:536.24(075.8) , ANSYS FLUENT STAR CCM+ , , ISBN

Size: px
Start display at page:

Download ":536.24(075.8) , ANSYS FLUENT STAR CCM+ , , ISBN"

Transcription

1

2 .. КИК ЧЕЕ ИЕ 07

3 5.56:56.4(075.8) 66 :,,..,,.... :. /....:., ,,,,.,,. ANSYS FLUENT STAR CCM+ ().,.0.0,.0.0,.04.0,.04.0И ISBN , 07, 07

4 ,,,. ( ),.,,.,,, ,, ().

5 .,.,. ( ). TW,.. ( ) w,.,. ( ). Ч (). ( ) (Conjugate eat Transfer CT) []., 4

6 . ().,, Д4].,,., Д 8Ж. []. ANSYS FLUENT STAR CCM+ [5,6].,,,,., 5

7 ( 5, %)., Д4],, :?,., (error, residual),.,.,, (,, ). (...,......,...),.....,.....,

8 .,.... (), w( x, ) T T. w w x x, T T, w (.) (, ),.,.,,, ( ) s.,. (,,, )., () 7

9 ., T T u x, y,, (,).. () (),, (,). T w / x<0,,,.. 8

10 ,,, T w / x>0,..,. ( ): w T, w x, x, T T Nu T T, (.) y w w w L Nu,, L.,,,,.,,,., T w / x=0,..,., T w > T.,,, Nu., Tw < T,,, (.), Nu>0. 9

11 ,,, (.)..,,, s,,.,,,. (.). (.. ) [], 0

12 ,.,.,,,.,,,. :, ;, ; ; ;..., : (, ); (, ); (, ).,,, ( );

13 ,. (, ). (,, ).,.,,. ( ), ( ). (). ( )., [0], ; ;....,,

14 , []: 0 τ ρ j j j j (.) k j k j j jj jk k j j k j j k k j k j k j k j j j k j j k (.4) e j k k j k j k jj k j k j j jk j k j jk j T j j j j j j j e e ρ (.5) : ;,, j ; k ; j

15 ;,, j, jk ; T j ; e.,. (.) (.5) T,,. S, : j j S k jj ( j,, ) (.6) j j k j k k S jk j k k j j k j j k k ( j, k,,; j k) (.7) : 4

16 5 4 p (.8) 4 p (.9) 4 p (.0) (.)

17 6 (.) (.) T ( j e ) j j T j e j T (.4)... : z, r,, (.5) z. : r,,. z, r, u,, w. 0.

18 7 []: 0 r r ur z (.6) ; r r z z p r u z u u zr zr zz (.7) z; rr zr rr r z r r p r z u (.8) r; r z r r r z r w r w z w u (.9) φ;

19 8 r r z u zz 4 (.0) r z u r rr 4 (.) r z u r 4 (.) z r u zr (.) r w r w r r (.4) z w z z (.5) : r r z u p r T r r T r z T z r T z T u c V (.6)

20 9 : r r z u z r u r r z u (.7).4.. :,. 0 y x u (.8) y u x p y u x u u u (.9) y u y T y y T x T u T p c (.0)

21 T T T s s s s c s (.) y s y x s x V y 0, u 0; y, u U, T T ; (.) y 0, T T ; s w T T s. (.) s y y y 0 y 0,, : z 0, u 0, w r z,, w 0 T T,(.4) z=0.,., << L /s /. Bi / s,, 0

22 . (.),.,. : a s T s t T s x w w s V s 0 (.5), w ; V w..5. (.6) T T w w w. (.6),., [,]: w k k d * g x w, k k w w x d w k g w k dx k * k k,(.6) dx k w w

23 * w, g k. * / * w w w (error, residual),. * dp / dx /, W dp / dx ( * ; W ).. g

24 ,,.. * Re u * / ( ). g.. g : = 0,; 0,0;,0; 4 0,0 ( Re * =0, 0 4, 0 5 )

25 w x g x w g w g x w 0 x 0 u t 0 x x g g w 0 u u xt w x (.7) 4 u / x, Д]. g ki 4. g ki u / x : Pr=.0; g ; 0 g ; g ; 4 0 g 0 4

26 ,,,,.,,,.,,..., (.6) (.7),. (.6,.7),. [,4,8], ( ).,,,.,. []. 5

27 ,,.,., (.6), : d T w s g x Bi y w, (.8) dx / y 0. (.8), Bi Bi 0,, ( ).,, d (.8), w. dx, ( ),,. 6

28 ( Bi 0) :,, ( ),.,,.,,,,..,.. ДЖ / Br Pr Re, [8Ж x s Br s / Pe.6..,, :. a s T T s s x * s w g 0 x u w 0, (.9), w. V 7

29 , w T s. a s T s * x >> g 0 u s w T s >> x g 0 Nu * Pe c p c s s w, (.40) (.40), Nu * Pe cp / s c s, [Ж.. Lu c p / s c s. (.40) T s >> L g 0 Nu * Pe Lu w, (.4),. 8

30 ,, (.4),,. L /,.,,, ( ).. (Ni 90%, Cr 0%) =,7/( ), =0,004 L / =00 (Pr=0,7) (Pr=0,0074). t 00 o C u,0 /. t 00 o C u 0, /., 5. L Nu *. g Lu 0 Pe, 4,,0 04 0, 64.,.. 5,8 0,0Re Pr 0, 8 Nu * 0, Re 0,5 Pr 0, Nu * Д4]. 9

31 y y t a t dy y u t t x (.) a c p /, p c,,. : / y y u u y d y c y b a w T T (.) (.) (.), : y T w y T w w y w w s (.)

