High-energy amplitudes in N=4 SYM

Size: px
Start display at page:

Download "High-energy amplitudes in N=4 SYM"

Transcription

1 High-energy amplitudes in N=4 SYM I. Balitsky JLAB & ODU Regensburg 15 July 014 I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

2 Outline Regge limit in a conformal theory. High-energy scattering and Wilson lines. Evolution equation for color dipoles. Leading order: BK equation. NLO BK kernel in N = 4. NLO amplitude in N = 4 SYM Conclusions 1 I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 / 50

3 Outline Regge limit in a conformal theory. High-energy scattering and Wilson lines. Evolution equation for color dipoles. Leading order: BK equation. NLO BK kernel in N = 4. NLO amplitude in N = 4 SYM Conclusions 1 Light-ray operators. BFKL representation of 4-point correlation function in N = 4 SYM. DGLAP representation of 4-point correlation function. Anomalous dimensions from DGAP vs BFKL representations. Conclusions I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 / 50

4 Conformal four-point amplitude A(x, y, x, y ) = (x y) 4 (x y ) 4 N c O(x)O (y)o(x )O (y ) O = Tr{Z } (Z = 1 (φ 1 + iφ )) - chiral primary operator In a conformal theory the amplitude is a function of two conformal ratios A = F(R, R ) R = (x y) (x y ) (x x ) (y y ), R = (x y) (x y ) (x y ) (x y) At large N c A(x, y, x, y ) = A(λ; x, y, x, y ) λ = g N c t Hooft coupling I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

5 Conformal four-point amplitude A(x, y, x, y ) = (x y) 4 (x y ) 4 N c O(x)O (y)o(x )O (y ) O = Tr{Z } (Z = 1 (φ 1 + iφ )) - chiral primary operator In a conformal theory the amplitude is a function of two conformal ratios A = F(R, R ) R = (x y) (x y ) (x x ) (y y ), R = (x y) (x y ) (x y ) (x y) At large N c A(x, y, x, y ) = A(λ; x, y, x, y ) λ = g N c t Hooft coupling Our goal is perturbative expansion and resummation of (λ ln s) n at large energies in the next-to-leading approximation (λ ln s) n (c LO n + c NLO n λ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

6 Regge limit in the coordinate space Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Full 4-dim conformal group: A = F(R, r) R = (x y) (x y ) (x x ) (y y ) ρ ρ x + x +y y (x x ) (y y ) r = [(x y) (x y ) (x y) (x y ) ] (x x ) (y y ) (x y) (x y ) [(x y ) x +y + x +y (x y) + x +y (x y) + x +y (x y ) ] (x x ) (y y ) x +x + y y I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

7 4-dim conformal group versus SL(, C) Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Regge limit symmetry: -dim conformal group SL(, C) formed from P 1, P, M 1, D, K 1 and K which leave the plane (0, 0, z ) invariant. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

8 Pomeron in a conformal theory f + (ω) = eiπω 1 sin πω Ω(r, ν) = A(x, y; x, y ) s = i dν f + (ω(λ, ν))f(λ, ν)ω(r, ν)r ℵ(λ,ν)/ - signature factor sin νρ sinh ρ, cosh ρ = r - solution of the eqn ( H3 + ν + 1)Ω(r, ν) = 0 The dynamics is described by: ω(λ, ν) - pomeron intercept, and F(λ, ν) - pomeron residue. L. Cornalba (007) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

9 Pomeron in a conformal theory A(x, y; x, y ) s = i dν f + (ω(λ, ν))f(λ, ν)ω(r, ν)r ω(λ,ν)/ Pomeron intercept ω(ν, λ) is known in two limits: 1. λ 0 : ω(ν, λ) = λ π χ(ν) + λ ω 1 (ν) +... χ(ν) = ψ(1) ψ( 1 + iν) ψ( 1 iν) - BFKL intercept, ω 1 (ν) - NLO BFKL intercept Lipatov, Kotikov (000). λ : AdS/CFT ω(ν, λ) = ν + 4 λ +... = gravition spin, next term - Brower, Polchinski, Strassler, Tan (006) Cornalba, Costa, Penedones (007) Now: two more terms ( λ 1 and λ 3/ ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

10 Pomeron in a conformal theory A(x, y; x, y ) s = i dν f + (ω(λ, ν))f(λ, ν)ω(r, ν)r ω(λ,ν)/ The function F(ν, λ) in two limits: F 0 (ν) = 1. λ 0 : F(ν, λ) = λ F 0 (ν) + λ 3 F 1 (ν) +... π sinh πν 4ν cosh 3 πν Cornalba, Costa, Penedones (007) F 1 (ν) = see below G. Chirilli and I.B. (009). λ : AdS/CFT ω(ν, λ) = π 3 ν 1 + ν sinh πν +... L.Cornalba (007) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

11 Pomeron in a conformal theory A(x, y; x, y ) s = i dν f + (ω(λ, ν))f(λ, ν)ω(r, ν)r ω(λ,ν)/ The function F(ν, λ) in two limits: F 0 (ν) = 1. λ 0 : F(ν, λ) = λ F 0 (ν) + λ 3 F 1 (ν) +... π sinh πν 4ν cosh 3 πν Cornalba, Costa, Penedones (007) F 1 (ν) = see below G. Chirilli and I.B. (009). λ : AdS/CFT ω(ν, λ) = π 3 ν 1 + ν sinh πν +... L.Cornalba (007) We calculate F 1 (ν) (and confirm ω 1 (ν)) using the expansion of high-energy amplitudes in Wilson lines (color dipoles) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

12 Light-cone expansion and DGLAP evolution in the NLO k > µ k < µ µ - factorization scale (normalization point) k > µ - coefficient functions k < µ - matrix elements of light-ray operators (normalized at µ ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

13 Light-cone expansion and DGLAP evolution in the NLO k > µ k < µ µ - factorization scale (normalization point) k > µ - coefficient functions k < µ - matrix elements of light-ray operators (normalized at µ ) OPE in light-ray operators (x y) 0 T{j µ (x)j ν (y)} = x [ ξ π x α ] s π (ln x µ + C) ψ(x)γµ γ ξ γ ν [x, y]ψ(y) + O( 1 x ) [x, y] Pe ig 1 0 du (x y)µ A µ(ux+(1 u)y) - gauge link I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

