Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle

Size: px
Start display at page:

Download "Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle"

Transcription

1 Unsteady RANS and LES Analyses of Hooper s Hydraulics Experiment in a Tight Lattice Bare Rod-bundle L. Chandra* 1, F. Roelofs, E. M. J. Komen E. Baglietto Nuclear Research and consultancy Group Westerduinweg 3, 1755 ZG, Petten, The Netherlands. Tel: , Fax: * chandra@nrg.eu CD-adapco, New York 60 Broadhollow Rd. Melville, NY ABSTRACT Several experiments have already reported the existence of flow oscillations in a tight lattice bare rod-bundle. This in-turn results in temperature oscillations, when heat transfer is also involved. Consequently, assessment of flow oscillations plays an important role in the design of future innovative reactor systems as proposed by the Generation IV International Forum. Literature review reveals that such flow oscillations have recently numerically been analyzed using Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques. The objective is to assess URANS and LES turbulence modelling techniques for application in tight rod bundles to determine: temperature oscillations arising from flow oscillations in a tight lattice rod bundle occurrence of flow induced vibrations To this purpose, as a first step this paper will present URANS and LES analyses of the hydraulics experiment performed by Hooper in a tight lattice bare rod-bundle (pitch-todiameter ratio is 1.107). These simulations are performed using STAR-CCM+. The numerical analyses reveal the existence of flow oscillation as observed in the experiment. This is concluded from the analyzed instantaneous velocities at a plane and the time dependent velocities at a point in the computational domain. As expected, for a given grid and time step, these results show that the employed LES approach resolves smaller structures compared to the employed URANS approach. The influence of the flow on the surface of the rods is assessed by analyzing the wall shear stress magnitude and its power spectra. Key words: URANS, LES, flow oscillation, rod-bundle. 1: Current address: Indian Institute of Technology, Rajasthan, India. 1 / 13

2 1. INTRODUCTION Six innovative reactor concepts are considered under Gen IV International Forum, [1]. Usually, in Computational Fluid Dynamics (CFD) analyses of fuel assembly subchannels, Reynolds Averaged Navier Stokes (RANS) is employed for evaluation of the reactor core in these systems. The applicability of RANS approaches has already been assessed for widely spaced rod-bundles, see e.g. [2], [3]. The isotropic first-order two-equation based k-ε or k-ω models are known to be incapable of capturing the secondary flows and resulting anisotropy, which are inherent in a rod-bundle. This necessitates the use of second-order Reynolds Stress Model (RSM) or non-linear anisotropic eddy viscosity based turbulence models as outlined e.g. by [4], [5], [6], [7]. Well-instrumented and detailed experiments by e.g. [8], [9] and [10] have provided valuable insight to the flow hydraulics in a rod-bundle. Such experiments benefit from the fact that the flow hydraulics mainly depends on the flow conditions and is largely independent of the fluids, see e.g. [11]. The hydraulics experiments by [10] and the thermal-hydraulics experiment by [8] have revealed the existence of flow oscillations or unsteadiness in a tightly spaced rod-bundle with pitch-to-diameter ratio (p/d) of 1.1 and 1.06, respectively. The flow oscillations can cause flow-induced vibration in a rod-bundle. It has been revealed by the thermalhydraulics experiment that these flow oscillations result in temperature oscillations. These temperature oscillations in turn can induce thermal shock or thermal fatigue damage to the walls of the rods in a bundle. To capture such time-dependent flow features an Unsteady RANS, a Large Eddy Simulation (LES), or even a Direct Numerical Simulation (DNS) approach is needed, see e.g. [12], [13]. Keeping the above aspects in mind this paper aims at: - Assessment of URANS and LES modelling approaches by analyzing Hooper s hydraulics experiment as described in [10]. - Analyses of obtained results to compare these two different approaches. The first section of the paper deals with the analyzed Hooper s hydraulics experiment [10], the second section describes the adopted CFD model for URANS and LES analyses, the third section deals with the obtained results and finally the last section summarizes and concludes the paper. 2. ANALYZED CASE To assess the capabilities of URANS and LES approaches, Hooper s hydraulics experiment [10] with a tight lattice bare rod-bundle having a p/d of 1.1 is selected. The cross section of this experimental geometry revealing six bare rods arranged in a square lattice is shown in Fig. 1. This six-rod cluster is supported by an external frame that maintains the dimensional accuracy without the need of additional spacer grids. This experiment is performed with air as a working fluid at a bulk Reynolds number (Re bulk ) of 2 / 13

3 about with an inlet uniform or bulk velocity of 10.3 m/s. The length of the experimental six-rod cluster is 9.14 m, which is equivalent to 128 hydraulic diameters. This is expected to be sufficient for obtaining a fully developed flow condition. This experiment measures time-dependent velocities with hot-wire anemometer probes positioned at (x,y) = (0, ±0.102m), in a plane that is about 126 hydraulic diameters from the inlet. These probes are placed in the smallest gap region between the rods. These measurements reveal the existence of flow oscillations or instabilities in the experiment. The estimated measurement uncertainty in the axial or main flow velocity component is about 15 % (see e.g. [14]). The experimental details are summarized in Table 1. Fig. 1: Cross section of the Hooper s hydraulic experiment with a tight lattice six-rod cluster ([10]). The red dotted lines are indicating the selected computational domain. Table 1. Conditions for Hooper s hydraulic experiment with pitch-to-diameter of 1.1 Rod-bundle arrangement Bulk Reynolds number Bulk velocity (m/s) Square Measuring plane 126 hydraulic diameter from inlet Experimental uncertainty 15 % in the main flow direction 3. CFD MODEL The selected region for the URANS and LES analyses of Hooper s hydraulics experiment is indicated with red dotted lines in Fig. 1. This modelled geometry is elaborated in Fig. 2. The length of this modelled geometry for CFD analyses is m, which is four times an average wavelength of oscillations as determined by [15]. The selected length corresponds to about 18 hydraulic diameters. The average wavelength is approximated from the ratio of bulk velocity 10.3 m/s to an average cycle frequency of flow oscillations. An average cycle frequency (f) of flow oscillations is obtained from its given graphical relationship with Re bulk in [10]. Analysis of this relationship provides a value of f close to 30 Hz for the defined experimental conditions. It is already explained that the 3 / 13