32 z 0, w z z, (.4) s T 0.,, y, : d 4 a z u, / (.5) 0 dx ( z) z 4z 4 z T,, z 0 (.5) : d dx 0a T (.6) z z 4 Pr (.6) [,]: Br x Pr m Re n x s

33 Nu x Nu x * 0,Br x Br <,5; x Nu x Nu x * 0,4,66 Br, 5(.7) Nu x x * Nu 0, Re 0,5 Pr / x * x... d T dt r r T T dy ar, (.8) dr 0 dy y0 5. r Д]

34 49 y y r r, 60, 5 (.9) w w y y, w y w, (.0) T w T T T b, b, T b b const. (.0) : y T, T Tb, 0; (.) y y 0, s, y y, (.) w y, 0, (.), z, w, T z z / s / T.

35 (.9) (.0) (.8), k T / []: d k a Br k r r dr k Br 49 0 (.4) Br 0 S. / / (.4) : k 0,908 Pr /, Br 0 0. Nu 0,47Re / Pr / r, r, (Pr=0,7) Д7] ( 6%). Nur r /, Re r /, r. (.4) Br 0 k / 0,908 Pr / z, (.5) 4

36 Nu 0.47Re / Pr / / r, r z (.6) (.6),., T T w T T b z ( z). T ДЖ..., T c c. u. u a,, (.7) x y 5

37 T T 0, T 0, T c. 0, x >0, y >0 c T c T 0 (.8) x 0, >0, y >0, =0 (.9) ( T s ) (.5) (.7) y=0,τ>0, x>0, r s ( ), (.0) y r c /. s s (step) [5]: 6

38 T T W c T T 0 c step u exp erf [ ] erf, (.) 0, u., u x / au / r ; x []; c ax/u erf t ) dt [7]. 0 ; exp( Q w step w ( T c T0 ) u /( ax) : 0,, Q (.) w step exp erf, exp erf (ramp) 7

39 T T W c T T 0 c ramp, exp( ) erfc[ ] i erfc[ ] i erfc[ ], (.) T T exp( ) erfc[ ] i erfc[ ] W c, (.4) T T 0 c ramp i erfc[ ]. ;, erfc[ ] erf [ ] i erfc[ ] erfc( t) dt, : erfc( t) dt exp( ) erfc[ ]. exp Q w ramp T W T c T 0 T c step T W T c ramp, (.5) T 0 T c. 8

40 Q w ramp exp erf erf T T W c T T 0 ramp c ( ), (.6). (Quasi steady Q.s.) (.) (.) : Q. s. T T W c T T 0 c step exp( ) erf erf (.7) Q Q. s. exp exp erf erf w step (.8) 9

41 ,. Ж.,.., ( ): w T T w T T w ( T T ) Bi / Bi, (.) Bi T w, T, T ;, ; Bi / s, Bi / s ; ; s. Nux 0, Pr / Re /, x Nux 0,095 Pr 0.4 Re 0.8 (.) x 40

42 ., Bi D x n, Bi D x m. dbi Bi dbi ( / Bi ) dx n n m Bi dx Bi g x g Bi Bi / Bi (.) Bi Bi gn n x D D D / D m x g n m n x D / D D m x D / D x m (.4) (.4), x 0 max n, m 0; g n m 0, m 0 g n max max n (.5), n 0, m 0, 4

43 , n, m 0. max max g / max g /5. Pr>0.5 g 0,6 ( ). max 0%. g =0, ( ) max =4%., Pr=0,0 g =0,5 max =0%.,, ( Pr>0.5).,, 0 5%; 7% []. Д],,.,, max.. (Ni 90%, Cr 0%) =,7/( ), s =0,04 L =0,4.. 4

44 t 0 o C u 0, 5/,, ; t 50 o C u 0, /.,,, x=0,.. 0,5 u D 0, Pr 0, n m 0, 5. s D =0,67( 0,5 ), D =0,0( 0,5 ), =,%.. t 00 o C u 0 / ;,, t 00 o C u 50 /.,,. D =0,046( 0,5 ), x=0, =%. D =0,0( 0,5 ). 4.,.. =56,8% x=0,. 5.,.. x=0, =4,7%. 4

45 ..,, ( x 0) ( 0), w ( x L) T w. T T x w w ch( Bi ) T (.6) T w ( L) ch( Bi) L (.6) : x d x x g w g Bi th Bi, (.7) w dx L L ( g =0.6, Re ) x L Bi =.64, (.7) max =00%.,,, 00%. 44

46 .. w, (.8) w / / w. F / F ;.. F F c ze ;. F F... z ; F.. F zfp ; F p ; F ; c ;, E. : Bi ; s Bi c c s. Bi ; : Bi c D x k 4, Bi, c Bi. s Bi. F Bi c D x k D,. F

47 F F Ez p Bi D.,,..... Bi Bi F c F Bi Bi k n Bi n g (.9) (.9), k x D F c F D k x D D n x nd g 5.. / 4 / + + / D n x k x F c F D D F c F D k x D F F D k n g (.0)