14 Light-cone expansion and DGLAP evolution in the NLO k > µ k < µ µ - factorization scale (normalization point) k > µ - coefficient functions k < µ - matrix elements of light-ray operators (normalized at µ ) Renorm-group equation for light-ray operators DGLAP evolution of parton densities (x y) = 0 µ d dµ ψ(x)[x, y]ψ(y) = K LO ψ(x)[x, y]ψ(y) + αs K NLO ψ(x)[x, y]ψ(y) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

15 Four steps of an OPE To factorize an amplitude into a product of coefficient functions and matrix elements of relevant operators. To find the evolution equations of the operators with respect to factorization scale. To solve these evolution equations. To convolute the solution with the initial conditions for the evolution and get the amplitude I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

16 DIS at high energy: relevant operators At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): d k A(s) = 4π IA (k ) B Tr{U(k )U ( k )} B [ ] U(x ) = Pexp ig du n µ A µ (un + x ) Wilson line I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

17 DIS at high energy: relevant operators At high energies, particles move along straight lines the amplitude of γ A γ A scattering reduces to the matrix element of a two-wilson-line operator (color dipole): d k A(s) = 4π IA (k ) B Tr{U(k )U ( k )} B [ ] U(x ) = Pexp ig du n µ A µ (un + x ) Wilson line Formally, means the operator expansion in Wilson lines I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

18 Rapidity factorization Y > Y < η - rapidity factorization scale Rapidity Y > η - coefficient function ( impact factor ) Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapidity divergence cut by η [ ] = Pexp ig dx + A η + (x +, x ) U η x A η µ(x) = d 4 k (π) 4 θ(eη α k )e ik x A µ (k) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

19 Spectator frame: propagation in the shock-wave background. Boosted Field Each path is weighted with the gauge factor Pe ig dx µa µ. Quarks and gluons do not have time to deviate in the transverse space we can replace the gauge factor along the actual path with the one along the straight-line path. z z x y Wilson Line [ x z: free propagation] [U ab (z ) - instantaneous interaction with the η < η shock wave] [ z y: free propagation ] I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

20 High-energy expansion in color dipoles Y > Y < The high-energy operator expansion is T{ĵ µ (x)ĵ ν (y)} = d z 1 d z Iµν LO (z 1, z, x, y)tr{ûz η 1 Û z η } + NLO contribution I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

21 High-energy expansion in color dipoles Y > Y < η - rapidity factorization scale Evolution equation for color dipoles d dη tr{uη x U η y } = α s π d (x y) z (x z) (y z) [tr{uη x U y η }tr{ux η U η N c tr{u η x U η y }] + α s K NLO tr{u η x U η y } + O(α s ) (Linear part of K NLO = K NLO BFKL ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50 y }

22 Evolution equation for color dipoles To get the evolution equation, consider the dipole with the rapidies up to η 1 and integrate over the gluons with rapidities η 1 > η > η. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidities up to η ). α s (η 1 η )K evol I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

23 Evolution equation in the leading order d dη Tr{Û x Û y} = K LO Tr{Û x Û y} +... d dη Tr{Û x Û y} shockwave = K LO Tr{Û x Û y} shockwave x a x * x x x x * * x a x * x b a a b y b (a) (b) (c) (d) b U ab z = Tr{t a U z t b U z } (U x U y) η 1 (U x U y) η 1 + α s (η 1 η )(U x U z U z U y) η Evolution equation is non-linear I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

24 Non linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

25 Non-linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) LLA for DIS in pqcd BFKL (LLA: α s 1, α s η 1) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

26 Non-linear evolution equation Û(x, y) 1 1 N c Tr{Û(x )Û (y )} BK equation d dη Û(x, y) = α sn c π d z (x y) } {Û(x, z) + (x z) (y z) Û(z, y) Û(x, y) Û(x, z)û(z, y) I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK ( ) LLA for DIS in pqcd BFKL (LLA: α s 1, α s η 1) LLA for DIS in sqcd BK eqn (LLA: α s 1, α s η 1, α s A 1/3 1) (s for semiclassical) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

27 Conformal invariance of the BK equation Formally, a light-like Wilson line [ p 1 + x, p 1 + x ] = Pexp { ig } dx + A + (x +, x ) is invariant under inversion (with respect to the point with x = 0). I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

28 Conformal invariance of the BK equation Formally, a light-like Wilson line [ p 1 + x, p 1 + x ] = Pexp { ig } dx + A + (x +, x ) is invariant under inversion (with respect to the point with x = 0). Indeed, (x +, x ) = x after the inversion x x /x and x+ x + /x I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

29 Conformal invariance of the BK equation Formally, a light-like Wilson line [ p 1 + x, p 1 + x ] = Pexp { ig } dx + A + (x +, x ) is invariant under inversion (with respect to the point with x = 0). Indeed, (x +, x ) = x after the inversion x x /x and x+ x + /x { [ p 1 +x, p 1 +x ] Pexp ig d x+ x A + ( x+ x, x } x ) = [ p 1 + x x, p 1 + x x ] I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

30 Conformal invariance of the BK equation Formally, a light-like Wilson line [ p 1 + x, p 1 + x ] = Pexp { ig } dx + A + (x +, x ) is invariant under inversion (with respect to the point with x = 0). Indeed, (x +, x ) = x after the inversion x x /x and x+ x + /x { [ p 1 +x, p 1 +x ] Pexp ig d x+ x A + ( x+ x, x } x ) = [ p 1 + x x, p 1 + x x ] The dipole kernel is invariant under the inversion V(x ) = U(x /x ) d dη Tr{V xv y } = α s d z (x y) z 4 π z 4 (x z) (z y) [Tr{V xv z }Tr{V z V y } N c Tr{V x V y }] I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

31 Conformal invariance of the BK equation SL(,C) for Wilson lines Ŝ i (K1 + ik ), Ŝ 0 i (D + im1 ), Ŝ + i (P1 ip ) 1 [Ŝ 0, Ŝ ± ] = ±Ŝ ±, [Ŝ +, Ŝ ] = Ŝ 0, [Ŝ, Û(z, z)] = z z Û(z, z), [Ŝ 0, Û(z, z)] = z z Û(z, z), [Ŝ +, Û(z, z)] = z Û(z, z) z z 1 + iz, z z 1 + iz, U(z ) = U(z, z) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 / 50