4 flow measurements include a certain error, and therefore, it can be expected that a relationship between Re bulk and f will also contain a certain amount of error. However, no details in this respect for the considered experiment are available. Flow Inlet Wall Outlet Fig. 2: Selected computational domain (left) and generated hexahedral mesh at the cross section (right) for CFD analyses of Hooper s hydraulics experiment. The generated cross-sectional grid for the present analyses is shown in Fig. 2. The wall near resolution of this grid exhibits an average y+ of the order of 2 for the closest grid point to the walls. The stretching factor in the boundary layer is about In other words, the selected grid resolves the wall near region at least in the radial direction. In general, the largest grid-width (=max ( x, y)) in the cross section as shown in this figure in terms of wall-units is about 20. Consequently, the generated cross-sectional mesh follows the recommendations for a suitable grid in nuclear applications involving heat transfer for Large Eddy Simulations (LES), see e.g. [16]. The maximum grid aspect ratio of the generated grid is 80. Furthermore, a practical guideline by [17] indicates that the generated wall-resolved grid is capable of representing the flow structures in the nearwall region and is suitable for LES. In the bulk region, the grid aspect ratio is about 8. The grid is having about 80 axial grid points in one average wavelength of the oscillations and consists of about 8.5 million computational hexahedral volumes. Such a grid resolution for capturing flow oscillations or unsteadiness restricts the selection of a larger computational domain. The generated grid is summarized in Table 2. It should be emphasized that the same grid is used for both URANS and LES simulations. Therefore, the obtained results allow us a direct comparison between these two approaches based on the selected numerical schemes and closure models. 4 / 13

5 Table 2. Generated mesh for URANS and LES analyses of Hooper s hydraulic experiment Computational volumes (million) 8.5 Average y+ (nearest node to the wall) ~ 2 Stretching factor in the boundary layer ~ 1.07 Maximum bulk grid-width in wall-units ~ 20 Maximum grid aspect ratio 80 (~160 wall-units) Grid aspect ratio in bulk 8 For the URANS and LES analyses, the STAR-CCM+ CFD code is used. The open boundaries of the modelled geometry are treated as rotationally periodic. These are indicated by the same types of arrows in Fig. 2. The inlet and outlet are treated as cyclic and a mass flow rate corresponding to a bulk velocity of 10.3 m/s is applied to sustain the flow and turbulence in the selected computational domain. The employed computational set up using a Finite Volume Method (FVM) consists of: - Implicit unsteady based segregated flow solver in which convection terms are discretized with a second-order (quadratic upwind for URANS and boundedcentral for LES) scheme in the continuity and momentum equations. - A stable first-order upwind scheme to discretize the convective terms in the transport equations of turbulent quantities such as k and ε for URANS analyses. - k-ε based non-linear quadratic anisotropic eddy-viscosity turbulence model for URANS analyses. - The Wall-Adapting Local Eddy-viscosity (WALE) model for LES analyses. - All y+-wall treatment, which is a hybrid treatment that attempts to emulate the high-y+ wall treatment for coarse meshes and the low-y+ wall treatment for fine meshes in both approaches. - A selected time step of t = 5x10-5 seconds results in a maximum Courant number of 0.5. This is much smaller than 1/f with f ~30 Hz for the present case i.e. t << 1/f. Note that [18] have employed an even smaller Courant number of about 0.2 for analyzing [8] experiment. For details on the employed scheme, turbulence models etc. refer to the STAR-CCM+ User Guide [19]. The discussed computational set-up is summarized in Table 3. 5 / 13

6 Table 3. Computational set-up for Hooper s hydraulics experiment with STAR-CCM+ Solver Turbulence model Numerical scheme for convective terms Time step Maximum convective Courant number Computed flow through times Inlet outlet Open boundaries URANS Implicit unsteady Segregated flow LES k-ε based non-linear anisotropic Wall-Adapting Local Eddyviscosity (WALE) model quadratic eddy-viscosity model All y+ wall treatment Continuity, momentum equations: Continuity, momentum equations: Second-order upwind scheme Bounded-central scheme Turbulence equations: First order --- upwind scheme for URANS 5E-5 seconds Cyclic: Forced with mass flow rate Rotationally periodic 4. RESULTS The URANS and LES computations are carried out for a total time of 1.5s and 2.6s, respectively. This corresponds to about 12 and 22 flow-through times, respectively, in the modelled geometry with a bulk velocity of 10.3 m/s. The first 2-3 flow-through times based results are not considered for the analyses in both approaches. The URANS and LES analyzed axial velocity fluctuations at a certain point (z = m, x = m) are shown in Fig. 3. This also includes the recorded response of hot-wire anemometer probes as given in [10]. Following can be inferred from this figure: - URANS and LES analyzed axial velocity fluctuations are mostly within ± 1.5 m/s. Some of the analyzed values are as high as ± 2m/s. In other words, the fluctuations are almost % of the axial bulk flow velocity of 10.3m/s. This is not negligible and could cause flow induced vibrations of the six-rod cluster. - LES analysis reveals a higher frequency of axial velocity fluctuation in comparison to URANS analysis. This indicates that wider ranges (or scales) of flow structures are captured with LES than that of RANS approach, as expected. - Experimental measurement reveals that the axial velocity fluctuations are mostly within ± 1.3 m/s. 6 / 13

