Large gaps in sets of primes and other sequences II. New bounds for large gaps between primes Random methods and weighted sieves

Size: px
Start display at page:

Download "Large gaps in sets of primes and other sequences II. New bounds for large gaps between primes Random methods and weighted sieves"

Transcription

1 Large gaps in sets of primes and other sequences II. New bounds for large gaps between primes Random methods and weighted sieves Kevin Ford University of Illinois at Urbana-Champaign May, 2018

2 Large gaps between primes Def: G(x) := max p n x (p n p n 1 ), p n is the n th prime. Theorem (F-Green-Konyagin-Maynard-Tao, 2018) G(x) log x log 2 x log 4 x. log 3 x Chains of gaps: G k (x) := max pn+k x min(p n+1 p n,..., p n+k p n+k 1 ) Theorem (F-Maynard-Tao, 2018+) For every k, G k (x) k log x log 2 x log 4 x log 3 x

3 Proving large gaps: Jacobsthal s function S T = {n Z : (n, Q T ) = 1}, Q T = p T p. Main goal: Find J(T ), the largest gap in S T. Lower bound (FGKMT, 2018). J(T ) T log T log 3 T log 2 T. Covering: J(T ) is the largest y so that there are a 2, a 3, a 5,... with {a p mod p : p T } [0, y]

4 Least prime in an arithmetic progression Let p(k, l) = min{p : p l (mod k)}, M(k) = max p(k, l). (l,k)=1 Upper bounds Linnik, M(k) k L. (Xylouris - L = 5.18). ERH: L = 2 + ε; Chowla conjecture: L = 1 + ε. Lower bounds Trivial: M(k) φ(k) log k. Prachar; Schinzel /62. For infinitely many k, M(k) φ(k) log k log 2 k log 4 k (log 3 k) 2. (1) Wagstaff (1978) - (1) holds for all prime k. Pomerance (1980) - (1) holds for almost all k, in fact all k with at most exp(log 2 k/ log 3 k) prime factors.

5 Least prime in an arithmetic progression, II Pomerance: M(k) φ(k) log k log 2 k log 4 k (log 3 k) 2 for almost all k. Lemma (Pomerance): Let j(m) be the maximal gap between numbers comprime to m. If 0 < m k/j(k) and (m, k) = 1 then M(k) > kj(m). Take m = p need a lower bound on j(m). p (1 δ) log k p k Corollary (FGKMT, 2018). If k has no prime factor log k, then M(k) φ(k) log k log 2 k log 4 k. (2) log 3 k Theorem (J. Li-K. Pratt-G. Shakan, 2017) Inequality (2) holds for all k with at most exp{(1/2 ε) log 2 k log 4 k log 3 k } prime factors.

6 Least Prime in an A.P. conjectures Conjecture (folklore): M(k) k log 2+ε k. Conjecture (Wagstaff, 1979): M(k) φ(k) log 2 k for most k Wagstaff s heuristic:given l < k(log k) 3, (l, k) = 1, the probability that l is prime is k/φ(k) log k. So P(l, l + k,..., l + m log k k all composite) Hence ( 1 k/φ(k) ) m log k log k e m/φ(k). P (M(k) mk log k) (1 e mk/φ(k)) φ(k) Threshhold value m φ(k) k log φ(k) exp{ φ(k)e mk/φ(k) }.

7 Least prime in AP: Refined conjectures Conjecture (Li-Pratt-Shakan, 2017) lim inf k M(k) φ(k) log 2 k = 1, M(k) lim sup k φ(k) log 2 k = Figure: Histogram for M(k)/φ(k) log(φ(k)) log k for k 10 6

8 Least prime in AP: Li-Pratt-Shakan conjecture Rough heuristic argument: coupon collectors problem p n - n-th prime, m k - a param, a Z/kZ E a - the event that p 1, p 2,..., p mk a (mod k) A k - the event {M(k) > p mk } = a E a. We have P(A k ) a P(E a) φ(k)e m/φ(k) If m = λφ(k) log φ(k), this is φ(k) 1 λ. (1) If λ 1, threshhold for being small. Justifies Wagstaff and lim inf. (2) When λ 2, threshhold for P(A k ) holding for infinitely many k (using Borel-Cantelli). Justifies lim sup.

