Numerical simulation of flow past a circular base on PANS methods

Size: px
Start display at page:

Download "Numerical simulation of flow past a circular base on PANS methods"

Transcription

1 IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical simulation of flow past a circular base on PANS methods To cite this article: J T Liu et al 016 IOP Conf. Ser.: Mater. Sci. Eng View the article online for updates and enhancements. Related content - Numerical simulation of flow around a simplified high-speed train model using OpenFOAM I A Ishak, M S M Ali and S A Z Shaikh Salim - Numerical Simulation of Flow and Heat Transfer Characteristics in Biomass Feeder Zhenhua Wang, Yulong Chang, Zheming Liu et al. - Numerical simulations of flow past a circular cylinder Gaurav Chopra and Sanay Mittal This content was downloaded from IP address on 0/09/018 at 17:38

2 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 Numerical simulation of flow past a circular base on PANS methods J T Liu 1, Y Li 1, Y Gao 1, Q Hu 1 and Y L Wu 1 Beiing Institute of Control Engineering, Beiing , China liuintao86@hotmail.com State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beiing , China wyl-dhh@mail.tsinghua.edu.cn Abstract. A nonlinear partially averaged Navier-Stokes (PANS) method based on RNG k-ε turbulence model is evaluated by a moderately high Reynolds number turbulence flow past a circular cylinder. The ratios of unresolved-to total kinetic energy (f k) and unresolved-to-total disspation (f ε) for PANS method is sensitive to the simulation result. Simulation results based on different fk are compared with the experimental data. The quantities including mean streamline velocity, mean normal velocity, streamlines and et al. are analyzed. The computational result is reasonable when f k is less than 0.6. The PANS method can be used in the simulation of high Reynolds number turbulence flow. 1. Introduction For predictions of turbulence flow with high Reynolds number based on the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations have been well discussed in the literature 1. Unfortunately, the aforementioned URANS approach couldn t capture the flow with all kinds of scales. Large Eddy Simulation (LES) could improve predictions but is not computationally economical due to the considerable high cost for engineering problems 3. As an alternative, various hybrid RANS/LES approaches have been proposed. For example, a Partially-Averaged Navier-Stokes (PANS) approach, which changes seamlessly from RANS to the direct numerical solution of the Navier-Stokes equations, was proposed by Girimai et al.. Lakshmipathy 3 analyzed the flow past a circular cylinder with high Reynolds number via PANS k-ε model. Lakshmipathy 4 proposed a new kind PANS model derived from k-ω turbulence model, which was called k-ω PANS methods. Flow around a marine propeller 5 and a twisted hydrofoil 6 in a non-uniform wake were also investigated using PANS methods. A variable-resolved PANS bridging strategy was applied to the four-equations k-ε-ξ-f turbulence model 7. Embedded large-eddy simulation using the partially averaged Navier-Stokes model was proposed via Davidson 8. Computations of flow past a circular cylinder have also been performed to evaluate the numerical as well as physical modeling aspects. Several experimental data sets are available for the flow past a circular cylinder test case in all Reynolds number regimes. Cantwell 9 studied the flow past a circular cylinder at Re d= Breuer 10 was the first to perform LES calculations of flow past a circular Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, ournal citation and DOI. Published under licence by Ltd 1

3 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 cylinder at Re d= It concluded that the dynamic subgrid model gave the best results but was not decisively better than the constant Smogorinsky model for this flow. Travin 11 performed detached eddy simulations (DES) of flow past a circular cylinder at Re d= using a multiblock grid and fifth-order upwind scheme for spatial discretization. The primary obective of the present study is to validate a nonlinear RNG k-ε PANS mothod 1 in the flow past a circular cylinder at Re d= The PANS results are compared with experimental data at different f k.. Nolinear PANS model For incompressible flow, the continuity equation and Reynolds averaged Navier-Stokes equations: V, i V p U U U U t x x x x x i i i i i p U U Vi, V i x x x x x x i i i i Here, Vis the instantaneous velocity (subscript i and indicating components in different directions); U is the partially averaged velocity; t is the time; p is the pressure; denotes a constant-preserving arbitrary (implicit or explicit) filter commuting with spatial and temporal differentiation; x denotes the coordinates; is the kinematic viscosity. Here, V i is partitioned into two parts: partially averaged velocity (U) unresolved part ( ). Vi Ui ui Ui Vi (3) where U i is the resolved velocity field; u i is the unresolved field. It is used by equation 4 instead of the resolved field. In Eqs. (1) and (), the additional non-linear term τ(v i, V ) (i.e. the generalized central second moment) is defined as, V, V VV V V (4) u i The PANS models are: i i i k Uk u u u k u k Pku u t x x u x U u C P C t x x x k k u u u u * u k 1 ku u u u Considering the nolinear turbulence flow in the pump-turbine, the shear stress was solved by nolinear turbulence model which was proposed by Ehrhard [1]. U Pk U i U (7) x 1 U i U ki C P TSi C1C P T Sik Sk Skl Skli CCke T iksk kski C3C P T ik k lklki C4Cke T Skil Skli Skl C5CP T SiSkl Skl C6CP T Siklkl 3 (8) 1 1 U U k i CP min, i S 0.9S x x k S i S i i i i where C ke k, C1 0., 0.4 C, C S 3.0 exp, C4 3.0C, P C5 16.0C, P C6 16.0C,T P (1) () (5) (6)