7 It should be emphasized that the measurement of axial velocity component involves an error of the order of 15% (see e.g. [14]). In other words, the measured axial velocity fluctuation can vary within ± 1.5 m/s including the explained experimental error. Moreover, although it has been outlined that appropriate measures have been taken, it should be noted that there are always several possible reasons for uncertainties in a CFD analysis, such as, generated grid, selected domain, turbulence model, boundary conditions and the selected approaches etc. Even with all these practical aspects of differences between experimental and computational approaches, it can be safely stated that the calculated values agree well with the experimentally measured axial velocity fluctuation. These are summarized in Table 4. Table 4. Experimental and CFD analyzed axial velocity fluctuations Axial velocity fluctuations (m/s) Experimentally measured URANS and LES analyzed ± 1.5 (± 1.3 ± 15%) ± URANS LES -1 Axial-velocity fluctuation (m/s)- URANS -1.5 Axial-velocity fluctuation (m/s)- LES z = m, x = m u: Axial velocity component (at 126 hydraulic diameter, x = ±.102 m Fig. 3: URANS analyzed (top) and Experimentally measured (bottom) axial velocity fluctuations for the Hooper s hydraulics experiment. 7 / 13

8 A three dimensional perspective of URANS and LES analyzed axial velocity is shown in Fig. 4. This figure shows: - A wavy pattern that can be inferred from the regions with different axial velocities in the analyzed mid-plane. These are indicated by arrows in the figure. As expected, the velocity is lower in the smallest gap region and higher in a region close to the open boundaries. - The presence of smaller flow structures in the LES computed flow field in comparison to URANS computed flow field. For instance, small plumes of low velocity are observed at the inlet section in LES and are not visible with URANS computation. The presence of smaller flow structures in LES is attributed to smaller values of analyzed turbulent eddy viscosity in comparison to URANS. In general, analyzed effective viscosity with LES is lower than that of URANS with the generated grid and employed computational frame-work. Fig 4: URANS (left) and LES (right) analyzed axial velocity after about 1s of computational time. Power Spectral Densities (PSD) of the URANS and LES analyzed axial velocity fluctuations at two different measurement points are shown in Fig. 5. The CFD software STAR-CCM+ is used for computing PSD. The analyzed axial velocity fluctuations over six and eight flow-through times are employed for this purpose in the adopted URANS and LES approaches, respectively. These indicate: - The PSD peaks are observed in the production frequency range of Hz for URANS and in the range of Hz for LES analyzed axial velocity fluctuations. These can be inferred as frequencies associated with the dominant amplitudes (e.g. ± 1.5 m/s) of axial velocity fluctuations. 8 / 13

9 - Based on a graphical relationship between frequency and bulk Reynolds number ([10]) it can be deduced that an average characteristic frequency of such large scale structures is about 30 Hz. The LES analyzed results shows a closer resemblance with the experimental observation than that of URANS analyzed results.this indicates the presence of large scale structures that contribute to a higher production of turbulence energy or power in the indicated frequency ranges. - It can be observed that the energy of turbulent structures with a frequency, say, 300 Hz is much smaller in URANS in comparison to LES. This can be attributed to a higher eddy-viscosity in the URANS approach compared to LES. This means, smaller scales with such a high frequency in URANS are not sustainable whereas they still exist in LES. At the same time, energy contents of turbulent structures with frequency below 100 Hz are comparable in URANS and LES. In other words, URANS will be useful for applications where lower frequencies or larger or mean flow structures are relevant. Fig 5: Power Spectral Density (PSD) analyzed from URANS (left) and LES (right) analyzed axial velocity fluctuations. It can be expected that the flow oscillation may even influence the wall shear stress. In order to determine the influence of flow oscillations on the wall shear stress, its magnitude is noted over time at a point in the lower wall at the smallest gap between the rods. The time dependent wall shear stress magnitude (in Pa) is shown in Fig. 6. This shows that: - Oscillations exist in wall shear stress magnitude. - URANS analyzed wall shear stress magnitude has a higher lower limit of 0.2 Pa than that of about 0.1 Pa in LES analyzed wall shear stress magnitude. - LES analyzed wall shear stress has a higher amplitude of oscillation (varying between 0.1 to 0.4 Pa) than that of URANS analyzed wall shear stress (varying between Pa). It can be emphasized that an oscillating wall shear stress is not desirable in a rod-bundle as it can challenge the integrity of the reactor core by damaging the fuel rods surface. 9 / 13

10 Wall shear stress magnitude (Pa) URANS LES Wall-shear-stress-URANS Wall-shear-stress-LES Time (s) Fig 6: URANS and LES analyzed wall shear stress magnitude (Pa) at a point lower wall in the smallest gap between the rods, indicated by an arrow in the right figure. Fig 7: Power Spectral Density (PSD) of URANS (left) and LES (right) analyzed wall shear stress magnitude The PSD of URANS and LES analyzed wall shear stress magnitude are shown in Fig. 7. These are obtained from monitored signals over seven flow-through times. These reveal distinct peaks in a frequency range of Hz for both approaches. In other words, the signals of wall shear stress magnitude as shown in Fig. 6 have dominant amplitudes in this frequency range. If this time response of dominant wall shear stress (in this frequency range) is below a characteristics response time of the material of which the fuel rods are made, then the material may adjust having enough time to react on the changes of wall shear stress. In case this time response of dominant wall shear stress (in the indicated frequency range) is higher than that of a characteristic response time of the material of which the fuel rods are made, then the material may not be able to react on the changes of wall shear stress. Otherwise, it can be expected that the material will react to the changes in wall shear stress and will not be able to adjust to these changes. It can be noted that dominant frequencies of axial velocity fluctuations and wall shear stress magnitudes are quite comparable values that indicate a possible relationship between these quantities. However, at this moment this is purely qualitative. For a 10 / 13