9 New lower bounds on J(T ): outline 2 log 10 x z x y y = cx log x log 3 x log 2 x, z = x c log3 x log 2 x Want {a p mod p : p x} [0, y] 1 a p = 0 for p (z, x/4] [2, log 10 x]. Uncovered: z-smooth numbers and primes; 2 Random, uniform choice of a p, log 10 x < p z. 3 Strategic choice of a p, x/4 < p x/2 to cover many reminaing elements. 4 (trivial) Use single a p for each x/2 < p x to cover each remaining uncovered element.

10 Stage 2: random, uniform choice of a p Q 1 - the set of uncovered elements after stage 1 (mainly primes). Q 2 (a) := the set of uncovered elements after stage 2 = Q 1 \ (a p mod p), p P where P is the set of primes in (log 10 x, z]. Lemma w.h.p., Q 2 (a) σπ(y), σ := p P (1 1/p) Proof. Recall Q 1 π(y). We calculate 1st, 2nd moments: E Q 2 (a) = P(n Q 2 (a)) n Q 1 = P(n a p (mod p)) = σ Q 1. n Q 1 p P

11 The Lemma follows from the 1st, 2nd moment bounds plus Chebyshev s inequality. Lemma w.h.p., Q 2 (a) σπ(y), σ := p P (1 1/p) Proof (continued). For the 2nd moment, E Q 2 (a) 2 = P(n 1, n 2 Q 2 (a)) n 1,n 2 Q 1 = E Q 2 (a) + n 1,n 2 Q 1 n 1 n 2 P(n i a p (mod p); i = 1, 2). p P Now P(n i a p (mod p); i = 1, 2) = 1 2/p unless p n 1 n 2, which occurs for O(log x) primes p. Get E Q 2 (a) 2 = σ 2 ( 1 + O((log x) 9 ) ) n 1,n 2 Q 1 = (σ Q 1 ) 2 ( 1 + O((log x) 9 ) ).

12 Random residues: higher correlations Define the random sifted set S(a) = Z \ (a p mod p). p P In particular, Q 2 (a) = Q 1 S(a). Lemma (S(a) correlations) Let n 1,..., n t be distinct integers in [ y, y], with t log x. Then P(n 1,..., n t S(a)) = σ t ( 1 + O(t 2 / log 9 x) ).

13 Stage 3: Strategic choices We choose a p, x/4 < p x/2 to have two properties: (a) the sets e p := (a p x/4 < p x/2; mod p) Q 2 (a) are large (on average) for (b) the collection of sets {e p : x/4 < p x/2} covers most of Q 2 (a) efficiently (little overlap). Item (a) is accomplished using a weighted, prime detecting sieve. Recall that Q 1, and hence Q 2 (a) consists mainly of primes. The average of e p, over all choices of a p is Q 2 (a) p Q 2(a) x σy log x = o(1). So a random (uniform) choice for a p is very inefficient! Item (b) is accomplished using hypergraph covering methods.

14 Primes in sparse A.P. s: weighted sieves Admissible k-tuple h 1,..., h k Prime-detecting weight fcn. w(n) = w(n; h) (GPY-Maynard-Tao) Goal: Find w(n) which is large when many of the numbers n + h i are prime, and small otherwise, and such that the sums T 1 (N) = n N w(n), T 2 (N) = n N can both be evaluated asymptoticlaly. If k 1(n + h j prime)w(n) j=1 T 2 (N) rt 1 (N), (w) then there are some values of n N such that the set {n + h 1,..., n + h k } contains at least r primes. Theorem (Maynard, 2016) For k (log N) 1/5, h i x c, weights s.t. (w) holds with r log k.

15 Sieve weights Fix an admissible k-tuple 1 h 1 < < h k k 2, k (log x) 1/5. Let x/4 < p x/2. Then h p := (h 1 p,..., h k p) is admissible. Define the weight w(p, n) by w(p, n) = w(n; h p ); (0 n y). Two crucial estimates (after suitable notmalization) Theorem (FGKMT) (a) (b) 1 π(y) w(p, n) 1 n y 1 P p P (p P); k w(p, q h i p) log 2 x (x < q y] i=1 (a) is a T 1 sum; (b) is a T 2 -type sum (with a different k-tuple).

