Inference from Data Partitions

Size: px
Start display at page:

Download "Inference from Data Partitions"

Transcription

1 Inference from Data Parttons Rcardo Bórquez and Melvn Hnch May 18, Introducton Consder a statonary process X = {X t, t = 1, 2,..., T } defned on (Ω, F, {F t }, P ) where F denotes the Borel sets, {F t } s a fltraton and P s a probablty measure whch s assumed to be absolutely contnuous respect to the Lebesgue measure. For ths process we are nterested on testng any form of tme-dependence (lnear or nonlnear). Usually, we would expect a researcher to run some convenent test over the whole sample n order to nfer about the knd of dependence that s present n the data. For nstance, n the Box and Jenkns modellng strategy for ARMA models t s requred some nference over the whole sample usng the autocorrelaton and partal autocorrelaton functons n order to select the aproprate model, and t s also requred an nference procedure over the whole sample when selectng a parsmonous model usng nformaton crterons such that of Akake. However, n these examples as well as n several other statstcal settngs t s mplct that the result of the test does not depend on how we can parttonate the data, otherwse the nference made wthout ths addtonal nformaton s generally nvald. In ths study, we propose a test of whether a specfc form of parttonng the data sample s nformatve. The test s based on fndng evdence of transent dependency (.e., unstable structure of dependence n the data). Ths problem can be restated to apply whenever the data s gven some order not necessarly n tme (e.g., the order of ndvduals n a cross-secton), although our 1

2 examples are unquely taken from the tme-seres context where the problem s more evdent. To be precse, let { X (), = 1, 2,..., k } be an arbtrary collecton of subsamples of X wth elements of length N and such that N = T. Defne a sufcent statstc S R d to be used n the nference procedure for whch we know ts lmt dstrbuton Q and denote S ( X ()) the statstc evaluated at each X (), S(X) corresponds to the same statstc evaluated at the entre sample. The problem of transent dependency can be stated as follows. Let T : R k+d R d be an applcaton over the sets { S ( X ()) A, = 1, 2,..., k } k > 2 and denote the correspondng composton as T (X) = { S ( X ()) A, = 1, 2,..., k } T. If the partton of the data s nformatve and f ths nformaton s summarzed n the parameter φ, then we can buld a smlar test based on T (X) wth smlar regon α (the sze of the test that s based on S (X)). That s, we ntempt to have (Barklett, 1937): P (S (X) A; φ) = α φ Φ where φ s a nusance parameter. But f T (X) s a suffcent statstc for φ then under the null hypothess the condtonal dstrbuton P ( S ( X ()) A T (X) A ) (wth A = A ) wll not depend on the parameter φ for = 1, 2,..., k. Thus, evdence supportng transent dependence can be found by rejectng the null hypothess for some subsample based on ths condtonal test. We show below that ths property s satsfed by the famly of unon-ntersecton tests. It s needed frst to defne formally the relatonshp between an nference based on S (X) and that of T (X) whch occurs under the null hypothess. Proposton 1. For S(X) to provde the same nference than that of T (X) t s necessary that P [S (X) A ] n Q where A F s a Borel set such that Q ( A ) = 0 ( A s the boundary of A ) and Q s proportonal to the lmt dstrbuton of T (X). Proof. If P [S (X) A ] n Q then there exst a collecton of dsjont sets A for = 1, 2,..., k formng a partton of A = A such that P [T (X) A] n λq where λ = λ (X) > 0 s a constant, but ths s not possble because the latter dstrbuton s tght on R d for d 1 and the fnte dmensonal dstrbutons form a convergence-determnng class on that space (Bllngsley, 2