11 quantitative statement further analyses are needed by recording velocity at a point closest to the monitor point for wall shear stress magnitude. Such oscillatory wall shear stresses can damage the fuel rods surface, and therefore, the safety or integrity of such a rodbundle need special attention. It can also be expected that such flow oscillations will also produce temperature oscillations at the fuel rods surface. These can in turn result in thermal shocks or thermal fatigue damage to the surface. 5. SUMMARY AND CONCLUSIONS This paper aims at assessment of URANS and LES approaches by analyzing Hooper s hydraulic experiment with a tight lattice bare rod-bundle. For this purpose, a CFD model is constructed comprising of a domain that allows the use of periodicity as a boundary condition, a grid that is generated following the practical requirements for LES and resolves the wall-near region, and numerical schemes for both these approaches. The analyses of URANS and LES computed results reveal the following: - URANS and LES analyzed axial velocity fluctuations are mostly within ± 1.5 m/s and agree well with the experimentally obtained limits of ± 1.3 m/s ± 15%. - The axial velocity fluctuations are % of the bulk velocity, which is significant. This could cause flow induced vibration of such a tight lattice rodbundle. - As expected, LES captures a wider range of turbulent structures or scales in comparison to URANS. - The frequency range corresponding to the power spectra peaks of LES analyzed axial velocity fluctuations is closer to the experiment in comparison to URANS. - In URANS, the smaller turbulent structures contain much lower energy (or power) compared to LES. Therefore, such smaller structures in URANS are not sustained whereas they exist in LES. - It is expected that URANS will be useful for applications where mean or large flow structures are relevant. - Analyses of wall shear stress magnitude at a point in bare rods surface reveal oscillations. They also contain distinct peaks in their analyzed power spectra. This indicates a possible relationship between flow oscillations and wall shear stress magnitude oscillations. Further analyses are needed for a quantitative assessment. - Oscillations in wall shear stress at the fuel rods surface are not desirable as they can cause damage to the fuel rods surface and therefore special attention to the safety of such a reactor core is necessary. - Flow oscillations can cause temperature oscillations when heat transfer is involved. This in turn can cause thermal shocks or thermal fatigue damage to the surface of fuel rods, depending on the frequencies of dominant amplitudes of oscillations. - Flow oscillations and their consequences need special attention in a tight lattice rod-bundle with spacer grids. 11 / 13

12 6. ACKNOWLEDGEMENT The authors gratefully acknowledges the support from Dutch Ministry of Economic Affairs and the seventh framework program THINS Project No. FP sponsored by the European Commission. 7. REFERENCES 1. GIF Introduction to Generation IV nuclear energy system and the international forum (2008). 2. X. Cheng and N. I. Tak CFD analysis of thermal hydraulic behavior of heavy liquid metals in sub-channels Nuclear Engineering & Design 236, (2006). 3. D. Chang and S. Tavoularis Numerical simulation of turbulent flow in a 37-rod bundle Nuclear Engineering & Design 237, pp (2007). 4. W. K. In, C. H. Shin, D. S. Oh, and H. Chun CFD Simulation of the turbulent flow and heat transfer in a bare rod bundle Proc. ICAPP, Pittsburgh, USA, Paper 4179 (2004). 5. E. Baglietto and H. Ninokata, Turbulence model evaluation for heat transfer simulation in tight lattice fuel bundles Proc. NURETH-10, Seoul, Korea (2003). 6. G. Grötzbach Anisotropy and buoyancy in nuclear turbulent heat transfer critical assessment and needs for modelling FZKA 7363, Karlsruhe, Germany (2007). 7. H. Ninokata, H. and Merzari, E., Computational fluid dynamics and simulation-based-design approach for tight lattice nuclear fuel pin subassemblies, Proc. NURETH-12, Log no: KN#6, Pennsylvania, USA. 8. T. Krauss and L. Meyer Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle Nuclear Engineering & Design 180, (1998). 9. V. Vonka Measurement of secondary flow vortices in a rod bundle Nuclear Engineering & Design 106, (1988). 10. J. D. Hooper and K. Rehme Large-scale effects in developed turbulent flow through closely- spaced rod arrays J. Fluid Mech. 145, (1984). 11 B. Arien, Assessment of computational fluid dynamic codes for heavy liquid metals. ASCHLIM EC-Con. FIKW-CT Final Report (2004). 12. E. Baglietto RANS and URANS simulations for accurate flow predictions inside fuel rod bundles Proc. ICAPP, Nice, France, Paper 7310 (2007). 13. H. Ninokata, N. Atake, E. Baglietto, T. Misawa and T. Kano, Direct numerical simulation of turbulence flows in a subchannel of tight lattice fuel pin bundles of nuclear reactors, (2004). 14. S. V. Möller, On phenomena of turbulent flow through rod bundles Exp. Therm. and Fl. Sc. 4, 5-35 (1991). 15. E. Merzari, H. Ninokata, and E. Baglietto Unsteady Reynolds averaged navierstokes simulation for an accurate prediction of the flow insight tight rod bundles 12 / 13