16 Weighted choice of a p for x/4 < p x/2 Select a random number in n p [0, y] with probability proportional to w(p, n); that is P(n p = n) := w(p, n) l w(p, l) (0 n y). Bigger weight when many of n + h i p are prime. For each p P and fixed (non-random) vector a, let X p ( a) := P(n p + h i p S(a) for all i = 1,..., k). Lemma (Q 2 (a) correlations) + Chebyshev X p (a) σ k w.h.p. Spse a = a. Define r.v. m p by P(m p = m a = a) := Z p( a; m) X p ( a), { P(n p = m) if m + h j p S( a) for j = 1,..., k Z p ( a; m) = 0 otherwise,

17 weights, II P(m p = m a = a) := Z p( a; m) X p ( a), { P(n p = m) if m + h j p S( a) for j = 1,..., k Z p ( a; m) = 0 otherwise, Let a p m p (mod p), x/4 < p x/2. Then (1) m p + h i p S(a) for all i; (2) (on avg) Q 2 (a) (a p mod p) log k log 2 x (the k-tuple contains many primes) If the sets e p = Q 2 (a) (a p mod p) have little overlap (efficiently chosen), they cover about x log 2 x/ log x elements. Good if σ y log x cx log 2 x log x.

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS JÁNOS PINTZ Rényi Institute of the Hungarian Academy of Sciences CIRM, Dec. 13, 2016 2 1. Patterns of primes Notation: p n the n th prime, P = {p i } i=1,

More information

Lecture 7. January 15, Since this is an Effective Number Theory school, we should list some effective results. x < π(x) holds for all x 67.

Lecture 7. January 15, Since this is an Effective Number Theory school, we should list some effective results. x < π(x) holds for all x 67. Lecture 7 January 5, 208 Facts about primes Since this is an Effective Number Theory school, we should list some effective results. Proposition. (i) The inequality < π() holds for all 67. log 0.5 (ii)

More information

Small gaps between primes

Small gaps between primes CRM, Université de Montréal Princeton/IAS Number Theory Seminar March 2014 Introduction Question What is lim inf n (p n+1 p n )? In particular, is it finite? Introduction Question What is lim inf n (p

More information

1 i<j k (g ih j g j h i ) 0.

1 i<j k (g ih j g j h i ) 0. CONSECUTIVE PRIMES IN TUPLES WILLIAM D. BANKS, TRISTAN FREIBERG, AND CAROLINE L. TURNAGE-BUTTERBAUGH Abstract. In a stunning new advance towards the Prime k-tuple Conjecture, Maynard and Tao have shown

More information

Carmichael numbers and the sieve

Carmichael numbers and the sieve June 9, 2015 Dedicated to Carl Pomerance in honor of his 70th birthday Carmichael numbers Fermat s little theorem asserts that for any prime n one has a n a (mod n) (a Z) Carmichael numbers Fermat s little

More information

Dense Admissible Sets

Dense Admissible Sets Dense Admissible Sets Daniel M. Gordon and Gene Rodemich Center for Communications Research 4320 Westerra Court San Diego, CA 92121 {gordon,gene}@ccrwest.org Abstract. Call a set of integers {b 1, b 2,...,

More information

The ranges of some familiar arithmetic functions

The ranges of some familiar arithmetic functions The ranges of some familiar arithmetic functions Carl Pomerance Dartmouth College, emeritus University of Georgia, emeritus based on joint work with K. Ford, F. Luca, and P. Pollack and T. Freiburg, N.

More information

Harmonic sets and the harmonic prime number theorem

Harmonic sets and the harmonic prime number theorem Harmonic sets and the harmonic prime number theorem Version: 9th September 2004 Kevin A. Broughan and Rory J. Casey University of Waikato, Hamilton, New Zealand E-mail: kab@waikato.ac.nz We restrict primes

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Perfect numbers among polynomial values

Perfect numbers among polynomial values Perfect numbers among polynomial values Oleksiy Klurman Université de Montréal June 8, 2015 Outline Classical results Radical of perfect number and the ABC-conjecture Idea of the proof Let σ(n) = d n d.