48 , n, k 0,... g n x 0. max n 0; k 0,,, max,.. g n x 0. max 6. Д.5, 4].. (.9) g n Bi. Bi n k Bi. Bi Bi. F c F.. 0,6,55 0,5 5,5 0,5 0,479 6,6 085, =6,7%.. 0, 0,5 0,5 0, Pr,5 L Re Pr Re Pr Nu L L, w u u L Re, Re L, L 47

49 . 0 <Re L <, , (.) w T T, w, () T T,, ; T T,., T T,,,. T.,,, d x w w dx d x x d dx g g (.) dx w w 6, 48

50 M=0,5 M=0,68. M ( u ) /( u ) ( ) ( ). M=0,5 0,68 DR = ρ/ρ = 0,95 ( R / d =47, R, d ), ( R / d = 44,5), []. =0 ( ) P/d=. 6., M=0,6.,,.,, 49

51 . M=.0, ( 7). 7.,. ( 8 9). 8., 50

52 =0, ( 9). 9., ( 8 9),. M =, M =,7 x x / d = 6 5. D x l 6, l >0 ( 6 7) l <0 ( 8 9). l M x / d. (.), : Bi D x n D x l 6 5

53 5 w nbi w dx dbi x dx w d x ; l dx d x, w w w l w nbi g w w dx w d x w dx d x g (.), / Bi Bi, (.) n x D l x D n x D l x D l x D n x D l n x D l x D n x nd g = = D n x n x D D n x n l x D D D n x n x l D n x n x D n l x nd g (.4)

54 x 0 n >0 l g l max n >0; g n max n >0 l n <0 (.5) 7., ( 0). L 5 h =,0,5 Д6Ж. d =0,8,, P / d =,5,0. L.5,0. 0. ( ) 5

55 =0 0 P / d =. ( g =0,; n=0,).. (.). l, 7, M=,05 DR=,0: l ln ln ln x lnx =0,. 5 0,8. L / d =8,7. : =0, =0,5. w Bi = 5,0 [6].,, x = 8,7: l w nbi g w w w =5,8%. 0, 5,0 0,5 0,78 0, 0,5 0, 0, 0, 0,5 0,5 0, ,5. x / d =40. : =0, =0,. w Bi =,0 [0]. 54

56 . l, 8, M=, DR=,0: 0,5. l w nbi g w w w =,% l ln ln ln x lnx 0,,0 0, 0,88 0,5 0,7 0, 0, 0, 0, 0, 0, =.5.,, : g x w 0 u w (.6) g 0 ( 4), u. d i erfc x / dx erfc x :, 55

57 erfc erfc i erfc i erfc ramp g 0 erfc (.7) ramp g 0 erfc erfc erfc i erfc i erfc[, (.8) ]. Q.s. step Q. s. step g 0 erf erf exp (.9) (.9),. 9. Q.s.. step 50% Ni 50% Fe,75, L =76,, =0,. 56

58 (,9,5). 0 5,6, Pr,. : Re,0 5 ( ) L ( ).. : Re L Re L,45 0 6,0 5. 0, 8 4 g =,. Д4] : 0 995,9 /, 0, 687 /(), 450 /(), p,5 0 7 /, a, /. 50% Ni 50% Fe : 8900 / s, 40 /(). s Nu L / 0,664Re 0,5 Pr 0, 4, 6; L c L Lu c p /( s c s ),09 ; Nu L / =0,09. Pe L =0,66, erf(0,7)=0,695 erf(0,66)=0,67 (. 7). Q.s. (.9): step Q. s. step g 0 exp, 0,09 erf erf 068 0,597 0, = 6%, 5 Q.s. =6,%. step 57

59 0. : Re L, , 8. Nu L / 0,07 Re 0,8 Pr 0,4 48; L c L Nu L / Pe L =,54 =0,0. erf(,564)=0,97 erf(,54)=0,967 (. 7). Q.s. (.9): step Q. s. step g 0 exp, 0,09 erf erf 004 0,009 0, =,6% Q.s., step Д8] 0, 8.. ramp,., >, 9, : =0,66 =0,09. =0,8 =,0. 0, <. (.7) =0, : 58

60 erfc(0,66)= erf(0,66)=0,7; erfc(0,6578)= erf(0,6578)=0,55; i erfc(0,66) =0,94; i erfc(0,6578) =0,6; erfc 0,66 =0,008. 0,7 0,55, 0,09 ramp 0,008 0, 0068 =7%. erfc :.,. =5 (.8), >. =0,8. 4,.. : erfc ( ) = erfc(,098); erfc(,007)= 0,57; i erfc(,098) =0,06; i erfc(,007) =0,0506; erfc 0,66 =0,707. 0,57 0,,4 0,09 ramp 0,707 0,06 0, 0506 =5,7%. erfc : 59

61 : ;, [4,7].,.,,...,. : ()., ( ).,. 60

62 . s, : T W T s Y Y T s s / s, (4.) Y Y s W, ; Y Y, s. (4.)..,..,. ; (),.,.,,,.,, 6

63 ,,,... Д7]:, ;,,.,,,,,. 4.. STAR CCM+ STAR CCM+ [6],. STAR CCM+, (),. ABAQUS STAR CCM+. 6

64 STAR CCM+ ABAQUS. ABAQUS STAR +...,.. [6].,.. (); (),, 00. 6

65 In place interface,,. Air interface Solid interface Type contact interface Interface. STAR CCM+ (.,),,.,.. STAR CCM+ 64

66 ,..,. 4.. ANSYS FLUENT. ANSYS FLUENT [5] ( 4,).,, (mixed). ( STAR CCM+) (Fluid Solid) GAMBIT.4.6, 65