32 Conformal invariance of the BK equation SL(,C) for Wilson lines Ŝ i (K1 + ik ), Ŝ 0 i (D + im1 ), Ŝ + i (P1 ip ) 1 [Ŝ 0, Ŝ ± ] = ±Ŝ ±, [Ŝ +, Ŝ ] = Ŝ 0, [Ŝ, Û(z, z)] = z z Û(z, z), [Ŝ 0, Û(z, z)] = z z Û(z, z), [Ŝ +, Û(z, z)] = z Û(z, z) z z 1 + iz, z z 1 + iz, U(z ) = U(z, z) Conformal invariance of the evolution kernel d dη [Ŝ, Tr{U x U y}] = α sn c π dz K(x, y, z)[ŝ, Tr{U x U z }Tr{U z U y}] [ x x + y y + ] z K(x, y, z) = 0 z I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 / 50

33 Conformal invariance of the BK equation SL(,C) for Wilson lines Ŝ i (K1 + ik ), Ŝ 0 i (D + im1 ), Ŝ + i (P1 ip ) 1 [Ŝ 0, Ŝ ± ] = ±Ŝ ±, [Ŝ +, Ŝ ] = Ŝ 0, [Ŝ, Û(z, z)] = z z Û(z, z), [Ŝ 0, Û(z, z)] = z z Û(z, z), [Ŝ +, Û(z, z)] = z Û(z, z) z z 1 + iz, z z 1 + iz, U(z ) = U(z, z) Conformal invariance of the evolution kernel d dη [Ŝ, Tr{U x U y}] = α sn c π dz K(x, y, z)[ŝ, Tr{U x U z }Tr{U z U y}] [ x x + y y + ] z K(x, y, z) = 0 z In the leading order - OK. In the NLO -? I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July 014 / 50

34 Expansion of the amplitude in color dipoles in the NLO Y > Y < The high-energy operator expansion is T{Ô(x)Ô(y)} = d z 1 d z I LO (z 1, z )Tr{Ûz η 1 Û z η } + d z 1 d z d z 3 I NLO (z 1, z, z 3 )[ 1 Tr{T n Ûz η N 1 Û z η 3 T n Ûz η 3 Û z η } Tr{Ûz η 1 Û z η }] c In the leading order - conf. invariant impact factor I LO = x + y + π Z1, Z i (x z i) (y z i) CCP, 007 Z x + y + I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

35 NLO impact factor z z 1 z z z 1 z y z 3 x y z 3 x z z (a) I NLO (x, y; z 1, z, z 3 ; η) = I LO λ z [ 13 π z ln σs 1 z 3 4 Z 3 iπ ] + C The NLO impact factor is not Möbius invariant the color dipole with the cutoff η is not invariant However, if we define a composite operator (a - analog of µ for usual OPE) (b) [Tr{Ûz η 1 Û z η } ] conf + λ π = Tr{Û η z 1 Û η z } d z 1 z 3 z [Tr{T n Û 13 z z η 1 Û z η 3 T n Ûz η 3 Û z η } N c Tr{Ûz η 1 Û z η }] ln az 1 3 z 13 z 3 + O(λ ) the impact factor becomes conformal in the NLO. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

36 Operator expansion in conformal dipoles T{Ô(x)Ô(y)} = + d z 1 d z I LO (z 1, z )Tr{Û η z 1 Û η z } conf d z 1 d z d z 3 I NLO (z 1, z, z 3 )[ 1 N c Tr{T n Û η z 1 Û η z 3 T n Û η z 3 Û η z } Tr{Û η z 1 Û η z }] I NLO = I LO λ π z [ 1 dz 3 z 13 z 3 ln z 1 eη as ] z Z 13 z 3 iπ + C 3 The new NLO impact factor is conformally invariant Tr{Û η z 1 Û η z } conf is Möbius invariant We think that one can construct the composite conformal dipole operator order by order in perturbation theory. Analogy: when the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator in must be corrected by finite counterterms order by order in perturbaton theory. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

37 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

38 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

39 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) We calculate the matrix element of the r.h.s. in the shock-wave background α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

40 Definition of the NLO kernel In general d dη Tr{Û x Û y} = α s K LO Tr{Û x Û y} + α s K NLO Tr{Û x Û y} + O(α 3 s ) α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) We calculate the matrix element of the r.h.s. in the shock-wave background α s K NLO Tr{Û x Û y} = d dη Tr{Û x Û y} α s K LO Tr{Û x Û y} + O(α 3 s ) Subtraction [ ] of the (LO) contribution (with the rigid rapidity cutoff) 1 v prescription in the integrals over Feynman parameter v Typical integral dv 1 [ 1 ] (k p) v + p (1 v) v = 1 + p ln (k p) p I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

41 Gluon part of the NLO BK kernel: diagrams (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

42 Diagrams for 1 3 dipoles transition (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XV) (XXVI) (XXVII) (XVIII) (XXIX) (XXX) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

43 Diagrams for 1 3 dipoles transition (XXXI) (XXXII) (XXXIII) (XXXIV) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

44 "Running coupling" diagrams x y (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

45 1 dipole transition diagrams a x x a x x x a x x x x a * * a x * * * q q q q q b b b c c b b k k k k k k k k k k c d (a) c d d (b) (c) d c (d) (e) x x x x x * x x x x x * * * * a a a b q q q b a q a k q k k k d d d k d c k k k k c c k c c (f) (g) b (h) b (i) b (j) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

46 Gluino and scalar loops I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

47 Evolution equation for color dipole in N = 4 (I.B. and G. Chirilli) d dη Tr{Ûη z 1 Û η = α s π z } d z { 1 z 3 z 13 z 3 [Tr{T a Ûz η 1 Û z η 3 T a Ûz η 3 Û η α s d z 3 d z 4 z 1 z 34 4π 4 1 α sn c 4π [ π 3 + ln z 13 z 1 z } N c Tr{Ûz η 1 Û z η }] [ 1 + z 1 z 34 ln z ]} 3 z 1 ] ln z 13 z 4 z 14 z 3 z 4 34 z 13 z 4 z 13 z 4 z 3 z 14 Tr{[T a, T b ]Ûz η 1 T a T b Û z η + T b T a Ûz η 1 [T b, T a ]Û z η }(Ûz η 3 ) aa (Ûz η 4 Ûz η 3 ) bb NLO kernel = Non-conformal term + Conformal term. Non-conformal term is due to the non-invariant cutoff α < σ = e η in the rapidity of Wilson lines. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