13 Proc. NURETH-12, Pennsylvania, USA, Log number 213 (2007). 16. G. Grötzbach, Updating the resolution requirements for turbulence simulations in nuclear heat transfer Proc. NURETH13, Kanazawa, Japan, Paper no: N13P1276 (2009). 17. U. Piomelli and J. Chasnov Large eddy simulations: theory and simulations In: A Henningson, K. Hallback, L. Alfredson and M. Johansson (Eds.), Transition and Turbulence Modelling, Kluwer Academic Publishers (1996). 18. H. Ninokata, E. Merzari, E. and A. Khakim Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration Nuclear Engineering & Design, 239, (2009). 19. STAR-CCM+ User guide, Published by: CD-Adapco (2009). 13 / 13

Status and Future Challenges of CFD for Liquid Metal Cooled Reactors

Status and Future Challenges of CFD for Liquid Metal Cooled Reactors Status and Future Challenges of CFD for Liquid Metal Cooled Reactors IAEA Fast Reactor Conference 2013 Paris, France 5 March 2013 Ferry Roelofs roelofs@nrg.eu V.R. Gopala K. Van Tichelen X. Cheng E. Merzari

More information

Investigation of velocity gradient as driving force of flow pulsation in fuel assemblies

Investigation of velocity gradient as driving force of flow pulsation in fuel assemblies Investigation of velocity gradient as driving force of flow pulsation in fuel assemblies by Patrick F. Everett SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE

More information

Application of computational fluid dynamics codes for nuclear reactor design

Application of computational fluid dynamics codes for nuclear reactor design Application of computational fluid dynamics codes for nuclear reactor design YOU Byung-Hyun 1, MOON Jangsik 2, and JEONG Yong Hoon 3 1. Department of Nuclear and Quantum Engineering, Korea Advanced Institute

More information

CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES

CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES Hyung Seok KANG, Seok Kyu CHANG and Chul-Hwa SONG * KAERI, Daedeok-daero 45, Yuseong-gu,

More information

NUMERICAL INVESTIGATION OF BUOY- ANCY DRIVEN FLOWS IN TIGHT LATTICE FUEL BUNDLES

NUMERICAL INVESTIGATION OF BUOY- ANCY DRIVEN FLOWS IN TIGHT LATTICE FUEL BUNDLES Fifth FreeFem workshop on Generic Solver for PDEs: FreeFem++ and its applications NUMERICAL INVESTIGATION OF BUOY- ANCY DRIVEN FLOWS IN TIGHT LATTICE FUEL BUNDLES Paris, December 12 th, 2013 Giuseppe Pitton

More information

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels EasyChair Preprint 298 Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels Huirui Han and Chao Zhang EasyChair preprints are intended for rapid

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

CFD STUDY OF THE DEVELOPMENT OF INTER- SUBCHANNEL ISOTHERMAL LAMINAR FLOWS

CFD STUDY OF THE DEVELOPMENT OF INTER- SUBCHANNEL ISOTHERMAL LAMINAR FLOWS CFD STUDY OF THE DEVELOPMENT OF INTER- SUBCHANNEL ISOTHERMAL LAMINAR FLOWS CFD STUDY OF THE DEVELOPMENT OF INTER- SUBCHANNEL ISOTHERMAL LAMINAR FLOWS By Gujin Wang, B. Eng. A Thesis Submitted to the School

More information

Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine

Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159 Vol. 2 Issue 6, June - 215 Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine Turbine and pump

More information

PERIODIC VORTICES IN FLOW THROUGH CHANNELS WITH LONGITUDINAL SLOTS OR FINS

PERIODIC VORTICES IN FLOW THROUGH CHANNELS WITH LONGITUDINAL SLOTS OR FINS PERIODIC VORTICES IN FLOW THROUGH CHANNELS WITH LONGITUDINAL SLOTS OR FINS Leonhard Meyer Klaus Rehme Institut für Neutronenphysik und Reaktortechnik Forschungszentrum Karlsruhe Karlsruhe Germany ABSTRACT

More information

TURBULENCE MODELING ISSUES IN ADS THERMAL AND HYDRAULIC ANALYSES

TURBULENCE MODELING ISSUES IN ADS THERMAL AND HYDRAULIC ANALYSES TURBULENCE MODELING ISSUES IN ADS THERMAL AND HYDRAULIC ANALYSES G. GROETZBACH Forschungszentrum Karlsruhe, Institut fuer Kern- und Energietechnik Postfach 3640, D-76021 Karlsruhe, Germany groetzbach@iket.fzk.de

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor SD Ravi 1, NKS Rajan 2 and PS Kulkarni 3 1 Dept. of Aerospace Engg., IISc, Bangalore, India. ravi@cgpl.iisc.ernet.in

More information

Numerical investigation of swirl flow inside a supersonic nozzle

Numerical investigation of swirl flow inside a supersonic nozzle Advances in Fluid Mechanics IX 131 Numerical investigation of swirl flow inside a supersonic nozzle E. Eslamian, H. Shirvani & A. Shirvani Faculty of Science and Technology, Anglia Ruskin University, UK

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS June 30 - July 3, 2015 Melbourne, Australia 9 7B-4 A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS C.-Y. Chang, S. Jakirlić, B. Krumbein and C. Tropea Institute of Fluid Mechanics and Aerodynamics /

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic Simulation

Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic Simulation The ASME Verification and Validation Symposium (V&V05) May 3-5, Las Vegas, Nevada, USA Application of Grid Convergence Index Estimation for Uncertainty Quantification in V&V of Multidimensional Thermal-Hydraulic

More information

Assessment and calibration of an algebraic turbulent heat flux model for high Rayleigh number flow regimes

Assessment and calibration of an algebraic turbulent heat flux model for high Rayleigh number flow regimes Assessment and calibration of an algebraic turbulent heat flux model for high Rayleigh number flow regimes A. Shams Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands Abstract The knowledge