3 1999). Thus, when the null hypothess s true the partton of the sample data { X (), = 1, 2,..., k } s not nformatve and ts knowledge conduces no further changes to the nference that we can make through the statstc S (X). We operatonalze ths proposton as follows. For smplcty assume that S, T R 1. The null hypothess of the test of nterest s descrbed as the nter- [ ( secton of complementary events ) S X () c ] for some c. A level α test can be formed through the unon ntersecton approach wth the maxmum order statstc and the rejecton regon defned as [ S ( X ()) > c for some = 1,..., k ] [ = max S ( ] X ()) > c where c = c (α, n). To see ths, we can note that [ S ( X ()) > c for some = 1,..., k ] [ ( ) S X () > c ] and that ( [ ( P ) S X () > c ]) = α (t s only requred that S provdes a sze α test). We show then that the unon-ntersecton test can be used to answer the queston of whether a partton of the data sample s nformatve. Proposton 2. Under the null hypothess T (X) = max S ( X ()) s a sufcent statstc for φ. Proof. For unon ntersecton tests we only need to note that P ( { ( P S (X) > c ) S X () > c } ) ; φ = 1 whch does not depend on φ. ( S (X) > c max S ( X ()) > c; φ ) = Then, we dentfy λq n Proposton 1 wth the lmt dstrbuton of T (X) = max S ( X ()) and ( 1/λ = P S ( X ()) > c max S ( ) X ()) > c < 1 for = 1, 2,..., k. A well known convergence to types result due to Gnedenko (1943) shows that the lmt dstrbuton of the maxmum order statstc for a sequence of ndependent, dentcally dstrbuted random varables exsts and t s one of three types dependng on the support of the dstrbuton. Extensons of ths result to allow for dependency n the data ether n dscrete or contnuous tme are avalable (e.g. Watson 1954; Welsch, 1971; Durret and Resnck, 1978) and also there are results for statonary processes and some forms of weak dependency (e.g. Berman, 1964; Leadbetter, 3

4 1974; Adler, 1978). It s clear that dependng upon the partcular context a sutable result for a lmt dstrbuton of the maxma s often avalable, and ths s enough for our purposes. 2 Testng for Transent Dependence In ths secton, we apply the prevous results to derve a method for testng transent dependence when S (X) s a centered ch-squared varable. An example s now provded n the context of the Hnch (1996) test for nonlnearty. Consder a zero-mean second-order statonary process for whch we are nterested on fndng sgnfcant elements of the thrd-order cumulants. These are moments of the form C (r, s) = E (X t X t+r X t+s ) and ther sample counterparts are referred as bcorrelatons. A stochastc process can show non-zero bcorrelatons and stll have a whte nose representaton, whch turns out to be a convenent specfcaton for descrbng tme-dependence n many applcatons. The Hnch (1996) test s a test for the null hypothess of a pure whte nose process (.e., a whte nose process wth ndependent nnovatons) aganst a process havng many sgnfcant bcorrelatons. As usual, the test reles on assumptons about the stablty of the dependence structure n the sample. But note that ths could be unlkely to occur f the sample covers a relatvely long perod of tme, whch s commonly the case n tme-seres applcatons. Motvated by ths fact, Hnch and Patterson (2005) studed the transent dependence n whte nose. Usng fnancal data they found that perods of tme dependence do alternate wth perods of ndependence, a result that can have mplcatons regardng the effcency of fnancal markets. From a statstcal pont of vew, that result can also have mplcatons on the forecastng ablty of lnear tme-seres models. In ther settng, Hnch and Patterson (2005) appled the test separately over data grouped n consecutve wndow frames of fxed but rather short length of tme. Thus, a penalty n the sze and power of the test s expected for that procedure because of the lmted nformaton contaned n a sngle wndow even when s appled consecutvely or overlapped. 4