48 Evolution equation for color dipole in N = 4 (I.B. and G. Chirilli) d dη Tr{Ûη z 1 Û η = α s π z } d z { 1 z 3 z 13 z 3 [Tr{T a Ûz η 1 Û z η 3 T a Ûz η 3 Û η α s d z 3 d z 4 z 1 z 34 4π 4 1 α sn c 4π [ π 3 + ln z 13 z 1 z } N c Tr{Ûz η 1 Û z η }] [ 1 + z 1 z 34 ln z ]} 3 z 1 ] ln z 13 z 4 z 14 z 3 z 4 34 z 13 z 4 z 13 z 4 z 3 z 14 Tr{[T a, T b ]Ûz η 1 T a T b Û z η + T b T a Ûz η 1 [T b, T a ]Û z η }(Ûz η 3 ) aa (Ûz η 4 Ûz η 3 ) bb NLO kernel = Non-conformal term + Conformal term. Non-conformal term is due to the non-invariant cutoff α < σ = e η in the rapidity of Wilson lines. For the conformal composite dipole the result is Möbius invariant I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

49 Evolution equation for composite conformal dipoles in N = 4 d [ Tr{Û z η dη 1 Û z η } ] conf = α s π α s 4π 4 d z 3 z 1 z 13 z 3 [ 1 α sn c 4π d z 3 d z 4 z 1 z 13 z 4 z 34 π ] [Tr{T a Û η z1 3 Û η z 3 T a Û z3 Û z η } N c Tr{Ûz η 1 Û z η } ] conf ] { ln z 1 z 34 z + 14 z 3 [ 1 + z 1 z 34 ln z 13 z } 4 z 14 z 3 z 13 z 4 z 14 z 3 Tr{[T a, T b ]Ûz η 1 T a T b Û z η + T b T a Ûz η 1 [T b, T a ]Û z η }[(Ûz η 3 ) aa (Ûz η 4 ) bb (z 4 z 3 )] Now Möbius invariant! I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

50 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y (x y) 4 (x y ) 4 T{Ô(x)Ô (y)ô(x )Ô (y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) a 0 = x+y+ (x y), b 0 = x y (x y ) impact factors do not scale with energy all energy dependence is contained in [DD] a0,b0 (a 0 b 0 = R) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

51 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y (x y) 4 (x y ) 4 T{Ô(x)Ô (y)ô(x )Ô (y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Impact factor (R = (x y) z 1 x +y +Z 1Z - conf. ratio) IF a0 = dν dz 0 R 1 +iν( 1 + α sn c [π π 3 + 4χ(ν) ν π ] ) cosh U a0 (z 0, ν) πν U a (z 0, ν) = 1 d z 1 d z ( z ) 1 1 iν π z 4 1 z U(z 1, z ), U 1 1 Tr{U z1 U 10 z z 0 N } c I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

52 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y (x y) 4 (x y ) 4 T{Ô(x)Ô (y)ô(x )Ô (y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Dipole-dipole scattering χ(γ) C ψ(γ) ψ(1 γ), γ 1 + iν ( z ) 1 1 [DD] = dν dz +iν ( z ) 1 1 iν 0 z 10 z 0 z D( 1 + iν; λ)rω(ν)/ 10 z 0 Γ( γ)γ(γ 1) { D(γ; λ) = 1 + α [ sn c 4χ(ν) Γ(1 + γ)γ( γ) π 1 + 4ν π 3 + iπ N c 4 ] } Nc + O(g 4 ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

53 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y (x y) 4 (x y ) 4 T{Ô(x)Ô (y)ô(x )Ô (y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Result : F(ν) = N c 4π 4 αs Nc 1 cosh πν (G.A. Chirilli and I.B.) { 1 + α [ sn c π π π cosh πν ν + iπ N c 4 ]} Nc I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

54 Conclusions High-energy operator expansion in color dipoles works at the NLO level. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

55 Conclusions High-energy operator expansion in color dipoles works at the NLO level. The NLO BK kernel in for the evolution of conformal composite dipoles in N = 4 SYM is Möbius invariant in the transverse plane. The NLO BK kernel agrees with NLO BFKL equation. The correlation function of four Z operators is calculated at the NLO BFKL order. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

56 NLO BFKL and anomalous dimensions of light-ray operators Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

57 NLO BFKL and anomalous dimensions of light-ray operators Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(n, α s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

58 NLO BFKL and anomalous dimensions of light-ray operators Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(n, α s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

59 NLO BFKL and anomalous dimensions of light-ray operators Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(n, α s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. Q: which one? A: gluon light-ray (LR) operator I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

60 Light-ray operators and parton densities Gluon light-ray (LR) operator of twist F a i(x + + x )[x +, x + ] ab F b i (x + + x ) Forward matrix element - gluon parton density 1 z µ z ν p Fµξ(z)[z, a 0] ab Fν bξ (0) p µ z =0 = (pz) dx B x B D g (x B, µ) cos(pz)x B Evolution equation (in gluodynamics) µ d dµ Fa i(x + + x )[x +, x + ] ab F b i (x + + x ) = x + x + dz + z + x + 0 dz + K(x +, x + ; z +, z + ; α s )F a i(z + + x )[z +, z + ] ab F b i (z + + x ) Forward LR operator F(L +, x ) = dx + F i(l a + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

61 Light-ray operators and parton densities Expansion in ( forward ) local operators F(L +, x ) = n= Evolution equation for F(L +, x ) L n + (n )! Og n(x ), O g n dx + F i a n Fai (x +, x ) µ d dµ F(L +, x ) = γ n (α s ) = u 1 K gg - DGLAP kernel du K gg (u, α s )F(uL +, x ) du u n K gg (u, α s ) µ d dµ Og n = γ n (α s )O g n u 1 K gg (u) = α ( [ sn c 1 ūu + π ūu] + 11 ) + 1 δ(ū) + higher orders in α s I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

62 Light-ray operators Conformal LR operator (j = 1 + iν) F µ (L +, x ) = F µ j (x ) = 0 dν π (L +) 3 +iν F µ 1 dl + L 1 j + F µ (L +, x ) +iν(x ) Evolution equation for forward conformal light-ray operators µ d dµ F j(z ) = 1 γ j (α s ) is an analytical continuation of γ n (α s ) 0 du K gg (u, α s )u j F j (z ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