4 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 is turbulence time scale, is the turbulence velocity scale. 3. Simulation Setup Flow past a circular cylinder at R ed= was simulated using the nonlinear RNG k-ε PANS model at different resolutions. Values of the f k were 0., 0.6, 0.8 and 1. At this Reynolds number the flow is still sub-critical, i.e., the boundary layers at the cylinder separate laminarly and transition takes place in the free shear layers. In the wake strong vortex shedding is observed. The computational domain shown in Fig.1 is a square cross section of 30D 30D with the cylinder located at the center. D is the diameter of the circular cylinder at the center of the section. The spanwise lengthen of the domain is D with the circular cylinder stretching along the enter domain. The nonlinear RNG k-ε PANS model was performed via the user defined function (UDF) using a commercially available Fluent code. Enhanced wall boundary function was used at the upper and lower solid wall of the domain. No slip boundary condition was chosen for the calculations. The periodicity of the flow is assumed in the spanwise direction of the cylinder. A constant velocity inlet flow with zero turbulence intensity is imposed. Three dimensional (3D) simulations were performed with segregated and implicit solver. Second order scheme was using for the pressure discretization. SIMPLE was using for the pressure and velocity coupling. Second order upwind was using for discretizing the momentum, turbulence kinetic energy, turbulence dissipation rate. Constant velocity inlet was used at the inlet of the computational domain and outflow was using for the outlet. The time step using for the calculation was set up according to the courant number less than 1. Detailed simulation setups are shown in Table 1. Hexahedral mesh forms the computational domain. Mesh at the vicinity of the cylinder is shown in Fig.. Figure 1. Geometry of computational domain Figure. Mesh at the vicinity of the cylinder 4. Results and discussion 4.1. Influence of f k on velocity statistics The effects of varying f k values on the flow statistics are investigated. The experimental results by Cantwell and Coles are plotted alongside for comparison purposes. The mean streamwise velocity along the wake centerline (y=0) is calculated by the nonlinear PANS model and shown in Fig.3. Normalized streamwise velocity (u/u 0) of various f k values plotted alongside the experimental result. The nonlinear PANS calculation results with f k=1.0 and fk=0.8 have large tolerances compared with experimental data. With PANS calculations f k=0.6 and 0.4, the mean velocity profiles get closer to the experimental results. When f k=0.4, the calculation result is in good agreement with experimental data. In the wake region(1<x/d<5), the PANS results show monotonic improvement toward experimental data as the f k value is reduced from 1.0 to 0.4. In the far wake region(x/d>6), the PANS results are all close to the experimental data. This could be attributed to the decrease of the influence of wake flow downstream the cylinder. Results performed by Lakshmipathy 3