67 , (wall), (wall shadow) ( 4,)., Coupled. 4. (); () 4.. 0,5 0,0 0 / ,. Ч. 900 GAMBIT.4.6. y yu / *, u / * w. 5, y = 0,46. 66

68 5. (); : Д Ж,, () : Velocity inlet=0 /, Gauge pressure outlet=0. Second Order Upwind. Coupled. k RNG. 5, ( ), ( ).,, 5,. ( 6),. ДЖ,,,. (). 6, 67

69 () x > 0, ДЖ 6,. 68

70 4.4.,.,, ( 5) 0 4 ( ), ( 0 ).,,. Д]: u Y a 00, s s 0. 5, (4.) ( Y ) s, s,., Y = Y s =0,00.,, 00/, s / 00., 69

71 ,.,,.,. STAR CCM+ Simulation, ( 7). Implicit Unsteady model,, T T 00 0 ( 8). c Field Functions Tools C *$ Time 00 0*$Time. Restart,., s Implicit Unsteady model. 7 C++ : ($Time > = 0.0)? 000: *$Time. =0,

72 , >0, , ( 8)., / ( 9,)

73 ;. 0,4 0,04. 50% Ni 50% Fe : 8900 / s, 40 /(). s , Y + =0,6.. =0, =0, s 8. 9., 7

74 5, (); (),. (.7), 0 : ramp g 0 exp, ramp %. 7

75 5. 5..,,,,..,. Д9,0Ж,,,,...,,,., ,88 0,99,4,6 0,6 74

76 , 664 Q = ): d. =50 (, Q ,8( /. ) F.. 0,99,. Q 000 4, ( / ) ( / 4), d., [Ж 664 ( 0) 9/0 SEMIKRON

77 ё ё (, ). GAMBIT ё. Z Y X ё / ) (. 664: ( ); ( ) Д9Ж,, ANSYS FLUENT. (, ), 76

78 ( ). ( 40 ).,, , /. 77

79 0 (. ),,.. ё 664 u (/) R / T RNGKE 0, 0,87 RNGKE P 0, 0,8 RNGKE DO 0, RNGKE,0 0,8 5 SKE,0 0,097 6 RNGKE P,0 0,096 7 RNGKE DO,0 0,8 8 RNGKE P,5 0,079 9 SKE 5,0 0,058 0 RNGKE 5,0 0,065 RNGKE k ε RNG, SKE k ε. P DO Д5]. R T T Q T max /, 78

80 () Q., ё k ε RNG DO ( ).. ё 664 9/0 SEMIKRON ( 000 ).,,, ( ). 79

81 5.., ( ),,.,.,, Д0Ж,. ( ) Д0], d=0,4, P ( 4, ). P/d=,,5, : 4,7 7,

82 ( 70) () (), P/h=0. h 0.4, 0...,,., d =,,. d =. 8

83 ,, , d, 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4, t/d,5 4,67 4,67,, 4,67 4,67,8,66,84,87,87,87,87,86,8, DR, M,,8,,95,0,98,0,4 0,88, 64C, 0%, 0,68. I V 0,5; 0,09; 0,0; 0,; 0,80 (90,, 5, 99, 54)C, 0%. (D),.,,. (, ANSYS FLUENT, STAR CCM+) D ( 8

84 ),,,.. Unigraphics NX. 5. Cyclic. 0,8,8. Stagnation ( P* = 0,88, T* = 887, 47, Tu=0%, L= ). Mass Flow Inlet ( 64,6%, 0,5%, 6,9%, 8%, T* = 45, Tu=%, Turbulent Viscosity Ratio ( t / 0). Pressure Outlet ( P = 0,68 )., (In Place). ( Д0]). 8

85 ( ). 5. : (); () STAR CCM+. (. 4).,,. 4 84

86 Y +,0 ( 6). 4.,. Y + Coarse mesh,8,4, Fine mesh 9,5 5,0 4, Finer mesh 8,6,9 6, Finer mesh,5 5, 8, (),, Cp=Cp(T) ( ),, Д6]. 85

87 8760 /, 90 /(),. 6. 4: (); () 86

88 ,. Д9]. : VF ally +, SST ally +, RKE ally +, SST swf, KE swf. (standard wall function swf), «ally +», Y +.,..., Y +,. Segregated,..,.. 9,5. 8,5.,..,,7 48, ,5,5,..,, ,5. 87

89 4 4 ( 7 ). : ( 0 5 ),, ( );, ;,. ( 5). 5., Y+ [ ]. k SST all Y+,8 00 9,5 0 8,5 5,5 4 4 RKE all Y+, , , ,5 8 8 VF,5 9 9 k SST swf, KE swf,8 00 k SST LowRe Re,5 0 88

90 .,8.,,5. ( 4). (,5 ), 6.,,5.,% ( ) ( T * * * T ) /( T T ).,. 7,,% T,,,. 7,,,%,. 5%,, T.,,, RKE.,8. Y + = 00. (SST, VF) 5%, (0 5)%. 89

91 7. : (), (), (), (): SST all Y + (, ), RKE all Y + (, ), VF (, ), SSTsWF ( ), KWsWF ( ), SST LowRe γ Re ( ). ( 8,). 8,, 50., ( 8,). 90