63 Supermultiplet of LR operators Gluino and scalar LR operators Λ(L +, x ) = i dx + [ λ a (L + + x + + x )[x + + x +, x + ] ab σ λ b (x + + x ) + c.c] Φ(L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Λ j (x ) = 0 SU 4 singlet LR operators. dl + L j+1 + Λ(L +, x ), Φ j (x ) = 0 dl + L j+1 + Φ(L +, x ) S 1j (x ) = F j (x ) + j 1 8 Λ j(j 1) j(x ) Φ j (x ) 8 S j (x ) = F j (x ) 1 8 Λ j(j + 1) j(x ) + Φ j (x ) 4 S 3j (x ) = F j (x ) j + 4 Λ (j + 1)(j + ) j(x ) Φ j (x ) 8 All operators have the same anomalous dimension γ S 1 j (α s ) γ j (α s ) = α s π N c[ψ(j 1) + C] + O(αs ), γ S j = γ S 1 j+1, γs 3 j = γ S 1 j+ I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

64 Three-point CF of LR operator and two locals Three-point correlation function of local operators (O = φ a I φa I - Konishi operator) (µ z 3) γ K S 1n (z 1 )O(z )O(z 3 ) = c n [1 + ( 1) n ] z 1 z 13 z 3 ( z1 z 1 z 13 z 13 x3 (µ x3 ) γ K dx 1+ S 1n (x 1+, x 1 )O(x, x )O(x 3, x 3 ) ) n ( µ z 3 z 1 z 13 ) 1 γ(n,αs) = πi c n[1 + ( 1) n ] Γ(1 + n + γ n ) ( x3 ) ( 1+ γn x 1 x3 4 Γ (1 + n + 1 γ + x ) 13 1 n γn n) x x 3 x x 3 CF of light-ray operator and two local operators x 3 (µ x 3 ) γ K S 1j (x 1 )O(x, x )O(x 3, x 3 ) = πi c j[1 + e iπj ] Γ(1 + j + γ j ) ( x3 ) γ 1+ j ( x x3 4 Γ (1 + j γ + x ) 13 1 j γj j) x x 3 x x 3 I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

65 Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 1 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

66 Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 1 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] Limit x 3 0 (µ ) γ K dx 3 S j + (x 1 )O(L + x 3, x )O(x 3, x 3 ) = Γ( 1 + j + γ ) c(j, α s )[1 + e iπj ]L j Γ( + j + γ) (x1 ) 1+j (µ x1 (µ )γ(j,αs) ) γ(j,αs) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

67 Light-cone OPE Light-ray operators in (+) and (-) directions: Φ + (L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Φ + j (x ) = dl + L j+1 + Φ(L +, x ) 0 Φ (L, x ) = dx + φ a,i (L + x + x )[x + x, x ] ab + φ b,i (x + x ) Φ j (x ) = 0 dl L j+1 + Φ(L, x ) and similarly for Λ j s and G j s CF of two LRs : S + j= 3 +iν(x 1 )S j = 3 +iν (x 3 ) = δ(ν ν )a(j, α s ) (x 13 ) j+1 (x 13 µ ) γ(j,αs) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

68 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = 1 +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

69 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = 1 +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

70 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = 1 +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = 1 +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

71 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = 1 +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = = 1 +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 1 +i dj C(j, α s ) 1 i 1 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

72 Light-cone limit of Cornalba s formula Cornalba s formula as x 1 0 [x 1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π L + L 1 0 tanh πν ( x dudv dν 1 x 34 ūu vv ) 1 +iν ( L + L ūu vv ν cosh πν [x13 v + x 14 v] x 1 x 34 ) ℵ(ν)/f+ = iα s 8 π 1 1 +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) = BFKL representation of the amplitude in the (Regge) + (x1 0) limit I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

73 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = 1 +i dj C(j, α s ) 1 i 1 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

74 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = 1 +i dj C(j, α s ) 1 i 1 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π 1 1 +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

75 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = 1 +i dj C(j, α s ) 1 i 1 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π 1 1 +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] We compare these results around ξ j 1 0 ℵ(ξ) ℵ(ξ)ℵ (ξ) α sn c πξ +ζ(3)α s ξ 1 + ℵ(ξ, α s ) = j and γ(j, α s ) = ξ ℵ(ξ) +... γ j = α sn c π(j 1) ℵ(ξ) (L + L ) 1+ℵ(ξ) s N c α + [0 + ζ(3)(j 1)]( π(j 1) )) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

76 Result γ j = α sn c π(j 1) s N c α + [0 + ζ(3)(j 1)]( π(j 1) )) is an anomalous dimension of light-ray operator F j F(x ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

77 Conclusion and Outlook 1 Conclusion: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

78 Conclusion and Outlook 1 Conclusion: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) Outlook In QCD 3-point CF of F ω1 1 F(x 1 ) F ω 1 F(x ) F ω3 1 F(x 3 ) as ω 1, ω, ω 3 0 (joint project with V. Kazakov and E. Sobko): I. Balitsky (JLAB & ODU) High-energy amplitudes in N=4 SYM Regensburg 15 July / 50

Rapidity evolution of Wilson lines

Rapidity evolution of Wilson lines Rapidity evolution of Wilson lines I. Balitsky JLAB & ODU QCD evolution 014 13 May 014 QCD evolution 014 13 May 014 1 / Outline 1 High-energy scattering and Wilson lines High-energy scattering and Wilson

More information

Solution of the NLO BFKL Equation from Perturbative Eigenfunctions

Solution of the NLO BFKL Equation from Perturbative Eigenfunctions Solution of the NLO BFKL Equation from Perturbative Eigenfunctions Giovanni Antonio Chirilli The Ohio State University JLAB - Newport News - VA 0 December, 013 G. A. Chirilli (The Ohio State Uni.) Solution

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

High energy scattering in QCD and in quantum gravity

High energy scattering in QCD and in quantum gravity High energy scattering in QCD and in quantum gravity. Gribov Pomeron calculus. BFKL equation L. N. Lipatov Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg, Russia Content 3. Integrability

More information

High-energy amplitudes and impact factors at next-to-leading order

High-energy amplitudes and impact factors at next-to-leading order High-energ amplitudes and impact factors at net-to-leading order CPHT, École Poltechnique, CNRS, 9118 Palaiseau Cede, France & LPT, Université Paris-Sud, CNRS, 91405 Orsa, France E-mail: giovanni.chirilli@cpht.poltechnique.fr