5 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 and Girimai 10 using PANS model without nonlinear shear stress are also shown in Fig.3. It can be seen than the nonlinear PANS model is accuracy in the region (1<x/D<5). u/u o f k = f k =1.0 Laksmipathy f k = x/d Figure 3. Mean streamwise velocity along the wake centerline for various f k values Figure 4 shows the mean normal velocity on x/d=1.0 line. There has a rotational symmetry of the mean normal velocity on x/d=1.0 line. The PANS results with f k=0.6 and 0.4 predict the mean normal velocity at the x/d=1.0 line with good accuracy. The computations results with f k=1.0 and 0.8 fail to capture the trend for this velocity statistics at the wake flow. The maximum normal velocity at the x/d=1.0 line predicted with f k=0.4 is only a little large than the experimental result. For the mean velocity statistics presented above, a smaller f k values is better for the nonlinear PANS computations for turbulence flow. Exp. f k =0.4 f k =0.6 v/u o Exp f k =0.4 f k =0.6 f k =0.8 f k = y/d Laksmipathy f k =0.5 Figure 4. Mean normal velocity on x/d=1.0 line Figure 5 shows the mean streamwise velocity at x/d=1.0 line in the near wake region. The mean streamwise velocity shows a symmetry distribution by y/d=0. At x D=1.0, the PANS results with f k=0.4 are in good agreement with the experimental measurements, which show V-shaped profiles at this location. A V-shaped profile has been indicated by experiments done by Kravchenko and Moin 3, which also shows that simulation results are more accuracy when f k=0.4. As f k increases, the maximum mean streamwise velocity increases, while the minimum mean streamwise velocity decreases. When f k 0.6, the mean streamwise velocity profile on x/d=1.0 line transforms into U-shape. This could be attributed to the fact that the separation in the case of PANS computations is turbulent in nature. The peak velocity for the PANS computations with PANS of f k=0.4 showing the best agreement with experiments. Figure 6 shows the mean streamwise velocity at x/d=3.0 line in the near wake region. The mean streamwise velocity shows a symmetry distribution by y/d=0. When f k=0.4, the simulation results of mean streamwise velocity have the same shape with experimental result and it can predict the hump 4

6 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 characteristic at 1.0<y/D<.0 and -.0<y/D<-1.0. At x over predict the velocity at the center. D =3.0, the PANS computations with f k u/u o Exp. f k =0.4 f k =0.6 f k =0.8 f k = y/d Figure 5. Mean streamwise velocity at x/d=1.0 line 1.0 u/u o Exp. f k =0.4 f k =0.6 f k =0.8 f k = y/d Figure 6. Mean streamwise velocity at x/d=3.0 line 4.. pressure coefficient distributions Figure 7 shows the distribution of pressure coefficient versus θ, the angle measured from the forward stagnation point along the surface of the cylinder. The nonlinear PANS results are compared with experimental data at this high Reynolds number [19]. With the reduce of f k, the minimum pressure is more and more close to the experimental result. The inflection point of the pressure coefficient line at θ=100 o is predicted accurately when f k 0.6. The pressure drop on the cylinder surface increases further as the f k value is reduced, leading to delayed separation. 5

7 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/ Exp. f k =0.4 f k =0.6 f k =0.8 f k =1.0 Cp ( o ) Figure 7. C p distribution over the cylinder surface 5. Conclusions The nonlinear PANS model modified from RNG k-ε turbulence model is performed by the commercial CFD package FLUENT using user define function. Turbulence flow past a circular cylinder at Re D= is used to evaluate the accuracy of the nonlinear PANS model. The nonlinear PANS capability of reducing the closure cut-off length-scale by decreasing the f k value is examined by performing simulations with f k values of 1.0, 0.8, 0.6, and 0.4. As can be seen from the results presented above, PANS performs very well in computing profiles and flow distributions. Based on the computed results for flow past a circular cylinder, it is reasonable to conclude that the nonlinear PANS bridging method is a theoretically sound and computationally viable variable resolution method for practical flow computations. The computational result is reasonable when f k is less than 0.6. The PANS method can be used in the simulation of high Reynolds number turbulence flow. Acknowledgments The authors would like to thank National Natural Science Foundation of China (No ) and Open research fund program of State Key Laboratory of Hydroscience and Engineering (Proect No. sklhse e-0). References [1] Wu Y L, Li S C, Liu S H, Dou H S and Qian Z D, 013 Vibration induced by hydraulic excitation in Vibration of hydraulic machinery Springer Germany [] S Girimai, R Srinivasan and E Jeong 003 PANS turbulence models for seamless transition between RANS and LES: fixed point analysis and preliminary results, ASME paper FEDSM [3] Lakshmipathy, S and Girimai, S 006 Partially-averaged Navier-Stokes method for turbulent flows: k-ω model implementation. 44th AIAA Aerospace Sciences Meeting and Exhibit ( Reno, Nevada) 119. [4] S Lakshmipathy and S Girimai 010 Journal of Fluids Engineering 13(1): [5] Ji B, Luo X W, Wu Y L, Peng X X, Xu H Y 01. International Journal of Heat and Mass Transfer 55 (3-4), [6] Ji B, Luo X W, Wu Y L, Peng X X, Duan Y L 013. International Journal of Multiphase Flow 51, [7] B Basara, S Kranović, S Girimai, and Z 011 Pavlovic. AIAA Journal 49(1): [8] L Davidson, Peng S H 013 AIAA Journal online first, doi: /1.J [9] B Contwell and D Coles 1983 J. Fluid Mech. 136(1): [10] M Breuer 000 Int. J. Heat Fluid Flow 1(5):