More information

On Carmichael numbers in arithmetic progressions

On Carmichael numbers in arithmetic progressions On Carmichael numbers in arithmetic progressions William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Carl Pomerance Department of Mathematics

More information

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS J. Aust. Math. Soc. 88 (2010), 313 321 doi:10.1017/s1446788710000169 ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS WILLIAM D. BANKS and CARL POMERANCE (Received 4 September 2009; accepted 4 January

More information

NOTES ON ZHANG S PRIME GAPS PAPER

NOTES ON ZHANG S PRIME GAPS PAPER NOTES ON ZHANG S PRIME GAPS PAPER TERENCE TAO. Zhang s results For any natural number H, let P (H) denote the assertion that there are infinitely many pairs of distinct primes p, q with p q H; thus for

More information

On the Divisibility of Fermat Quotients

On the Divisibility of Fermat Quotients Michigan Math. J. 59 (010), 313 38 On the Divisibility of Fermat Quotients Jean Bourgain, Kevin Ford, Sergei V. Konyagin, & Igor E. Shparlinski 1. Introduction For a prime p and an integer a the Fermat

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

New bounds on gaps between primes

New bounds on gaps between primes New bounds on gaps between primes Andrew V. Sutherland Massachusetts Institute of Technology Brandeis-Harvard-MIT-Northeastern Joint Colloquium October 17, 2013 joint work with Wouter Castryck, Etienne

More information

COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF

COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF COUNTING NUMERICAL SEMIGROUPS BY GENUS AND SOME CASES OF A QUESTION OF WILF NATHAN KAPLAN Abstract. The genus of a numerical semigroup is the size of its complement. In this paper we will prove some results

More information

Gaps between primes: The story so far

Gaps between primes: The story so far Gaps between primes: The story so far Paul Pollack University of Georgia Number Theory Seminar September 24, 2014 1 of 57 PART I: (MOSTLY) PREHISTORY 2 of 57 PART I: (MOSTLY) PREHISTORY (> 2 years ago)

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Small prime gaps. Kevin A. Broughan. December 7, University of Waikato, Hamilton, NZ

Small prime gaps. Kevin A. Broughan. December 7, University of Waikato, Hamilton, NZ Small prime gaps Kevin A. Broughan University of Waikato, Hamilton, NZ kab@waikato.ac.nz December 7, 2017 Abstract One of the more spectacular recent advances in analytic number theory has been the proof

More information

Before giving the detailed proof, we outline our strategy. Define the functions. for Re s > 1.

Before giving the detailed proof, we outline our strategy. Define the functions. for Re s > 1. Chapter 7 The Prime number theorem for arithmetic progressions 7. The Prime number theorem We denote by π( the number of primes. We prove the Prime Number Theorem. Theorem 7.. We have π( as. log Before

More information

Sieve theory and small gaps between primes: Introduction

Sieve theory and small gaps between primes: Introduction Sieve theory and small gaps between primes: Introduction Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath) Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT

More information

THE CONVEX HULL OF THE PRIME NUMBER GRAPH

THE CONVEX HULL OF THE PRIME NUMBER GRAPH THE CONVEX HULL OF THE PRIME NUMBER GRAPH NATHAN MCNEW Abstract Let p n denote the n-th prime number, and consider the prime number graph, the collection of points n, p n in the plane Pomerance uses the

More information

On the nth Record Gap Between Primes in an Arithmetic Progression

On the nth Record Gap Between Primes in an Arithmetic Progression International Mathematical Forum, Vol. 13, 2018, no. 2, 65-78 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.712103 On the nth Record Gap Between Primes in an Arithmetic Progression Alexei

More information

On the number of elements with maximal order in the multiplicative group modulo n

On the number of elements with maximal order in the multiplicative group modulo n ACTA ARITHMETICA LXXXVI.2 998 On the number of elements with maximal order in the multiplicative group modulo n by Shuguang Li Athens, Ga.. Introduction. A primitive root modulo the prime p is any integer

More information

Carmichael numbers with a totient of the form a 2 + nb 2

Carmichael numbers with a totient of the form a 2 + nb 2 Carmichael numbers with a totient of the form a 2 + nb 2 William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bankswd@missouri.edu Abstract Let ϕ be the Euler function.

