introduction

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Universality of Perturbative QCD Soft Radiation in ee, ep andjanuary pp Collisions 13, / 2

Universality of Perturbative QCD Soft Radiation in ee, ep andjanuary pp Collisions 13, / 2 Universality of Perturbative QCD Soft Radiation in ee,ep and pp Collisions Ou Zhang University of Arizona, IPN-Orsay Collabration with Christopher Lee and Deakyoung Kang, Los Alamos National Lab, U.S.A.

More information

Introduction to Quantum ChromoDynamics and the parton model

Introduction to Quantum ChromoDynamics and the parton model Introduction to Quantum ChromoDynamics and the parton model Pavel Nadolsky Southern Methodist University Dallas, TX, USA TMD Collaboration Summer School June 22, 2017 Objectives of the lectures Review

More information

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY July 8, 2015, Pittsburgh Jets Zoltan Nagy DESY What are Jets? A di-jet ATLAS event A multi-jet (6-jet) event What are Jets? What are Jets? The pt is concentrated in a few narrow sprays of particles These

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

Single inclusive jet production at very forward rapidity in proton-proton collisions with s = 7 and 13 TeV

Single inclusive jet production at very forward rapidity in proton-proton collisions with s = 7 and 13 TeV production at very forward rapidity in proton-proton collisions with s = 7 and ev Instytut izyki Jadrowej, Radzikowskiego, - Krakow, Poland E-mail: krzysztof.kutak@ifj.edu.pl Hans Van Haevermaet Particle

More information

Factorisation in diffractive ep interactions. Alice Valkárová Charles University, Prague

Factorisation in diffractive ep interactions. Alice Valkárová Charles University, Prague Factorisation in diffractive ep interactions Alice Valkárová Charles University, Prague 8th International Workshop on Multiple Partonic Interactions at the LHC, San Cristóbal de las Casas, 2016 HERA collider

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

TMDs in covariant approach

TMDs in covariant approach TMDs in covariant approach Petr Zavada Institute of Physics AS CR, Prague, Czech Rep. (based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev) Newport News, VA, May, 16-19, 2016

More information

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS Trieste University and INFN on behalf of the COMPASS Collaboration Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS

More information

The three colors of nature

The three colors of nature The three colors of nature This talk will be about the strong force and the three colors of nature Motivation: QCD is the strongest force If there would be infinitely many colors calculations would be

More information

arxiv: v1 [hep-ph] 15 May 2014

arxiv: v1 [hep-ph] 15 May 2014 arxiv:1405.4017v1 [hep-ph] 15 May 2014 Evolution anynamics of cusped light-like Wilson loops University of Antwerp E-mail: frederik.vanderveken@ua.ac.be We address a connection between the energy evolution

More information

TMD Fragmentation Function at NNLO

TMD Fragmentation Function at NNLO TMD Fragmentation Function at NNLO Institut für Theoretische Physik, Universität Regensburg, D-9040 Regensburg, Germany E-mail: vladimirov.aleksey@gmail.com The calculation of the unpolarized non-singlet

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

Coulomb gluons and colour evolution

Coulomb gluons and colour evolution Coulomb gluons and colour evolution René Ángeles-Martínez in collaboration with Jeff Forshaw Mike Seymour JHEP 1512 (2015) 091 & arxiv:1602.00623 (accepted for publication) DPyC, BUAP 2016 In this talk:

More information

Coulomb gluons and colour evolution

Coulomb gluons and colour evolution Coulomb gluons and colour evolution René Ángeles-Martínez in collaboration with Jeff Forshaw Mike Seymour JHEP 1512 (2015) 091 & arxiv:1602.00623 (accepted for publication) 1 DPyC, BUAP 2016 In this talk:

More information

Spin physics at Electron-Ion Collider

Spin physics at Electron-Ion Collider Spin physics at Electron-Ion Collider Jianwei Qiu Brookhaven National Laboratory Workshop on The Science Case for an EIC November 16-19, 2010; INT, University of Washington, Seattle, WA Outline of my talk

More information

One-loop amplitudes with off-shell gluons

One-loop amplitudes with off-shell gluons Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland E-mail: hameren@ifj.edu.pl I report on recent progress in the calculation of cross sections within factorization prescriptions

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado JAMboree Theory Center Jamboree Jefferson Lab, Dec 13, 2013 Introduction Hadrons composed of quarks and gluons scattering off partons Parton distribution functions Plausible at high energies (from GeV):

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

PoS(Confinement X)133

PoS(Confinement X)133 Endpoint Logarithms in e + e J/ψ + η c Geoffrey T. Bodwin HEP Division, Argonne National Laboratory E-mail: gtb@hep.anl.gov Department of Physics, Korea University E-mail: neville@korea.ac.kr Jungil Lee

More information

Non-perturbative momentum dependence of the coupling constant and hadronic models

Non-perturbative momentum dependence of the coupling constant and hadronic models Non-perturbative momentum dependence of the coupling constant and hadronic models Pre-DIS Wokshop QCD Evolution Workshop: from collinear to non collinear case April 8-9, 2011 JLab Aurore Courtoy INFN-Pavia

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 7 TH GHP WORKSHOP FEBRUARY 1-3, 2017 WASHINGTON, DC Simonetta Liuti University of Virginia 2/1/17 2 and A. Rajan et al., soon to be posted 2/1/17 3 Outline 1. Definitions

More information

Internal structure of the pion inspired by the AdS/QCD correspondence

Internal structure of the pion inspired by the AdS/QCD correspondence Internal structure of the pion inspired by the AdS/QCD correspondence Sabrina Cotogno Vrije Universiteit and Nikhef, Amsterdam Supervisor: Prof. P.J.G. Mulders In collaboration with Prof. Alessandro Bacchetta

More information

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

QCD at the LHC Joey Huston Michigan State University

QCD at the LHC Joey Huston Michigan State University QCD at the LHC Joey Huston Michigan State University Some references CHS over 1500 downloads so far arxiv:07122447 Dec 14, 2007 goal is to provide a reasonably global picture of LHC calculations (with

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and University of Rzeszów, PL-35-959 Rzeszów, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Anna Rybarska Institute of Nuclear Physics, PL-31-342 Cracow,

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information