8 ICPF015 IOP Conf. Series: Materials Science and Engineering 19 (016) doi: / x/19/1/01048 [11] A Travin, M Shur, M Strelets, and P. Spalart 000 Turbul Combust. 63(1-4): [1] Liu J, Zuo Z, Wu Y, Zhuang B and Wang L 014 Computers & Fluids 10,

Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump

Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump To cite this article: X W Pan et al 2013 IOP Conf. Ser.:

More information

PARTIALLY AVERAGED NAVIER-STOKES TURBULENCE MODELING: INVESTIGATION OF COMPUTATIONAL AND PHYSICAL CLOSURE ISSUES IN FLOW PAST A CIRCULAR CYLINDER

PARTIALLY AVERAGED NAVIER-STOKES TURBULENCE MODELING: INVESTIGATION OF COMPUTATIONAL AND PHYSICAL CLOSURE ISSUES IN FLOW PAST A CIRCULAR CYLINDER PARTIALLY AVERAGED NAVIER-STOKES TURBULENCE MODELING: INVESTIGATION OF COMPUTATIONAL AND PHYSICAL CLOSURE ISSUES IN FLOW PAST A CIRCULAR CYLINDER A Thesis by DASIA A. REYES Submitted to the Office of Graduate

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Analysis of flow characteristics of a cam rotor pump

Analysis of flow characteristics of a cam rotor pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Analysis of flow characteristics of a cam rotor pump To cite this article: Y Y Liu et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 032023

More information

PARTIALLY AVERAGED NAVIER-STOKES METHOD FOR TURBULENCE CLOSURES: CHARACTERIZATION OF FLUCTUATIONS AND EXTENSION TO WALL BOUNDED FLOWS.

PARTIALLY AVERAGED NAVIER-STOKES METHOD FOR TURBULENCE CLOSURES: CHARACTERIZATION OF FLUCTUATIONS AND EXTENSION TO WALL BOUNDED FLOWS. PARTIALLY AVERAGED NAVIER-STOKES METHOD FOR TURBULENCE CLOSURES: CHARACTERIZATION OF FLUCTUATIONS AND EXTENSION TO WALL BOUNDED FLOWS A Dissertation by SUNIL LAKSHMIPATHY Submitted to the Office of Graduate

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,

More information

The current issue and full text archive of this journal is available at

The current issue and full text archive of this journal is available at The current issue and full text archive of this journal is available at www.emeraldinsight.com/0961-5539.htm HFF 16,6 660 Received February 2005 Revised December 2005 Accepted December 2005 3D unsteady

More information

Application of two turbulence models for computation of cavitating flows in a centrifugal pump

Application of two turbulence models for computation of cavitating flows in a centrifugal pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Application of two turbulence models for computation of cavitating flows in a centrifugal pump To cite this article: M He et al 2013

More information

DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION

DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION Liang Wang*, Ruyun Hu*, Liying Li*, Song Fu* *School of Aerospace Engineering, Tsinghua University, Beijing 100084,

More information

Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re = 3,900 and 140,000

Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re = 3,900 and 140,000 Advances in Fluid Mechanics VIII 79 Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re =,9 and 4, J. Wong & E. Png Marine Systems, DSO

More information

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration 1 Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration A. Henze, C. Glatzer, M. Meinke, W. Schröder Institute of Aerodynamics, RWTH Aachen University, Germany March 21,

More information

Numerical Simulation of Effects of Buoyancy on Wake Instability of Heated Cylinder in Contra Flow

Numerical Simulation of Effects of Buoyancy on Wake Instability of Heated Cylinder in Contra Flow 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 7, Reno, Nevada AIAA 7-81 Numerical Simulation of Effects of Buoyancy on Wake Instability of Heated Cylinder in Contra Flow Khyati B. Varma