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

Flow-Induced Vibration Modeling

Flow-Induced Vibration Modeling Flow-Induced Vibration Modeling Bin Zhu, Hector H. Mireles, and Aqib Qureshi Baker Hughes Abstract: The current work pertains to a re-closeable annular flow valve oil completion tool (X- AFV) with high

More information

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission CFD4NRS2010 A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields G Zigh and J Solis U.S. Nuclear Regulatory Commission Abstract JA Fort Pacific Northwest National

More information

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION ABSTRACT NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION D. Métrailler, S. Reboux and D. Lakehal ASCOMP GmbH Zurich, Technoparkstr. 1, Switzerland Metrailler@ascomp.ch;

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions

Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions Ruprecht, A., Heitele, M., Helmrich, T. Institute for Fluid Mechanics and Hydraulic Machinery University

More information

Computation of turbulent natural convection with buoyancy corrected second moment closure models

Computation of turbulent natural convection with buoyancy corrected second moment closure models Computation of turbulent natural convection with buoyancy corrected second moment closure models S. Whang a, H. S. Park a,*, M. H. Kim a, K. Moriyama a a Division of Advanced Nuclear Engineering, POSTECH,

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments C. Lifante 1, B. Krull 1, Th. Frank 1, R. Franz 2, U. Hampel 2 1 PBU, ANSYS Germany, Otterfing 2 Institute of Safety Research,

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors Henrik Ström 1, Srdjan Sasic 1, Klas Jareteg 2, Christophe Demazière 2 1 Division of Fluid Dynamics, Department

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Propeller Loads of Large Commercial Vessels at Crash Stop

Propeller Loads of Large Commercial Vessels at Crash Stop Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Propeller Loads of Large Commercial Vessels at Crash Stop J.W. Hur, H. Lee, B.J. Chang 1 1 Hyundai Heavy Industries,

More information

STAR-CCM+: NACA0012 Flow and Aero-Acoustics Analysis James Ruiz Application Engineer January 26, 2011

STAR-CCM+: NACA0012 Flow and Aero-Acoustics Analysis James Ruiz Application Engineer January 26, 2011 www.cd-adapco.com STAR-CCM+: NACA0012 Flow and Aero-Acoustics Analysis James Ruiz Application Engineer January 26, 2011 Introduction The objective of this work is to prove the capability of STAR-CCM+ as

More information

Flow Structure Investigations in a "Tornado" Combustor

Flow Structure Investigations in a Tornado Combustor Flow Structure Investigations in a "Tornado" Combustor Igor Matveev Applied Plasma Technologies, Falls Church, Virginia, 46 Serhiy Serbin National University of Shipbuilding, Mikolayiv, Ukraine, 545 Thomas

More information

LARGE EDDY SIMULATIONS FOR THERMAL FATIGUE PREDICTIONS IN A T- JUNCTION: WALL-FUNCTION OR WALL-RESOLVE BASED LES?

LARGE EDDY SIMULATIONS FOR THERMAL FATIGUE PREDICTIONS IN A T- JUNCTION: WALL-FUNCTION OR WALL-RESOLVE BASED LES? LARGE EDDY SIMULATIONS FOR THERMAL FATIGUE PREDICTIONS IN A T- JUNCTION: WALL-FUNCTION OR WALL-RESOLVE BASED LES? S.T. Jayaraju 1, E.M.J. Komen 1 and E. Baglietto 2 1 Nuclear Research & Consultancy group,

More information

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Von Karman Institute, Ch. de Waterloo 72. B-1640, Rhode-St-Genese, Belgium,

More information

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

More information

Numerical investigation of the flow instabilities in centrifugal fan

Numerical investigation of the flow instabilities in centrifugal fan Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 26 (pp282-288) Numerical investigation of the flow instabilities in centrifugal

More information

NUMERICAL SIMULATION OF FLUID FLOW BEHAVIOUR ON SCALE UP OF OSCILLATORY BAFFLED COLUMN

NUMERICAL SIMULATION OF FLUID FLOW BEHAVIOUR ON SCALE UP OF OSCILLATORY BAFFLED COLUMN Journal of Engineering Science and Technology Vol. 7, No. 1 (2012) 119-130 School of Engineering, Taylor s University NUMERICAL SIMULATION OF FLUID FLOW BEHAVIOUR ON SCALE UP OF OSCILLATORY BAFFLED COLUMN

More information

Tutorial for the supercritical pressure pipe with STAR-CCM+

Tutorial for the supercritical pressure pipe with STAR-CCM+ Tutorial for the supercritical pressure pipe with STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities with

More information

Explicit algebraic Reynolds stress models for internal flows

Explicit algebraic Reynolds stress models for internal flows 5. Double Circular Arc (DCA) cascade blade flow, problem statement The second test case deals with a DCA compressor cascade, which is considered a severe challenge for the CFD codes, due to the presence

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Application of 2D URANS in fluid structure interaction problems of rectangular cylinders

Application of 2D URANS in fluid structure interaction problems of rectangular cylinders Advances in Fluid Mechanics X 85 Application of 2D URANS in fluid structure interaction problems of rectangular cylinders F. Nieto, D. Hargreaves 2, J. Owen 2 & S. Hernández School of Civil Engineering,

More information

On the transient modelling of impinging jets heat transfer. A practical approach

On the transient modelling of impinging jets heat transfer. A practical approach Turbulence, Heat and Mass Transfer 7 2012 Begell House, Inc. On the transient modelling of impinging jets heat transfer. A practical approach M. Bovo 1,2 and L. Davidson 1 1 Dept. of Applied Mechanics,