More information

On the Subsequence of Primes Having Prime Subscripts

On the Subsequence of Primes Having Prime Subscripts 3 47 6 3 Journal of Integer Sequences, Vol. (009, Article 09..3 On the Subsequence of Primes Having Prime Subscripts Kevin A. Broughan and A. Ross Barnett University of Waikato Hamilton, New Zealand kab@waikato.ac.nz

More information

Dense product-free sets of integers

Dense product-free sets of integers Dense product-free sets of integers Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Joint Mathematics Meetings Boston, January 6, 2012 Based on joint work with P. Kurlberg, J. C. Lagarias,

More information

A 1935 Erdős paper on prime numbers and Euler s function

A 1935 Erdős paper on prime numbers and Euler s function A 1935 Erdős paper on prime numbers and Euler s function Carl Pomerance, Dartmouth College with Florian Luca, UNAM, Morelia 1 2 3 4 Hardy & Ramanujan, 1917: The normal number of prime divisors of n is

More information

A numerically explicit Burgess inequality and an application to qua

A numerically explicit Burgess inequality and an application to qua A numerically explicit Burgess inequality and an application to quadratic non-residues Swarthmore College AMS Sectional Meeting Akron, OH October 21, 2012 Squares Consider the sequence Can it contain any

More information

The ranges of some familiar arithmetic functions

The ranges of some familiar arithmetic functions The ranges of some familiar arithmetic functions Max-Planck-Institut für Mathematik 2 November, 2016 Carl Pomerance, Dartmouth College Let us introduce our cast of characters: ϕ, λ, σ, s Euler s function:

More information

PRIME CHAINS AND PRATT TREES

PRIME CHAINS AND PRATT TREES PRIME CHAINS AND PRATT TREES KEVIN FORD, SERGEI V KONYAGIN AND FLORIAN LUCA ABSTRACT We study the distribution of prime chains, which are sequences p,, p k of primes for which p j+ mod p j ) for each j

More information

Products of ratios of consecutive integers

Products of ratios of consecutive integers Products of ratios of consecutive integers Régis de la Bretèche, Carl Pomerance & Gérald Tenenbaum 27/1/23, 9h26 For Jean-Louis Nicolas, on his sixtieth birthday 1. Introduction Let {ε n } 1 n

More information

as x. Before giving the detailed proof, we outline our strategy. Define the functions for Re s > 1.

as x. Before giving the detailed proof, we outline our strategy. Define the functions for Re s > 1. Chapter 7 The Prime number theorem for arithmetic progressions 7.1 The Prime number theorem Denote by π( the number of primes. We prove the Prime Number Theorem. Theorem 7.1. We have π( log as. Before

More information

Distribution of Prime Numbers Prime Constellations Diophantine Approximation. Prime Numbers. How Far Apart Are They? Stijn S.C. Hanson.

Distribution of Prime Numbers Prime Constellations Diophantine Approximation. Prime Numbers. How Far Apart Are They? Stijn S.C. Hanson. Distribution of How Far Apart Are They? June 13, 2014 Distribution of 1 Distribution of Behaviour of π(x) Behaviour of π(x; a, q) 2 Distance Between Neighbouring Primes Beyond Bounded Gaps 3 Classical

More information

Playing Ball with the Largest Prime Factor

Playing Ball with the Largest Prime Factor Playing Ball with the Largest Prime Factor An Introduction to Ruth-Aaron Numbers Madeleine Farris Wellesley College July 30, 2018 The Players The Players Figure: Babe Ruth Home Run Record: 714 The Players

More information

ON THE ITERATES OF SOME ARITHMETIC. P. Erd~s, Hungarian Academy of Sciences M. V. Subbarao, University of Alberta

ON THE ITERATES OF SOME ARITHMETIC. P. Erd~s, Hungarian Academy of Sciences M. V. Subbarao, University of Alberta ON THE ITERATES OF SOME ARITHMETIC FUNCTIONS. Erd~s, Hungarian Academy of Sciences M. V. Subbarao, University of Alberta I. Introduction. For any arithmetic function f(n), we denote its iterates as follows:

More information

Euclidean prime generators

Euclidean prime generators Euclidean prime generators Andrew R. Booker, Bristol University Bristol, UK Carl Pomerance, Dartmouth College (emeritus) Hanover, New Hampshire, USA (U. Georgia, emeritus) Integers Conference, Carrollton,

More information

Amicable numbers. CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014

Amicable numbers. CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014 Amicable numbers CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014 Carl Pomerance, Dartmouth College (U. Georgia, emeritus) Recall that s(n) = σ(n) n,

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Dartmouth Mathematics Society May 16, 2012 Based on joint work with P. Kurlberg, J. C. Lagarias, & A. Schinzel Let s begin

More information

The ranges of some familiar functions

The ranges of some familiar functions The ranges of some familiar functions CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014 Carl Pomerance, Dartmouth College (U. Georgia, emeritus) Let us