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

Numerical calculation for cavitation flow of inducer

Numerical calculation for cavitation flow of inducer IOP Conference Series: Materials Science and Engineering OPEN ACCESS Numerical calculation for cavitation flow of inducer To cite this article: C Ning et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 72 032025

More information

Forced Convection from Heated Rectangular Cylinder in Turbulent Regime using PANS Method

Forced Convection from Heated Rectangular Cylinder in Turbulent Regime using PANS Method Proceedings of the 6 th International and 43 rd National Conference on Fluid Mechanics and Fluid Power December 15-17, 2016, MNNITA, Allahabad, U.P., India Forced Convection from Heated Rectangular Cylinder

More information

arxiv: v1 [physics.flu-dyn] 4 Aug 2014

arxiv: v1 [physics.flu-dyn] 4 Aug 2014 A hybrid RANS/LES framework to investigate spatially developing turbulent boundary layers arxiv:1408.1060v1 [physics.flu-dyn] 4 Aug 2014 Sunil K. Arolla a,1, a Sibley School of Mechanical and Aerospace

More information

INVESTIGATION OF THE FLOW OVER AN OSCILLATING CYLINDER WITH THE VERY LARGE EDDY SIMULATION MODEL

INVESTIGATION OF THE FLOW OVER AN OSCILLATING CYLINDER WITH THE VERY LARGE EDDY SIMULATION MODEL ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach S. Arvidson 1,2, L. Davidson 1, S.-H. Peng 1,3 1 Chalmers University of Technology 2 SAAB AB, Aeronautics 3 FOI, Swedish Defence

More information

STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED NAVIER STOKES SIMULATIONS

STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED NAVIER STOKES SIMULATIONS Numerical Heat Transfer, Part B, 46: 1 18, 2005 Copyright # Taylor & Francis Inc. ISSN: 1040-7790 print/1521-0626 online DOI: 10.1080/10407790490515792 STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED

More information

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM 206 9th International Conference on Developments in esystems Engineering A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM Hayder Al-Jelawy, Stefan Kaczmarczyk

More information

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT 2th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT Wang T.*, Gao S.F., Liu Y.W., Lu Z.H. and Hu H.P. *Author

More information

Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow

Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow Khyati B. Varma 1 and Hui Hu and Z J Wang 3 Iowa State University,Ames, Iowa, 511 Flow over a cylinder

More information

Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone

Flow behaviour analysis of reversible pumpturbine in S characteristic operating zone IOP Conference Series: Earth and Environmental Science Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone To cite this article: S Q Zhang et al 2012 IOP Conf. Ser.:

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

Atmospheric Boundary Layer Studies with Unified RANS-LES and Dynamic LES Methods

Atmospheric Boundary Layer Studies with Unified RANS-LES and Dynamic LES Methods 5st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 7 - January 23, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 23-747 Atmospheric Boundary Layer Studies with

More information

Numerical investigation of the flow instabilities in centrifugal fan

Numerical investigation of the flow instabilities in centrifugal fan Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 26 (pp282-288) Numerical investigation of the flow instabilities in centrifugal

More information

Available online at ScienceDirect. Procedia Engineering 79 (2014 ) 49 54

Available online at  ScienceDirect. Procedia Engineering 79 (2014 ) 49 54 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 79 (2014 ) 49 54 37th National Conference on Theoretical and Applied Mechanics (37th NCTAM 2013) & The 1st International Conference

More information

Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four

Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four You Qin Wang 1, Peter L. Jackson 2 and Jueyi Sui 2 1 High Performance Computing Laboratory, College of Science and

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS June 30 - July 3, 2015 Melbourne, Australia 9 7B-4 A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS C.-Y. Chang, S. Jakirlić, B. Krumbein and C. Tropea Institute of Fluid Mechanics and Aerodynamics /

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models

Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models Journal of Physics: Conference Series PAPER OPEN ACCESS Steady state operation simulation of the Francis- 99 turbine by means of advanced turbulence models To cite this article: A Gavrilov et al 2017 J.