92 8. (); (); () 9., ( 4).,,, D,. ( ),, D. 9

93 T, C Экеие L :, D, D, 4 D 0,, ,. 0 40,

94 0. : (,); RKE (realizable k ),,5.. 9

95 5.., ( Д9Ж ),..,..,. () 94

96 . ( ). ANSYS FLUENT, (). (),, Д9].. ( ; ; ; 4 ; 5 ) (); () 95

97 (,): (),,, (5). (,). ( ).,,,,.,,., ( A, ) (,,)., elocity inlet (,), [7]. (,), S/h 0,4, S, h. 96

98 . (); () (,, ), 0 0.,, ( 4).,.,,.,, 97

99 .,. ( ). ANSYS FLUENT 4.0 [5]. ( ). 4. (); ( ) ();,, ANSYS Gambit.4.6. STEAM, ANSYS FLUENT 4.0 UDF (user defined function),. SST k ( ). 98

100 , Re, r r / i, G =.9 07, D c Re =. 0 4, r,,. D c G ( ) Re G D =.0 0 4,, i, D G,, t , Re i, ( 4). (D ).,. M =0, ( 4,). []. 99

101 ,, ( 4,).., n=000/.,, 5 ( 5,). 5. (): (,, ); ():, 00

102 ,. 5,., 0 0. Д9Ж,, ( 4,).,,. 6, ( % %) ANSYS FLUENT t, 0 C

103 6. ( leel or effect of conjugation ),,.,.,, : ( ).,,,. ( ) ;,. Bi Bi 0,, ( ).,,.,, : 0

104 ()., ; :, ( ); : ( ), ; :, ; :,.,. ( ),,. (Computational Fluid Dynamics CFD). () 0

105 ,.,. ( ) ( 4).,,, ( 5),., ( 5, %). 04

106 7.. Conjugate Problems in Conectie eat Transfer/Dorfman A. Sh. Taylor & Francis Group, LLC. London New York p..,.. /..,..,... :., c..,.. /.....:, ,.. /.. :, ,.. /..,... :, ,.. /....: c. 7.. /..,..,...;.....: :..:, ,..,....: ,.. :....,..: : :. 06. c. 05

107 ..., :.. (.)..:...IV 9/..,..,...: ,..... /....: User Guide ANSYS FLUENT ersion 4.0. USA STAR CCM+ Documentation. CD adapco. Version pp. 7.,..,....: /..,..,..,...: ,....: :.., , ;., ,..,

108 ..., :.. /..: Sucec J. Unsteady heat transfer between a fluid with time arying temperature and a plate: an exact solution//international Journal eat Mass Transfer. Vol pp /..,..,..,..... : ,...:. (... ) /..: ,.... (9) ,..,

109 8. 7 [7]. Итр x x t e dt 0 x (x) x (x) x (x) x (x) x (x) x (x) 0, 0, 0, 0, 0, 0, 0, , ,0 86 0, , , , ,0 70 0, , , , ,0 46 0,5 76 0, , , , , ,0 86 0, , , ,

110 7. р x (x) x (x) x (x) x (x) x (x) x (x) 0, 0, 0, 0,9 0,9 0,9 0,9 8088, 885, 9606,5 678,7 844, , ,5 896,5 9476,55 76, , , ,0 90,40 959,60 765, , , ,5 990, ,65 808,85 9, ,0 880,0 940,50 966,70 879,90 979,

111 7. р x (x) x (x) x (x) x (x) x (x) x (x) 0,99 0,99 0,99 0,99 0,99, 755,6 8607,4 946, ,7 987, ,5 769,0 8857, , , , ,0 87,5 9,50 959,65 98,80 995, ,5 857,40 9, , , , ,99 0,99 0,99 0,99 0,99 0,99 0

112 ,

113 ,4,5 4.., , STAR CCM ANSYS FLUENT

114

115 Крт 005 9,.; / , Л.,,. 955,,., 9..: (8) ;

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University email: bengt.sunden@energy.lth.se CFD? CFD = Computational Fluid Dynamics;

More information

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Prasanna Welahettige 1, Bernt Lie 1, Knut Vaagsaether 1 1 Department of Process, Energy and Environmental

More information

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle MultiCraft International Journal of Engineering, Science and Technology Vol. 3, No. 2, 2011, pp. 84-88 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2011 MultiCraft Limited.

More information

Parallel Plate Heat Exchanger

Parallel Plate Heat Exchanger Parallel Plate Heat Exchanger Parallel Plate Heat Exchangers are use in a number of thermal processing applications. The characteristics are that the fluids flow in the narrow gap, between two parallel

More information

Calculations on a heated cylinder case

Calculations on a heated cylinder case Calculations on a heated cylinder case J. C. Uribe and D. Laurence 1 Introduction In order to evaluate the wall functions in version 1.3 of Code Saturne, a heated cylinder case has been chosen. The case

More information

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics 6-8 th March 2017 Dr Sham Rane, Professor Ahmed Kovačević, Dr Di Yan, Professor Qian Tang, Centre for Compressor Technology,

More information

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer The Meaning and Significance of Heat Transfer Coefficient Alan Mueller, Chief Technology Officer The Meaning of Heat Transfer Coefficient I kno the meaning of HTC! Why should I aste my time listening to

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

HEAT TRANSFER BY CONVECTION AND CONDUCTION FROM THE FLUID MOVING AT SOLID WALLS

HEAT TRANSFER BY CONVECTION AND CONDUCTION FROM THE FLUID MOVING AT SOLID WALLS HEAT TRANSFER BY CONVECTION AND CONDUCTION FROM THE FLUID MOVING AT SOLID WALLS Associate Professor Ph.D. Amado George STEFAN, Lt.Eng., doctoral student Constantin NISTOR MILITARY TECHNICAL ACADEMY Abstract.