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2 CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration G.S.T.A. Bangga 1*, W.A. Widodo 2 1,2 Department of mechanical engineering Field of study energy conversion Institut

More information

STRUCTURE-BASED RESOLUTION OF TURBULENCE FOR SODIUM FAST REACTOR THERMAL STRIPING APPLICATIONS

STRUCTURE-BASED RESOLUTION OF TURBULENCE FOR SODIUM FAST REACTOR THERMAL STRIPING APPLICATIONS STRUCTURE-BASED RESOLUTION OF TURBULENCE FOR SODIUM FAST REACTOR THERMAL STRIPING APPLICATIONS Michael J. Acton, Giancarlo Lenci, Emilio Baglietto Department of Nuclear Science and Engineering Massachusetts

More information

Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver for Simulation of Turbulent Reactor Flow

Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver for Simulation of Turbulent Reactor Flow DOE-FIU SCIENCE & TECHNOLOGY WORKFORCE DEVELOPMENT PROGRAM STUDENT SUMMER INTERNSHIP TECHNICAL REPORT June 4, 2012 to August 10, 2012 Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver

More information

Side-View Mirror Vibrations Induced Aerodynamically by Separating Vortices

Side-View Mirror Vibrations Induced Aerodynamically by Separating Vortices Open Journal of Fluid Dynamics, 2016, 6, 42-56 Published Online March 2016 in SciRes. http://www.scirp.org/journal/ojfd http://dx.doi.org/10.4236/ojfd.2016.61004 Side-View Mirror Vibrations Induced Aerodynamically

More information

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle

Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle MultiCraft International Journal of Engineering, Science and Technology Vol. 3, No. 2, 2011, pp. 84-88 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2011 MultiCraft Limited.

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

Thermal-hydraulic simulations of a wire spacer fuel assembly

Thermal-hydraulic simulations of a wire spacer fuel assembly Thermal-hydraulic simulations of a wire spacer fuel assembly S. Rolfo, C. Peniguel, M. Guillaud and D. Laurence Abstract The paper presents refined three-dimensional simulations of the flow and heat transfer

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

FUEL PIN BUNDLE EXPERIMENTAL CHARACTERIZATION IN HLM LARGE POOL SYSTEM

FUEL PIN BUNDLE EXPERIMENTAL CHARACTERIZATION IN HLM LARGE POOL SYSTEM FUEL PIN BUNDLE EPERIMENTAL CHARACTERIZATION IN HLM LARGE POOL SYSTEM Martelli D., Barone G., Forgione N., Angelucci M. Department of Civil and Industrial Engineering, University of Pisa Largo Lucio Lazzarino

More information

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model Proceedings of the 2 nd World Congress on Momentum, Heat and Mass Transfer (MHMT 17) Barcelona, Spain April 6 8, 2017 Paper No. ICMFHT 114 ISSN: 2371-5316 DOI: 10.11159/icmfht17.114 CFD Simulation of Sodium

More information

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D A. Grahn, S. Kliem, U. Rohde Forschungszentrum Dresden-Rossendorf, Institute

More information

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,

More information

CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS. Mohammad NAZIFIFARD

CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS. Mohammad NAZIFIFARD CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS Mohammad NAZIFIFARD Department of Energy Systems Engineering, Energy Research Institute, University of Kashan,

More information

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue 11 Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue Yang GUO*, Chisachi KATO** and Yoshinobu YAMADE*** 1 FrontFlow/Blue 1) is a general-purpose finite element program that calculates

More information

Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations

Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations www.cfdl.issres.net Vol. 3 (2) June 2011 Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations Monoj Baruah 1, Anupam Dewan 2c and P. Mahanta 1 1 Department of Mechanical

More information

Application of Computational Fluid Dynamics to the Flow Mixing and Heat Transfer in Rod Bundle

Application of Computational Fluid Dynamics to the Flow Mixing and Heat Transfer in Rod Bundle Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, July 9-13, 2018 ICCFD10-045 Application of Computational Fluid Dynamics to the Flow Mixing and Heat Transfer

More information

MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY. Sandia National Laboratories b. Nuclear Regulatory Commission

MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY. Sandia National Laboratories b. Nuclear Regulatory Commission MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY S. Durbin a, *, E. Lindgren a, and A. Zigh b a Sandia National Laboratories b Nuclear Regulatory Commission Abstract Laminar gas

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations

CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations CFD modelling of lab-scale anaerobic digesters to determine experimental sampling locations Rebecca Sindall 1, John Bridgeman 1 and Cynthia Carliell-Marquet 1 1 School of Civil Engineering, University

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

Jumper Analysis with Interacting Internal Two-phase Flow

Jumper Analysis with Interacting Internal Two-phase Flow Jumper Analysis with Interacting Internal Two-phase Flow Leonardo Chica University of Houston College of Technology Mechanical Engineering Technology March 20, 2012 Overview Problem Definition Jumper Purpose

More information

DNS of Buoyancy Driven Flow Inside a Horizontal Coaxial Cylinder

DNS of Buoyancy Driven Flow Inside a Horizontal Coaxial Cylinder DNS of Buoyancy Driven Flow Inside a Horizontal Coaxial Cylinder Imama Zaidi 1, Yacine Addad 2, Dominique Laurence 1 1 The University of Manchester, School of Mechanical, Aerospace and Civil Eng., M60

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Calculations on a heated cylinder case

Calculations on a heated cylinder case Calculations on a heated cylinder case J. C. Uribe and D. Laurence 1 Introduction In order to evaluate the wall functions in version 1.3 of Code Saturne, a heated cylinder case has been chosen. The case