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

RANS Predictions of Turbulent Flow Past a Circular Cylinder over the Critical Regime

RANS Predictions of Turbulent Flow Past a Circular Cylinder over the Critical Regime Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007 232 RANS Predictions of Turbulent Flow Past a Circular Cylinder over

More information

Large Eddy Simulation of Three-Stream Jets

Large Eddy Simulation of Three-Stream Jets Large Eddy Simulation of Three-Stream Jets J. Xiong 1, F. Liu 2, and D. Papamoschou 3 University of California, Irvine, Irvine, CA, 92697 We present a computational study of three-stream jets simulating

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

Hybrid RANS/LES employing Interface Condition with Turbulent Structure

Hybrid RANS/LES employing Interface Condition with Turbulent Structure Turbulence, Heat and Mass Transfer 4, pp. 689696 K. Hanjalić, Y. Nagano and M. Tummers (Editors) c 23 Begell House, Inc. Hybrid RANS/LES employing Interface Condition with Turbulent Structure S. Dahlström

More information

Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign

Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign IOP Conference Series: Earth and Environmental Science Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at offdesign conditions To cite this article: B J Zhao et

More information

Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step Copyright c 2004 Tech Science Press CMC, vol.1, no.3, pp.275-288, 2004 Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step B. Wang 1, H.Q. Zhang 1, C.K. Chan 2 and X.L.

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD N. Jarrin 1, A. Revell 1, R. Prosser 1 and D. Laurence 1,2 1 School of MACE, the University of Manchester,

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT

More information

Numerical simulation of pressure pulsations in Francis turbines

Numerical simulation of pressure pulsations in Francis turbines IOP Conference Series: Earth and Environmental Science Numerical simulation of pressure pulsations in Francis turbines To cite this article: M V Magnoli and R Schilling 2012 IOP Conf. Ser.: Earth Environ.

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

U=Gy+U C High-velocity side U C θ Monitor points Low-velocity side Fig.1. Schematic of shear flow configuration Although the number of published paper

U=Gy+U C High-velocity side U C θ Monitor points Low-velocity side Fig.1. Schematic of shear flow configuration Although the number of published paper Shear effects on flow past a rectangular cylinder with side ratio B/D=5 Qiang Zhou, Shuyang Cao*, Zhiyong Zhou State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai

More information

Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber

Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber Gual Skopek, Marc a, Braza, Marianna a, Hoarau, Yannick b a. IMFT: Allée du Professeur Camille

More information

Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA

Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA Proceedings of the 4th Joint US-European Fluids Engineering Division Summer Meeting ASME-FEDSM4 August 3-7, 4, Chicago, Illinois, USA FEDSM4-38 SUPPRESSION OF UNSTEADY VORTEX SHEDDING FROM A CIRCULAR CYLINDER

More information

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2 CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration G.S.T.A. Bangga 1*, W.A. Widodo 2 1,2 Department of mechanical engineering Field of study energy conversion Institut

More information

Numerical simulations of heat transfer in plane channel flow

Numerical simulations of heat transfer in plane channel flow Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a, Rafik ABSI 2, b and Ahmed BENZAOUI 3, c 1 Renewable Energy Development Center, BP 62 Bouzareah 163 Algiers, Algeria

More information

A comparison between classical DES and DDES using the in-house computational code

A comparison between classical DES and DDES using the in-house computational code A comparison between classical DES and DDES using the in-house computational code KAREL FRAŇA AND VIT HONZEJK Department of Power Engineering Equipment Technical University of Liberec Studentská 2, 461

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Research on energy conversion mechanism of a screw centrifugal pump under the water

Research on energy conversion mechanism of a screw centrifugal pump under the water IOP Conference Series: Materials Science and Engineering OPEN ACCESS Research on energy conversion mechanism of a screw centrifugal pump under the water To cite this article: H Quan et al 213 IOP Conf.

More information

Numerical study of the effects of trailing-edge bluntness on highly turbulent hydro-foil flows

Numerical study of the effects of trailing-edge bluntness on highly turbulent hydro-foil flows Numerical study of the effects of trailing-edge bluntness on highly turbulent hydro-foil flows T. Do L. Chen J. Tu B. Anderson 7 November 2005 Abstract Flow-induced noise from fully submerged lifting bodies

More information

Numerical Simulation of Rocket Engine Internal Flows

Numerical Simulation of Rocket Engine Internal Flows Numerical Simulation of Rocket Engine Internal Flows Project Representative Masao Furukawa Authors Taro Shimizu Nobuhiro Yamanishi Chisachi Kato Nobuhide Kasagi Institute of Space Technology and Aeronautics,

More information

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions Journal of Physics: Conference Series PAPER OPEN ACCESS Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions To cite this article: A Rosiak and