More information

TMDs at small-x: an Operator Treatment

TMDs at small-x: an Operator Treatment TMDs at small-x: an Operator Treatment Yuri Kovchegov The Ohio State University work with Dan Pitonyak and Matt Sievert, arxiv:76.436 [nucl-th] and 5 other papers + papers in preparation Outline Goal:

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

Small-x Scattering and Gauge/Gravity Duality

Small-x Scattering and Gauge/Gravity Duality Small-x Scattering and Gauge/Gravity Duality Marko Djurić University of Porto work with Miguel S. Costa and Nick Evans [Vector Meson Production] Miguel S. Costa [DVCS] Richard C. Brower, Ina Sarcevic and

More information

Photon-Photon Diffractive Interaction at High Energies

Photon-Photon Diffractive Interaction at High Energies Photon-Photon Diffractive Interaction at High Energies Cong-Feng Qiao Graduate University Chinese Academy of Sciences December 17,2007 1 Contents Brief About Diffractive Interaction Leading Order Photon

More information

High Energy QCD and Pomeron Loops

High Energy QCD and Pomeron Loops High Energy QCD and Pomeron Loops Dionysis Triantafyllopoulos Saclay (CEA/SPhT) Based on : E. Iancu, D.N.T., Nucl. Phys. A 756 (2005) 419, Phys. Lett. B 610 (2005) 253 J.-P. Blaizot, E. Iancu, K. Itakura,

More information

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit PACIFIC 2015 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12-19, 2015, Moorea, French Polynesia Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT Chung-I Tan Brown University Dec. 19, 2008 Miami R. Brower, J. Polchinski, M. Strassler, and C-I Tan, The Pomeron and Gauge/String

More information

Rapidity factorization and evolution of TMD s

Rapidity factorization and evolution of TMD s Rapidity factorization and evolution of TMD s I. Balitsky JLAB & ODU INT 8 Nov 208 I. Balitsky (JLAB & ODU) Rapidity factorization and evolution of TMD s INT 8 Nov 208 / 53 Outline TMD factorization for

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Spiky strings, light-like Wilson loops and a pp-wave anomaly Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arxiv:080.039 A. Tseytlin, M.K. arxiv:0804.3438 R. Ishizeki, A. Tirziu, M.K. Summary Introduction

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

Hard processes in AdS/CFT

Hard processes in AdS/CFT Hard processes in AdS/CFT Yoshitaka Hatta (Tsukuba U) Based on works done in collaboration with E. Iancu, T. Matsuo, A.H. Mueller, D. Triantafyllopoulos Outline Motivation High energy CD with a virtual

More information

Azimuthal angle decorrelation of Mueller Navelet jets at NLO

Azimuthal angle decorrelation of Mueller Navelet jets at NLO Azimuthal angle decorrelation of Mueller Navelet jets at NLO Physics Department, Theory Division, CERN, CH- Geneva 3, Switzerland E-mail: Agustin.Sabio.Vera@cern.ch F. Schwennsen II. Institut für Theoretische

More information

Integrability of Conformal Fishnet Theory

Integrability of Conformal Fishnet Theory Integrability of Conformal Fishnet Theory Gregory Korchemsky IPhT, Saclay In collaboration with David Grabner, Nikolay Gromov, Vladimir Kazakov arxiv:1711.04786 15th Workshop on Non-Perturbative QCD, June

More information

Photon from the Color Glass Condensate in the pa collision

Photon from the Color Glass Condensate in the pa collision Photon from the Color Glass Condensate in the pa collision Sanjin Benić (Tokyo) arxiv:1602.01989 Hard Probes 2016, Wuhan, China, 22 September - 27 September 2016 Motivation photon clean probes in pa initial

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

DGLAP and BFKL Equations in N = 4 Supersymmetric Gauge Theory

DGLAP and BFKL Equations in N = 4 Supersymmetric Gauge Theory Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 555 562 DGLAP and BFKL Equations in N = 4 Supersymmetric Gauge Theory A.V. KOTIKOV,L.N.LIPATOV and V.N. VELIZHANIN Univ.

More information

Resumming large collinear logarithms in the non-linear QCD evolution at high energy

Resumming large collinear logarithms in the non-linear QCD evolution at high energy Resumming large collinear logarithms in the non-linear QCD evolution at high energy Institut de physique théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France E-mail: edmond.iancu@cea.fr

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Analytical properties of NLL-BK equation

Analytical properties of NLL-BK equation Guillaume Beuf Brookhaven National Laboratory Institute for Nuclear Theory, Seattle, September 28, 2010 Outline 1 Introduction 2 Traveling wave solutions of BK with fixed coupling 3 Asymptotic behavior

More information

arxiv:hep-ph/ v1 29 Oct 2005

arxiv:hep-ph/ v1 29 Oct 2005 1 Electroproduction of two light vector mesons in next-to-leading BFKL D.Yu. Ivanov 1 and A. Papa arxiv:hep-ph/0510397v1 9 Oct 005 1 Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia Dipartimento

More information

arxiv:hep-ph/ v1 8 Jul 1996

arxiv:hep-ph/ v1 8 Jul 1996 Resummation at Large Q and at Small x CCUTH-96-04 arxiv:hep-ph/960756v1 8 Jul 1996 Hsiang-nan Li Department of Physics, National Chung-Cheng University, Chia-Yi, Taiwan, Republic of China PACS numbers:

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Testing Saturation Physics with pa collisions at NLO Accuracy

Testing Saturation Physics with pa collisions at NLO Accuracy Testing Saturation Physics with pa collisions at NLO Accuracy David Zaslavsky with Anna Staśto and Bo-Wen Xiao Penn State University January 24, 2014 Prepared for University of Jyväskylä HEP group seminar

More information

arxiv:hep-ph/ v1 5 Jun 1998

arxiv:hep-ph/ v1 5 Jun 1998 Highlights of the Theory arxiv:hep-ph/9806285v1 5 Jun 1998 Boris Z. Kopeliovich 1,2 and Robert Peschanski 3 1 Max-Planck-Institut für Kernphysik Postfach 30980, 69029 Heidelberg, Germany 2 Joint Institute