More information

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Discharge Coefficient Prediction for Multi hole Orifice Plate in a Turbulent Flow through Pipe: Experimental and Numerical Investigation

Discharge Coefficient Prediction for Multi hole Orifice Plate in a Turbulent Flow through Pipe: Experimental and Numerical Investigation Discharge Coefficient Prediction for Multi hole Orifice Plate in a Turbulent Flow through Pipe: Experimental and Numerical Investigation [] Mahendra Babu.K.J, [2] Dr. Gangadhara Gowda C.J, [3] Ranjith

More information

Applied CFD Project 1. Christopher Light MAE 598

Applied CFD Project 1. Christopher Light MAE 598 Applied CFD Project 1 Christopher Light MAE 598 October 5, 2017 Task 1 The hot water tank shown in Fig 1 is used for analysis of cool water flow with the heat from a hot plate at the bottom. For all tasks,

More information

Effect of radius ratio on pressure drop across a 90 bend for high concentration coal ash slurries

Effect of radius ratio on pressure drop across a 90 bend for high concentration coal ash slurries This paper is part of the Proceedings of the 11 International Conference th on Engineering Sciences (AFM 2016) www.witconferences.com Effect of radius ratio on pressure drop across a 90 bend for high concentration

More information

Tutorial for the supercritical pressure pipe with STAR-CCM+

Tutorial for the supercritical pressure pipe with STAR-CCM+ Tutorial for the supercritical pressure pipe with STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities with

More information

Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane

Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane V. Esfahanian 1, A. Shahbazi 1 and G. Ahmadi 2 1 Department of Mechanical Engineering, University of Tehran, Tehran, Iran 2 Department

More information

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 717 724, Article ID: IJMET_09_05_079 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc.

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc. RANS-LES inlet boundary condition for aerodynamic and aero-acoustic acoustic applications Fabrice Mathey Davor Cokljat Fluent Inc. Presented by Fredrik Carlsson Fluent Sweden ZONAL MULTI-DOMAIN RANS/LES

More information

PERIODICALLY FULLY DEVELOPED LAMINAR FLOW AND HEAT TRANSFER IN A 2-D HORIZONTAL CHANNEL WITH STAGGERED FINS

PERIODICALLY FULLY DEVELOPED LAMINAR FLOW AND HEAT TRANSFER IN A 2-D HORIZONTAL CHANNEL WITH STAGGERED FINS THERMAL SCIENCE: Year 2017, Vol. 21, No. 6A, pp. 2443-2455 2443 PERIODICALLY FULLY DEVELOPED LAMINAR FLOW AND HEAT TRANSFER IN A 2-D HORIZONTAL CHANNEL WITH STAGGERED FINS by Oguz TURGUT a* and Kamil ARSLAN

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

FLOW SIMULATION AND HEAT TRANSFER ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS (CFD)

FLOW SIMULATION AND HEAT TRANSFER ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS (CFD) PERIODIC FLOW SIMULATION AND HEAT TRANSFER ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS (CFD) *M.SNEHA PRIYA, **G. JAMUNA RANI * (Department of Mechanical Engineering, koneru lakshmai University, Guntur)

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Heat Transfer Modeling

Heat Transfer Modeling Heat Transfer Modeling Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 7-2 Outline Energy Equation Wall Boundary Conditions Conjugate Heat Transfer

More information

report: Computational Fluid Dynamics Modelling of the Vortex Ventilator MK4 Rev 2 Ventrite International

report: Computational Fluid Dynamics Modelling of the Vortex Ventilator MK4 Rev 2 Ventrite International report: Computational Fluid Dynamics Modelling of the Vortex Ventilator MK4 Rev 2 PrePAreD for: Ventrite International D O C U men t C O N trol Any questions regarding this document should be directed

More information

Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling

Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling Comparison of Flow and Sedimentation Pattern for three Designs of Storm Water Tanks by Numerical Modelling 9th International Conference on Urban Drainage Modelling, Belgrad 2012 Simon Ebbert Nina Vosswinkel

More information

Turbulence Modeling of Air Flow in the Heat Accumulator Layer

Turbulence Modeling of Air Flow in the Heat Accumulator Layer PIERS ONLINE, VOL. 2, NO. 6, 2006 662 Turbulence Modeling of Air Flow in the Heat Accumulator Layer I. Behunek and P. Fiala Department of Theoretical and Experimental Electrical Engineering Faculty of

More information

EFFECT OF ROTOR S ANGULAR SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING ASSEMBLY

EFFECT OF ROTOR S ANGULAR SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING ASSEMBLY Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 1-1 December 3 EFFECT OF ROTOR S ANGUL SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING

More information

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions Advanced Computational Methods in Heat Transfer X 25 Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions F. Selimovic & B. Sundén

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 9 (September 2017), PP.12-19 CFD Analysis for Thermal Behavior of Turbulent

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 2 - Conduction Heat Transfer 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Agenda Introduction Energy equation in solids Equation solved

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers Advanced Computational Methods and Experiments in Heat Transfer XIII 133 A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers F. Yang, K. Mohrlok, U.