More information

Numerical Simulation of a Blunt Airfoil Wake

Numerical Simulation of a Blunt Airfoil Wake 6th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 7 Numerical Simulation of a Blunt Airfoil Wake C.J. Doolan School of Mechanical Engineering University of Adelaide,

More information

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue 11 Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue Yang GUO*, Chisachi KATO** and Yoshinobu YAMADE*** 1 FrontFlow/Blue 1) is a general-purpose finite element program that calculates

More information

Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations

Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations www.cfdl.issres.net Vol. 3 (2) June 2011 Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations Monoj Baruah 1, Anupam Dewan 2c and P. Mahanta 1 1 Department of Mechanical

More information

Elliptic Trailing Edge for a High Subsonic Turbine Cascade

Elliptic Trailing Edge for a High Subsonic Turbine Cascade Elliptic Trailing Edge for a High Subsonic Turbine Cascade Mahmoud M. El-Gendi 1, Mohammed K. Ibrahim 2, Koichi Mori 3, and Yoshiaki Nakamura 4 1 Graduate School of Engineering, Nagoya University, Nagoya

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

RANS Simulations of a Small Turbine Cascade

RANS Simulations of a Small Turbine Cascade Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, Gold Coast, Queensland, Australia, January 17-19, 27 113 RANS Simulations of a Small urbine Cascade VIVIEN S. DJANAI, K.C. WONG

More information

Local blockage effect for wind turbines

Local blockage effect for wind turbines Journal of Physics: Conference Series PAPER OPEN ACCESS Local blockage effect for wind turbines To cite this article: Takafumi Nishino and Scott Draper 2015 J. Phys.: Conf. Ser. 625 012010 View the article

More information

CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing

CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 3 - July 2, 21, London, U.K. CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing Lee Chin Yik, Salim Mohamed Salim,

More information

Numerical Modeling of Inclined Negatively Buoyant Jets

Numerical Modeling of Inclined Negatively Buoyant Jets Numerical Modeling of Inclined Negatively Buoyant Jets Presentation by: Hossein Kheirkhah Graduate Student in Civil Engineering Dep. of Civil Engineering University of Ottawa CANADA ICDEMOS April2014 Outline

More information

Flow analysis in centrifugal compressor vaneless diffusers

Flow analysis in centrifugal compressor vaneless diffusers 348 Journal of Scientific & Industrial Research J SCI IND RES VOL 67 MAY 2008 Vol. 67, May 2008, pp. 348-354 Flow analysis in centrifugal compressor vaneless diffusers Ozturk Tatar, Adnan Ozturk and Ali

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

DNS, LES, and wall-modeled LES of separating flow over periodic hills

DNS, LES, and wall-modeled LES of separating flow over periodic hills Center for Turbulence Research Proceedings of the Summer Program 4 47 DNS, LES, and wall-modeled LES of separating flow over periodic hills By P. Balakumar, G. I. Park AND B. Pierce Separating flow in

More information

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Sutardi 1, Wawan A. W., Nadia, N. and Puspita, K. 1 Mechanical Engineering

More information

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade HU Guo-yu, SUN Wen-lei, Dong Ping The School of Mechanical Engineering Xinjiang University Urumqi, Xinjiang,

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS Conference Applications of Mathematics 212 in honor of the 6th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 212 ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

More information

Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with DDES Simulation

Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with DDES Simulation Proceedings of Shanghai 2017 Global Power and Propulsion Forum 30 th October 1 st November, 2017 http://www.gpps.global 0200 Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient):

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient): 8. TURBULENCE MODELLING 1 SPRING 2019 8.1 Eddy-viscosity models 8.2 Advanced turbulence models 8.3 Wall boundary conditions Summary References Appendix: Derivation of the turbulent kinetic energy equation

More information

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework Computers and Mathematics with Applications 59 (2010) 2200 2214 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Investigation

More information

Numerical simulation of scalar dispersion downstream of a square obstacle

Numerical simulation of scalar dispersion downstream of a square obstacle Center for Turbulence Research Annual Research Briefs 8 87 Numerical simulation of scalar dispersion downstream of a square obstacle By R. Rossi AND G. Iaccarino. Motivation and objectives The analysis

More information

Massimo GERMANO Politecnico di Torino

Massimo GERMANO Politecnico di Torino Hybrid Massimo GERMANO Politecnico di Torino Martín SÁNCHEZ-ROCHA Dassault Systèmes SIMULIA Corporation Suresh MENON Georgia Institute of Technology 64th Annual APS-DFD Meeting Baltimore, Maryland November

More information

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle MultiCraft International Journal of Engineering, Science and Technology Vol. 3, No. 2, 2011, pp. 84-88 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2011 MultiCraft Limited.