More information

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Ali Kianifar, Edris Yousefi Rad Abstract In many applications the flow that past bluff bodies have frequency nature (oscillated)

More information

Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows

Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows K. Hanjalić, Y. Nagano and S. Jakirlić (Editors) Wall-Functions and Boundary Layer Response to Pulsating and Oscillating Turbulent Channel Flows D. Panara 1, M. Porta 2,R. Dannecker 1, and B. Noll 1 1

More information

Thermal Hydraulic Considerations in Steady State Design

Thermal Hydraulic Considerations in Steady State Design Thermal Hydraulic Considerations in Steady State Design 1. PWR Design 2. BWR Design Course 22.39, Lecture 18 11/10/05 1 PWR Design Unless specified otherwise, all figures in this presentation are from:

More information

Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine

Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine Dongil Chang and Stavros Tavoularis Department of Mechanical Engineering, University of Ottawa, Ottawa, ON Canada Stavros.Tavoularis@uottawa.ca

More information

Modeling of Anisotropic Polymers during Extrusion

Modeling of Anisotropic Polymers during Extrusion Modeling of Anisotropic Polymers during Extrusion Modified on Friday, 01 May 2015 10:38 PM by mpieler Categorized as: Paper of the Month Modeling of Anisotropic Polymers during Extrusion Arash Ahmadzadegan,

More information

Motivation. Coupling of overset grids. Incompressible finite-volume methods. Non-conservative interpolation of field values Mass defect

Motivation. Coupling of overset grids. Incompressible finite-volume methods. Non-conservative interpolation of field values Mass defect Motivation Coupling of overset grids Non-conservative interpolation of field values Mass defect Incompressible finite-volume methods Violation of inherent mass conservation Pressure fluctuations Content

More information

Overview of Turbulent Reacting Flows

Overview of Turbulent Reacting Flows Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Ever-Expanding

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects

Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects Numerical studies on natural ventilation flow in an enclosure with both buoyancy and wind effects Ji, Y Title Authors Type URL Numerical studies on natural ventilation flow in an enclosure with both buoyancy

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 MAGNETOHYDRODYNAMICS Vol. 00 (1964), No. 00, pp. 1 5 LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 1 Institute for Electrothermal

More information

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE A.K. Pozarlik 1, D. Panara, J.B.W. Kok 1, T.H. van der Meer 1 1 Laboratory of Thermal Engineering,

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Time-Dependent Simulations for the Directional Stability of High Speed Trains Under the Influence of Cross Winds or Cruising Inside Tunnels

Time-Dependent Simulations for the Directional Stability of High Speed Trains Under the Influence of Cross Winds or Cruising Inside Tunnels FLUID DYNAMICS APPLICATIONS IN GROUND TRANSPORTATION: Simulation, a primary delepment tool in the automotive industry, Lyon, France, 2005 Time-Dependent Simulations for the Directional Stability of High

More information

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions Journal of Mechanical Science and Technology 22 (2008) 1896~1901 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0729-6 Performance characteristics

More information

Aeroacoustic Evaluation of an Axial Fan using CFD Methods Frederik Folke, Martin Hildenbrand (ITB Ingenieure GmbH)

Aeroacoustic Evaluation of an Axial Fan using CFD Methods Frederik Folke, Martin Hildenbrand (ITB Ingenieure GmbH) Aeroacoustic Evaluation of an Axial Fan using CFD Methods Frederik Folke, Martin Hildenbrand (ITB Ingenieure GmbH) ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke,

More information

Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data

Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data 6th OpenFOAM Workshop, June 13-16 2011, PennState University, USA Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data C. Devals, Y. Zhang and F.Guibault École Polytechnique de

More information

Prospects for High-Speed Flow Simulations

Prospects for High-Speed Flow Simulations Prospects for High-Speed Flow Simulations Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota Support from AFOSR and ASDR&E Future Directions in CFD Research: A Modeling & Simulation

More information

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION Beomjun Kye Keuntae Park Department of Mechanical & Aerospace Engineering Department of Mechanical & Aerospace Engineering

More information

Near-wall Reynolds stress modelling for RANS and hybrid RANS/LES methods

Near-wall Reynolds stress modelling for RANS and hybrid RANS/LES methods Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Near-wall Reynolds stress modelling for RANS and hybrid RANS/LES methods Axel Probst (now at: C 2 A 2 S 2 E, DLR Göttingen) René Cécora,

More information

Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+

Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+ STAR Global Conference 2013 March 18-20, Orlando, USA Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+ René Braun, Karsten Kusterer, B&B-AGEMA, Aachen, Germany Content

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE Proceedings of FEDSM2007: 5 th Joint ASME/JSME Fluids Engineering Conference July 30-August 2, 2007, San Diego, CA, USA FEDSM2007-37563 COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS N. Schmidt 1* and S. Tenbohlen 1 and S. Chen 2 and C. Breuer 3 1 University of Stuttgart,

More information

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

International Forum on Energy, Environment Science and Materials (IFEESM 2015) International Forum on Energy, Environment Science and Materials (IFEESM 215) CFD Analysis of Heat Transfer and Flow sistance on Shell Side of the Spiral Elliptical Tube Heat Exchanger Sheng Yang1,a*,

More information

THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT

THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT Sungje Hong, Kunwoo Yi, Jin Huh, Inyoung Im and Eunkee Kim KEPCO Engineering and Construction Company. INC. NSSS Division.

More information

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE

A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE A STUDY ON SLUG INDUCED STRESSES USING FILE-BASED COUPLING TECHNIQUE Abdalellah O. Mohmmed, Mohammad S. Nasif and Hussain H. Al-Kayiem Department of Mechanical Engineering, Universiti Teknologi Petronas,

More information