More information

arxiv:hep-ph/ v1 22 Dec 1999

arxiv:hep-ph/ v1 22 Dec 1999 DTP/99/4 DAMTP-999-79 Cavendish-HEP-99/9 BFKL Dynamics at Hadron Colliders arxiv:hep-ph/992469v 22 Dec 999 Carlo Ewerz a,b,, Lynne H. Orr c,2, W. James Stirling d,e,3 and Bryan R. Webber a,f,4 a Cavendish

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov

BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD. Mihail Braun, Andrey Tarasov BFKL pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD Mihail Braun, Andrey Tarasov QCD at high energies Strong interaction at high energies is mediated by the exchange of BFKL pomerons

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

arxiv: v3 [hep-th] 6 Oct 2008

arxiv: v3 [hep-th] 6 Oct 2008 Eikonal Methods in AdS/CFT: Regge Theory and Multi Reggeon Exchange arxiv:0710.5480v3 [hep-th] 6 Oct 008 Lorenzo Cornalba Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca Piazza della Scienza

More information

Summer Review Packet AP Calculus

Summer Review Packet AP Calculus Summer Review Packet AP Calculus ************************************************************************ Directions for this packet: On a separate sheet of paper, show your work for each problem in this

More information

NLO Calculations of Particle Productions in pa Collisions

NLO Calculations of Particle Productions in pa Collisions NLO Calculations of Particle Productions in pa Collisions Bo-Wen Xiao Institute of Particle Physics, Central China Normal University Detroit, Wayne State, August 22nd, 2013 1 / 38 Introduction 1 Introduction

More information

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude with L.N. Lipatov, D.A. Ross and G. Watt arxiv 1005.0355 Short overview of HERA data - evidence for Pomeron Discreet Pomeron of

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory PACIFIC 2014 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 15-20, 2014, Moorea, French Polynesia N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π, .3 Massive Gauge Boson Form Factor & Rapidity Divergences MORE SCET I APPLICATIONS then we may move all usoft wilson lines into the usoft part of the operator yielding,5 (c),5 (d) Q [h Γ Y T a Y h (b)

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion Three-loop evolution equation for non-singlet leading-twist operator based on: V. M. Braun, A. N. Manashov, S. Moch, M. S., not yet published, arxiv:1703.09532 Matthias Strohmaier University of Regensburg

More information

Gluon density and gluon saturation

Gluon density and gluon saturation Gluon density and gluon saturation Narodowe Centrum Nauki Krzysztof Kutak Supported by NCN with Sonata BIS grant Based on: Small-x dynamics in forward-central dijet decorrelations at the LHC A. van Hameren,

More information

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Di-hadron Angular Correlations as a Probe of Saturation Dynamics Di-hadron Angular Correlations as a Probe of Saturation Dynamics Jamal Jalilian-Marian Baruch College Hard Probes 2012, Cagliari, Italy Many-body dynamics of universal gluonic matter How does this happen?

More information

arxiv: v2 [hep-ph] 29 Jun 2012

arxiv: v2 [hep-ph] 29 Jun 2012 Inclusive Hadron Productions in pa Collisions Giovanni A. Chirilli, Bo-Wen Xiao, and Feng Yuan Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 947, USA Department of Physics,

More information

A Matrix Formulation for Small-x RG Improved Evolution

A Matrix Formulation for Small-x RG Improved Evolution A Matrix Formulation for Small-x RG Improved Evolution Marcello Ciafaloni ciafaloni@fi.infn.it University of Florence and INFN Florence (Italy) In collaboration with: D. Colferai G.P. Salam A.M. Staśto

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

Transverse Momentum Distributions: Matches and Mismatches

Transverse Momentum Distributions: Matches and Mismatches Transverse Momentum Distributions: Matches and Mismatches Ahmad Idilbi ECT* M.G. Echevarría, Ahmad Idilbi, Ignazio Scimemi. [arxiv:.947] MGE, AI, Andreas Schäfer, IS. [arxiv: 08.8] MGE, AI, IS. JHEP 07

More information

arxiv:hep-ph/ v4 24 Feb 1999

arxiv:hep-ph/ v4 24 Feb 1999 NUC-MN-99/-T TPI-MINN-99/5 Small x F Structure Function of a Nucleus Including Multiple Pomeron Exchanges arxiv:hep-ph/998v4 4 Feb 999 Yuri V. Kovchegov School of Physics and stronomy, University of Minnesota,

More information

Progress in understanding quantum spectrum of AdS 5 S 5 superstring

Progress in understanding quantum spectrum of AdS 5 S 5 superstring Progress in understanding quantum spectrum of AdS 5 S 5 superstring Arkady Tseytlin R. Roiban, AT, arxiv:0906.494, arxiv:0.09 M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arxiv:03.570 M. Beccaria,

More information

Pomeron and Odderon: Saturation and Confinement and Gauge/String Duality

Pomeron and Odderon: Saturation and Confinement and Gauge/String Duality Pomeron and Odderon: Saturation and Confinement and Gauge/String Duality Richard Brower 1, Marko Drjruc 2, Chung-I Tan 3 1 Physics Department, Boston University, Boston, MA 02215, USA. 2 Physics Department,

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab Probing small-x gluons in hadrons and nuclei Kazuhiro Watanabe Old Dominion University Jan 4, 2017 Jefferson Lab Kazuhiro Watanabe (ODU) Probing gluon saturation dynamics at small-x Jan 4, 2017 1 / 16

More information

Resummation at small x

Resummation at small x Resummation at small Anna Stasto Penn State University & RIKEN BNL & INP Cracow 09/13/0, INT Workshop, Seattle Outline Limitations of the collinear framework and the fied order (DGLAP) calculations. Signals

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

Generalized Loop Space and TMDs

Generalized Loop Space and TMDs Generalized Loop Space and TMDs Tom Mertens Igor O. Cherednikov Frederik F. Van der Veken P. Taels Universiteit Antwerpen JINR Dubna October 1, 2013 Table of contents 1 Motivation 2 Generalized Loop Space

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Initial conditions in heavy ion collisions

Initial conditions in heavy ion collisions Initial conditions in heavy ion collisions I Gluon production by external sources François Gelis - Tuomas Lappi CERN and CEA/Saclay General outline Lecture I : Gluon production by external sources Lecture