More information

Viscous investigation of a flapping foil propulsor

Viscous investigation of a flapping foil propulsor IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Viscous investigation of a flapping foil propulsor To cite this article: Attapol Posri et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Natural frequency analysis of fluid-conveying pipes in the ADINA system Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

More information

On the transient modelling of impinging jets heat transfer. A practical approach

On the transient modelling of impinging jets heat transfer. A practical approach Turbulence, Heat and Mass Transfer 7 2012 Begell House, Inc. On the transient modelling of impinging jets heat transfer. A practical approach M. Bovo 1,2 and L. Davidson 1 1 Dept. of Applied Mechanics,

More information

VORTEX SHEDDING IN FLOW PAST AN INCLINED FLAT PLATE AT HIGH INCIDENCE

VORTEX SHEDDING IN FLOW PAST AN INCLINED FLAT PLATE AT HIGH INCIDENCE VORTEX SHEING IN FLOW PAST AN INCLINE FLAT PLATE AT HIGH INCIENCE an Yang email: dan.yang@ntnu.no Bjørnar Pettersen email: bjornar.pettersen@ntnu.no epartment of Marine Technology Norwegian University

More information

Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor

Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor Home Search Collections Journals About Contact us My IOPscience Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures

More information

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows Center for Turbulence Research Annual Research Briefs 1998 267 On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows By Jeffrey S. Baggett 1. Motivation and objectives

More information

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE-AFASES 2016 A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER Alexandru DUMITRACHE*, Florin FRUNZULICA ** *Institute of

More information

Predictions of Aero-Optical Distortions Using LES with Wall Modeling

Predictions of Aero-Optical Distortions Using LES with Wall Modeling Predictions of Aero-Optical Distortions Using LES with Wall Modeling Mohammed Kamel, Kan Wang and Meng Wang University of Notre Dame, Notre Dame, IN 46556 Large-eddy simulation (LES) with wall-modeling

More information

Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry

Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry To cite this article:

More information

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models A Comparative Analysis of Turbulent Pipe Flow Using k And k Models 1 B. K. Menge, 2 M. Kinyanjui, 3 J. K. Sigey 1 Department of Mathematics and Physics. Technical University of Mombasa, P.O BOX 90420-80100,Mombasa,

More information

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE 20 th Annual CFD Symposium, August 09-10, 2018, Bangalore LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE Bharathan R D, Manigandan P, Vishal Tandon, Sharad Kapil,

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances

Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances Arch. Mech., 65, 2, pp. 143 166, Warszawa 213 Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances S. KUBACKI 1), J. ROKICKI 1), E. DICK 2), J. DEGROOTE 2), J. VIERENDEELS

More information

Explicit algebraic Reynolds stress models for internal flows

Explicit algebraic Reynolds stress models for internal flows 5. Double Circular Arc (DCA) cascade blade flow, problem statement The second test case deals with a DCA compressor cascade, which is considered a severe challenge for the CFD codes, due to the presence

More information

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION Beomjun Kye Keuntae Park Department of Mechanical & Aerospace Engineering Department of Mechanical & Aerospace Engineering

More information

Detailed simulation of turbulent flow within a suction and oscillatory blowing fluidic actuator

Detailed simulation of turbulent flow within a suction and oscillatory blowing fluidic actuator Center for Turbulence Research Annual Research Briefs 14 9 Detailed simulation of turbulent flow within a suction and oscillatory blowing fluidic actuator By J. Kim AND P. Moin 1. Motivation and objectives

More information

Validation of Computational Fluid-Structure Interaction Analysis Methods to Determine Hydrodynamic Coefficients of a BOP Stack

Validation of Computational Fluid-Structure Interaction Analysis Methods to Determine Hydrodynamic Coefficients of a BOP Stack Validation of Computational Fluid-Structure Interaction Analysis Methods to Determine Hydrodynamic Coefficients of a BOP Stack The MIT Faculty has made this article openly available. Please share how this

More information

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics IOP Conference Series: Earth and Environmental Science Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics To cite this article: J H Kim et al 2012 IOP Conf.

More information