5 Alternatvely, we can use a unon-ntersecton approach to control for the sze of the test and ncrease ts power. In partcular, let X = {X t, t = 1, 2,..., T } be a sequence of lnearly fltered data where EX t = 0 and EX 2 t = 1 for all t T. The testng procedure employs non-overlapped data wndows, thus f N s the wndow length, then [X(t +1 ), X(t ),..., X(t +1 + N 1)] s the -th wndow where X t = X(t) and = 1, 2,..., k and t = 1, 2,..., T. The next non-overlapped wndow smply consders t +1 = t + N. Defne the statstc H = G 2 (r, s) where G (r, s) = r s (N s).5 X t X t+r X t+s for 0 < r < s whch s ndexed to the wndow. The H statstc s t dstrbuted ch-squared wth (L 1) (L/2) degrees of freedom for a test of sze α. L s the number of lags that enters the wndow and t s determned endogenously as L = Nb wth 0 < b < 0.5 (recommended to maxmze the power of the test). Under the null hypothess {H, = 1, 2,..., k} s a collecton of ndependent and dentcally dstrbuted random varables, then we can characterze ths hypothess as {H c} and ts probablty as P {H c} = P (H 1 c) k when all the wndows have the same length (or n general ( ) as P (H c ) where c = c (α, N ) and = 1, 2,..., k). The rejecton regon for the unon ntersecton test s gven by max H > c. { } Proposton 3. P (H 1 b k u) k k exp ( u γ ), where γ = γ (α, k) > 0 and b k s a normalzng constant such that 1 P (H 1 b k ) = 1 n. Proof. In order to apply Proposton 3 to the H statstc, we have to show that we can wrte 1 P (H 1 u) = u δ h(u) for some δ > 0 and slowly varyng functon h(u). But t suffces to assume that Eu δ < wth δ = 1 (so that the process X s second-order statonary). The rest s a standard result and t can be found n Ferguson (1996), p.95. It s mmedate that max H s dstrbuted reverse webull wth parameters (γ, 1). In order to have a smlar proposton for consderng the case of dfferent lengths on each wndow, one could apply the results of lmt convergence for the maxma on arrays of ndependent random varables n Serfozo (1982), but the lmtng dstrbuton dffers from that of Proposton 3. 5

6 Fgure 1: Sze of the test accordng wndow length (N) and sample sze (T ) 2.1 Sze and Power of the Test In ths secton we provde evdence on the sze and power of the unon-ntersecton test of secton 2 through a Monte Carlo experment. We generate pseudo random numbers for the pure nose process from four alternatve dstrbutons: Gaussan, t-student (wth v degrees of freedom), Unform and Exponental. Both the sze and power of the test vary n a complex manner accordng to the sample sze T and the wndow length N, whch s controlled by adequately choosng the value of the parameter γ. Our Monte Carlo results show that we can use γ = k 0.2 as a vald approxmaton for most emprcal applcatons Sze For the estmaton of the sze of the test we computed the tmes that the null hypothess was erroneously rejected, runnng ten thousand replcatons n each case. The results are summarzed n Fgure 1. For a gven wndow length the sze of the test ncreases as the sample sze ncreases whch s a standard result. The sze also vares wth the wndow length for a gven sample sze although ths s expected. The reason can be assocated to the nformatonal content of a sngle wndow frame respect to the whole sample, whch dffers accordngly to the number of wndows and the wndow length. For a gven sze of the test and a sample sze we can deduce usng Fgure 1 the wndow length that s consstent wth the asymptotc theory. Wth T = 1100 observatons and α = 0.1 we should use a wndow length N = 90 observatons f Gaussan nnovatons are assumed and a wndow length N = 80 observatons for t-student nnovatons. Alternatvely, by fxng the wndow length for a gven sample sze we can obtan the respectve probablty of ntroducng Type I error. For example, consder agan T = 1100 and N = 105. In the case of Gaussan nnovatons the sze of the test s approxmately 0.08 but t s near 0.05 for the Unform nnovatons. 6