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

ANALYSIS OF HEAT AND MASS TRANSFER OF THE DIFFERENT MOIST OBJECT GEOMETRIES WITH AIR SLOT JET IMPINGING FOR FORCED CONVECTION DRYING Doğan Engin ALNAK a, Koray KARABULUT b* a Cumhuriyet University, Technology

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

A CFD Analysis Of A Solar Air Heater Having Triangular Rib Roughness On The Absorber Plate

A CFD Analysis Of A Solar Air Heater Having Triangular Rib Roughness On The Absorber Plate International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 964-971, April-June 2013 ICGSEE-2013[14th 16th March 2013] International Conference on Global Scenario in

More information

Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid

Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid Mojtaba Maktabifard1, a*, Nathanael P. Tian1, b 1 Faculty of Mechanical

More information

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007 CFD Analysis of Mixing in Polymerization Reactor By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari Introduction Model development Simulation Outline Model Setup for Fluent Results and discussion

More information

Numerical simulations of heat transfer in plane channel flow

Numerical simulations of heat transfer in plane channel flow Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a, Rafik ABSI 2, b and Ahmed BENZAOUI 3, c 1 Renewable Energy Development Center, BP 62 Bouzareah 163 Algiers, Algeria

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Flow field in the compressor blade cascade NACA

Flow field in the compressor blade cascade NACA Flow field in the compressor blade cascade NACA 65-100 Tomáš Turek Thesis Supervisor: Ing. Tomáš Hyhlík, Ph.D. Abstract An investigation is made into the effects of a flow field in the compressor blade

More information

NPC Abstract

NPC Abstract NPC-2013-15002 Development of Mach 3.6 water cooled Facility Nozzle By Jayaprakash C*, Sathiyamoorthy K*, Ashfaque A. Khan*, Venu G*, Venkat S Iyengar*, Srinivas J**, Pratheesh Kumar P** and Manjunath

More information

Optimization of Shell & Tube Heat Exchanger by Baffle Inclination & Baffle Cut

Optimization of Shell & Tube Heat Exchanger by Baffle Inclination & Baffle Cut Optimization of Shell & Tube Heat Exchanger by Baffle Inclination & Baffle Cut Joemer.C.S 1, Sijo Thomas 2, Rakesh.D 3, Nidheesh.P 4 B.Tech Student, Dept. of Mechanical Engineering, Toc H Institute of

More information

Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle

Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle L. Chandra* 1, F. Roelofs, E. M. J. Komen E. Baglietto Nuclear Research and consultancy Group Westerduinweg

More information

SOE3213/4: CFD Lecture 1

SOE3213/4: CFD Lecture 1 What is CFD SOE3213/4: CFD Lecture 1 3d 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns,

More information

Introduction to ANSYS FLUENT

Introduction to ANSYS FLUENT Lecture 6 Turbulence 14. 0 Release Introduction to ANSYS FLUENT 1 2011 ANSYS, Inc. January 19, 2012 Lecture Theme: Introduction The majority of engineering flows are turbulent. Successfully simulating

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

CFD Analysis of Mass Flow under Non-Uniformity constraints through Heat Exchanger

CFD Analysis of Mass Flow under Non-Uniformity constraints through Heat Exchanger International Journal of Scientific and Research Publications, Volume 6, Issue 7, July 2016 300 CFD Analysis of Mass Flow under Non-Uniformity constraints through Heat Exchanger Kirti Onkar Prajapati 1,

More information

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR Int. J. Mech. Eng. & Rob. Res. 2013 Basavanna S and K S Shashishekar, 2013 Research Paper ISSN 2278 0149 www.imerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved CFD ANALYSIS OF TRIANGULAR

More information

Analysis of Flow over a Convertible

Analysis of Flow over a Convertible 69 Analysis of Flow over a Convertible Aniket A Kulkarni 1, S V Satish 2 and V Saravanan 3 1 PES Institute of Technology, India, aniket260919902@gmail.com 2 PES Institute of Technology, India, svsatish@pes.edu

More information

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 05 NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

More information

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay Dipartimento di Ingegneria Industriale, Università di Bergamo CERMICS-ENPC

More information

Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis

Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis Engineering, 2013, 5, 268-276 http://dx.doi.org/10.4236/eng.2013.53037 Published Online March 2013 (http://www.scirp.org/journal/eng) Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission CFD4NRS2010 A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields G Zigh and J Solis U.S. Nuclear Regulatory Commission Abstract JA Fort Pacific Northwest National

More information

Numerical Investigation of the Hydrodynamic Performances of Marine Propeller

Numerical Investigation of the Hydrodynamic Performances of Marine Propeller Numerical Investigation of the Hydrodynamic Performances of Marine Propeller Master Thesis developed at "Dunarea de Jos" University of Galati in the framework of the EMSHIP Erasmus Mundus Master Course

More information

To study the motion of a perfect gas, the conservation equations of continuity

To study the motion of a perfect gas, the conservation equations of continuity Chapter 1 Ideal Gas Flow The Navier-Stokes equations To study the motion of a perfect gas, the conservation equations of continuity ρ + (ρ v = 0, (1.1 momentum ρ D v Dt = p+ τ +ρ f m, (1.2 and energy ρ

More information

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD Vilas P. Ingle, Dattatraya Nalawade and Mahesh Jagadale ϯ PG Student, Mechanical Engineering Department,

More information

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

CFD study for cross flow heat exchanger with integral finned tube

CFD study for cross flow heat exchanger with integral finned tube International Journal of Scientific and Research Publications, Volume 6, Issue 6, June 2016 668 CFD study for cross flow heat exchanger with integral finned tube Zena K. Kadhim *, Muna S. Kassim **, Adel