More information

arxiv: v2 [hep-th] 26 Feb 2008

arxiv: v2 [hep-th] 26 Feb 2008 CERN-PH-TH/008-07 DESY-08-05 BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes J. Bartels, L. N. Lipatov,, A. Sabio Vera 3 arxiv:080.065v [hep-th] 6 Feb 008 II. Institut Theoretical Physics,

More information

Resummed small-x and first moment evolution of fragmentation functions in pqcd

Resummed small-x and first moment evolution of fragmentation functions in pqcd Resummed small- and first moment evolution of fragmentation functions in pqcd Steve Kom University of Liverpool Presented at HP2: High Precision for Hard Processes, Munich 7 Sept 2012 Collaborators Talk

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

Nonperturbative QCD in pp scattering at the LHC

Nonperturbative QCD in pp scattering at the LHC Nonperturbative QCD in pp scattering at the LHC IX Simpósio Latino Americano de Física de Altas Energias SILAFAE Jochen Bartels, Hamburg University and Universidad Tecnica Federico Santa Maria Introduction:

More information

Triumvirate of Running Couplings in Small-x Evolution

Triumvirate of Running Couplings in Small-x Evolution Triumvirate of Running Couplings in Small-x Evolution arxiv:hep-ph/699v1 8 Sep 6 Yuri V. Kovchegov and Heribert Weigert Department of Physics, The Ohio State University Columbus, OH 431,USA September 6

More information

arxiv:hep-ph/ v1 15 Jul 1998

arxiv:hep-ph/ v1 15 Jul 1998 The DLLA limit of BFKL in the Dipole Picture arxiv:hep-ph/9807389v1 15 Jul 1998 M. B. Gay Ducati and V. P. Gonçalves Instituto de Física, Univ. Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970

More information

JIMWLK evolution: from principles to NLO

JIMWLK evolution: from principles to NLO JIMWLK evolution: from principles to NLO Alex Kovner University of Connecticut, Storrs, CT JLab, March 3, 2014 with... Misha Lublinsky, Yair Mulian Alex Kovner (UConn) JIMWLK evolution: from principles

More information

Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/ v1 17 Mar 1999

Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/ v1 17 Mar 1999 CERN-TH/99-64 MC-TH-99-4 SHEP-99/2 March 999 Rapidity veto effects in the NLO BFKL equation arxiv:hep-ph/99339v 7 Mar 999 J.R. Forshaw, D.A. Ross 2 and A. Sabio Vera 3 Theory Division, CERN, 2 Geneva 23,

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

arxiv: v2 [hep-th] 29 May 2014

arxiv: v2 [hep-th] 29 May 2014 Prepared for submission to JHEP DESY 14-057 Wilson loop OPE, analytic continuation and multi-regge limit arxiv:1404.6506v hep-th] 9 May 014 Yasuyuki Hatsuda DESY Theory Group, DESY Hamburg, Notkestrasse

More information

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT Malaysian Chromatically Journal of Mathematical Unique Biparte Sciences Graphs with 1(1: Certain 139-16 3-Independent (007 Partition Numbers III Chromatically Unique Bipartite Graphs With Certain 3-independent

More information

Hexagons and 3pt functions

Hexagons and 3pt functions Hexagons and 3pt functions Benjamin Basso ENS Paris Current Themes in Holography NBI Copenhagen 2016 based on work with Vasco Goncalves, Shota Komatsu and Pedro Vieira The spectral problem is solved O(x)

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

QFT 3 : Problem Set 1

QFT 3 : Problem Set 1 QFT 3 : Problem Set.) Peskin & Schroeder 5. (a.) The basis for the fundamental representation of SU(N) is formed by N N traceless Hermitian matrices. The number of such matrices is = N. For SU(3) this

More information

Spectrum of Holographic Wilson Loops

Spectrum of Holographic Wilson Loops Spectrum of Holographic Wilson Loops Leopoldo Pando Zayas University of Michigan Continuous Advances in QCD 2011 University of Minnesota Based on arxiv:1101.5145 Alberto Faraggi and LPZ Work in Progress,

More information

Multi-jet production and jet correlations at CMS

Multi-jet production and jet correlations at CMS Multi-jet production and jet correlations at Gábor I. Veres on behalf of the Collaboration CERN E-mail: gabor.veres@cern.ch Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential

More information

Violation of a simple factorized form of QCD amplitudes and Regge cuts

Violation of a simple factorized form of QCD amplitudes and Regge cuts Violation of a simple factorized form of QCD amplitudes and Regge cuts Author affiliation Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk Russia Novosibirsk State University, 630090 Novosibirsk,

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Anomalous Strong Coupling

Anomalous Strong Coupling Simons Center for Geometry and Physics, Stony Brook based on [Brenno Carlini Vallilo, LM, arxiv:1102.1219 [hep-th] ] for a pedagogical review, [LM, arxiv:1104.2604][hep-th] ] XI Workshop on Nonperturbative

More information

Diffusive scaling and the high energy limit of DDIS

Diffusive scaling and the high energy limit of DDIS RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: hatta@quark.phy.bnl.gov After reviewing the recent developments on the high energy evolution equation beyond the

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Scaling dimensions at small spin

Scaling dimensions at small spin Princeton Center for Theoretical Science Princeton University March 2, 2012 Great Lakes String Conference, Purdue University arxiv:1109.3154 Spectral problem and AdS/CFT correspondence Spectral problem

More information

Symmetric and Non-Symmetric Saturation. Overview

Symmetric and Non-Symmetric Saturation. Overview Symmetric and Non-Symmetric Saturation Leszek Motyka DESY Theory, Hamburg & Jagellonian University, Kraków motyka@mail.desy.de Overview BFKL Pomeron and Balitsky Kovchegov formalism Field theoretical formulation

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec Jets at the LHC New Possibilities Jeppe R. Andersen in collaboration with Jennifer M. Smillie Blois workshop, Dec 17 2011 Jeppe R. Andersen (CP 3 -Origins) Jets at the LHC Blois Workshop, Dec. 17 2011

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

t Hooft Loops and S-Duality

t Hooft Loops and S-Duality t Hooft Loops and S-Duality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators

More information

arxiv: v1 [hep-ph] 13 Nov 2017

arxiv: v1 [hep-ph] 13 Nov 2017 Using Light-Front Wave Functions arxiv:7.0460v [hep-ph] 3 Nov 07 Department of Physics, Indian Institute of Technology Bombay; Powai, Mumbai 400076, India E-mail: asmita@phy.iitb.ac.in We report on some

More information