7 Note that although the results dffer across the four dstrbutons for the nnovatons such dfferences are stll bounded on values that are commonly used n emprcal work. Consequently our results seem to be robust ndependently of the partcular dstrbuton that s assumed. In practce ths means that low p-values should be consdered as strong evdence n favor of the alternatve hypothess, even f the dstrbuton of the nnovatons s assumed to have fat tals Power The power of the test s evaluated aganst two nonlnear models: a nonlnear movng average (NLMA) model and a blnear (BL) model. The partcular specfcaton we use for the NLMA model s X t = e t + βe t 1 e t 2 where e t denotes a zero-mean nnovaton wth varance equal to σ 2. Ths model permts that the parameter β can take any nonzero value whlst the random varable s clearly not ndependent yet s whte, whch has many desrable propertes for our study. Note that although there s no correlaton between X t and X t+r for r 0 the elements of the thrd-order cumulants of the process {X t, t = 1, 2,..., T } can be dfferent from zero. In fact, we have that C (r, s) = βσ 4 but there are only sx of these elements for ths partcular process, whch makes t very dffcult to capture the underlyng tme-dependence structure based on a nonparametrc test. On the other sde, the blnear model can be thought as a reduced form of some hgher-order nonlnear movng average process and therefore s characterzed by havng several non-zero bcorrelatons. These models have the property of approxmatng wth arbtrary accuracy any model that reasonably can be represented by Volterra expansons, and consequently they have been proposed as natural nonlnear extensons of ARMA models (Tong, 1990; Granger and Andersen, 1978). For nstance, a model of the form X t = e t + βx t p e t q s (second-order) statonary f βσ 2 < 1 and the seres s generally whte for p q. In our study we use p = 1 and q = 2. The results for the test are summarzed n Exhbt 1 for each model and two alternatve values of the parameters. We report the percentage of correct decsons usng a sze of As s usual 7

8 the power greatly depends on the values of the model parameters, beng more dffcult to reject the null hypothess as ther absolute value approaches to zero 1. The power of the test s hgher as the number of wndows s hgher, whch can be acheved by ncreasng the wndow length and/or the number of observatons. Ths result dffers accordng to the four dstrbutonal alternatves on the nnovatons, beng more senstve for the case of the Unform dstrbuton. We also note that the power of the test s hgher for the blnear case than the NLMA, whch s expected as the number of possbly nonzero bcorrelatons s hgher n the former model. 2.2 An Emprcal Example We return to the problem stated n Hnch and Patterson (2005). References [1] Adler, 1978 [2] Barklett, 1937 [3] Berman, 1964 [4] Bllngsley, 1999 [5] Durret and Resnck, 1978 [6] Ferguson (1996) [7] Gnedenko (1943) [8] Granger and Andersen, 1978 [9] Hnch (1996) 1 If the parameter s exactly zero then the process reduces to a pure whte nose 8

9 [10] Hnch and Patterson (2005) [11] Leadbetter, 1974 [12] Serfozo (1982) [13] Tong, 1990 [14] Watson 1954 [15] Welsch,

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

LOGIT ANALYSIS. A.K. VASISHT Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi

LOGIT ANALYSIS. A.K. VASISHT Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi LOGIT ANALYSIS A.K. VASISHT Indan Agrcultural Statstcs Research Insttute, Lbrary Avenue, New Delh-0 02 amtvassht@asr.res.n. Introducton In dummy regresson varable models, t s assumed mplctly that the dependent

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2017 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2017 Instructor: Victor Aguirregabiria ECOOMETRICS II ECO 40S Unversty of Toronto Department of Economcs Wnter 07 Instructor: Vctor Agurregabra SOLUTIO TO FIAL EXAM Tuesday, Aprl 8, 07 From :00pm-5:00pm 3 hours ISTRUCTIOS: - Ths s a closed-book

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. yes to (3) two-sample problem? no to (4) underlyng dstrbuton normal or can centrallmt theorem be assumed to hold? and yes to (5) underlyng dstrbuton bnomal? We now refer to the flowchart at the end of

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

January Examinations 2015

January Examinations 2015 24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)

More information