More information

Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2005

Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2005 Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 005 In this problem you will simulate a tubular reactor with fluid flowing in laminar flow. The governing equations

More information

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS-411519-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY OCTOBER 2011 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury Street

More information

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo CD-adapco, Trident House, Basil Hill Road, Didcot, OX11 7HJ, UK Multi-Fidelity Computational

More information

Study on residence time distribution of CSTR using CFD

Study on residence time distribution of CSTR using CFD Indian Journal of Chemical Technology Vol. 3, March 16, pp. 114-1 Study on residence time distribution of CSTR using CFD Akhilesh Khapre*, Divya Rajavathsavai & Basudeb Munshi Department of Chemical Engineering,

More information

Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects

Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects Ji, Y Title Authors Type URL Numerical studies on natural ventilation flow in an enclosure with both buoyancy

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology CFD Analysis of Flow through Single and Multi Stage Eccentric Orifice Plate Assemblies

More information

Numerical simulation of flow past a circular base on PANS methods

Numerical simulation of flow past a circular base on PANS methods IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical simulation of flow past a circular base on PANS methods To cite this article: J T Liu et al 016 IOP Conf. Ser.: Mater.

More information

Modelling interfacial heat transfer in a 2-phase flow in a packed bed

Modelling interfacial heat transfer in a 2-phase flow in a packed bed Modelling interfacial heat transfer in a 2-phase flow in a paced bed Dariusz ASENDRYCH, Paweł NIEGODAJEW Institute of Thermal Machinery Częstochowa University of Technology, Poland 1 Outline Motivation

More information

On the transient modelling of impinging jets heat transfer. A practical approach

On the transient modelling of impinging jets heat transfer. A practical approach Turbulence, Heat and Mass Transfer 7 2012 Begell House, Inc. On the transient modelling of impinging jets heat transfer. A practical approach M. Bovo 1,2 and L. Davidson 1 1 Dept. of Applied Mechanics,

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy.

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy. THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM Alberto Peña 1, Fernando Legarda 1, Harmut Wider 2, Johan Karlsson 2 1 University of the Basque Country Nuclear Engineering and

More information

Ejector Pump CFD Model Validation and Performance Improvement Studies

Ejector Pump CFD Model Validation and Performance Improvement Studies Journal of Scientific & Industrial Research Vol. 77, June 2018, pp. 353-358 Ejector Pump CFD Model Validation and Performance Improvement Studies B H Arun 1, J Vyas 2 *, B M Gopalsamy 2 and M Chimmat 2

More information

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Sutardi 1, Wawan A. W., Nadia, N. and Puspita, K. 1 Mechanical Engineering

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN Numerical Analysis Of Heat Transfer And Fluid Flow Characteristics In Different V-Shaped Roughness Elements On The Absorber Plate Of Solar Air Heater Duct Jitesh Rana, Anshuman Silori, Rohan Ramola Abstract:

More information

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING FLUID DYNAMICS UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING R. C. CHAUDHARY, PREETI JAIN Department of Mathematics, University of Rajasthan

More information

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Computational Fluid Dynamics Based Analysis

More information

Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project

Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project International Forum on Energy, Environment Science and Materials (IFEESM 015) Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project Yaxiong YANG 1,a *, Eri Qitai,b,

More information

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical

More information

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study Nityanand Pawar Mechanical Engineering, Sardar Patel College of Engineering, Mumbai, Maharashtra, India nitya.pawar@gmail.com

More information

MODA. Modelling data documenting one simulation. NewSOL energy storage tank

MODA. Modelling data documenting one simulation. NewSOL energy storage tank MODA Modelling data documenting one simulation NewSOL energy storage tank Metadata for these elements are to be elaborated over time Purpose of this document: Definition of a data organisation that is

More information

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE Abdalellah O. Mohmmed, Mohammad S. Nasif and Hussain H. Al-Kayiem Department of Mechanical Engineering, Universiti Teknologi Petronas,

More information

A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll Compressors

A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll

More information

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case M. Weng, P. V. Nielsen and L. Liu Aalborg University Introduction. The use of CFD in ventilation research has arrived

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models A Comparative Analysis of Turbulent Pipe Flow Using k And k Models 1 B. K. Menge, 2 M. Kinyanjui, 3 J. K. Sigey 1 Department of Mathematics and Physics. Technical University of Mombasa, P.O BOX 90420-80100,Mombasa,

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

HEAT TRANSFER COEFFICIENT CHARACTERIZATION AT THE SOLAR COLLECTOR WALL-FLUID INTERFACE

HEAT TRANSFER COEFFICIENT CHARACTERIZATION AT THE SOLAR COLLECTOR WALL-FLUID INTERFACE SASEC15 Third Southern African Solar Energy Conference 11 13 May 15 Kruger National Park, South Africa HEAT TRANSFER COEFFICIENT CHARACTERIZATION AT THE SOLAR COLLECTOR WALL-FLUID INTERFACE Mébarki Ghazali*

More information

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments C. Lifante 1, B. Krull 1, Th. Frank 1, R. Franz 2, U. Hampel 2 1 PBU, ANSYS Germany, Otterfing 2 Institute of Safety Research,

More information

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2 CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration G.S.T.A. Bangga 1*, W.A. Widodo 2 1,2 Department of mechanical engineering Field of study energy conversion Institut

More information