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

On the maximal density of sum-free sets

On the maximal density of sum-free sets ACTA ARITHMETICA XCV.3 (2000) On the maximal density of sum-free sets by Tomasz Luczak (Poznań) and Tomasz Schoen (Kiel and Poznań) 1. Introduction. For a set A N, let A(n) = A {1,..., n} and { } P(A)

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

An estimate for the probability of dependent events

An estimate for the probability of dependent events Statistics and Probability Letters 78 (2008) 2839 2843 Contents lists available at ScienceDirect Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro An estimate for the

More information

Randomness and Complexity of Sequences over Finite Fields. Harald Niederreiter, FAMS. RICAM Linz and University of Salzburg (Austria)

Randomness and Complexity of Sequences over Finite Fields. Harald Niederreiter, FAMS. RICAM Linz and University of Salzburg (Austria) Randomness and Complexity of Sequences over Finite Fields Harald Niederreiter, FAMS RICAM Linz and University of Salzburg (Austria) Introduction A hierarchy of complexities Complexity and random sequences

More information

Bounded gaps between primes

Bounded gaps between primes Bounded gaps between primes The American Institute of Mathematics The following compilation of participant contributions is only intended as a lead-in to the AIM workshop Bounded gaps between primes. This

More information

Arithmetic progressions in sumsets

Arithmetic progressions in sumsets ACTA ARITHMETICA LX.2 (1991) Arithmetic progressions in sumsets by Imre Z. Ruzsa* (Budapest) 1. Introduction. Let A, B [1, N] be sets of integers, A = B = cn. Bourgain [2] proved that A + B always contains

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA International Number Theory Conference in Memory of Alf van der Poorten, AM 12 16 March, 2012 CARMA, the University of Newcastle

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

A misère-play -operator

A misère-play -operator A misère-play -operator Matthieu Dufour Silvia Heubach Urban Larsson arxiv:1608.06996v1 [math.co] 25 Aug 2016 July 31, 2018 Abstract We study the -operator (Larsson et al, 2011) of impartial vector subtraction

More information

COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50.

COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50. MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 0025-5718(XX)0000-0 COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50. THOMAS R. HAGEDORN Abstract. Let j(n) denote the smallest positive

More information

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE THOMAS WRIGHT Abstract. In light of the recent work by Maynard and Tao on the Dickson k-tuples conjecture, we show that with a small improvement

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics

More information

Probabilistic Combinatorics. Jeong Han Kim

Probabilistic Combinatorics. Jeong Han Kim Probabilistic Combinatorics Jeong Han Kim 1 Tentative Plans 1. Basics for Probability theory Coin Tossing, Expectation, Linearity of Expectation, Probability vs. Expectation, Bool s Inequality 2. First

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? 1. Introduction

HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? 1. Introduction HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? PAUL POLLACK Abstract. Fix an integer k 2. We investigate the number of n x for which ϕn) is a perfect kth power. If we assume plausible conjectures on the

More information

Notes on the second moment method, Erdős multiplication tables

Notes on the second moment method, Erdős multiplication tables Notes on the second moment method, Erdős multiplication tables January 25, 20 Erdős multiplication table theorem Suppose we form the N N multiplication table, containing all the N 2 products ab, where

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS JEAN-MARIE DE KONINCK and FLORIAN LUCA Abstract. For each integer n 2, let β(n) be the sum of the distinct prime divisors of n and let B(x) stand for

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

On the low-lying zeros of elliptic curve L-functions

On the low-lying zeros of elliptic curve L-functions On the low-lying zeros of elliptic curve L-functions Joint Work with Stephan Baier Liangyi Zhao Nanyang Technological University Singapore The zeros of the Riemann zeta function The number of zeros ρ of

More information

Roth s Theorem on Arithmetic Progressions

Roth s Theorem on Arithmetic Progressions September 25, 2014 The Theorema of Szemerédi and Roth For Λ N the (upper asymptotic) density of Λ is the number σ(λ) := lim sup N Λ [1, N] N [0, 1] The Theorema of Szemerédi and Roth For Λ N the (upper

More information

A New Sieve for the Twin Primes

A New Sieve for the Twin Primes A ew Sieve for the Twin Primes and how the number of twin primes is related to the number of primes by H.L. Mitchell Department of mathematics CUY-The City College 160 Convent avenue ew York, Y 10031 USA

More information

Towards the Twin Prime Conjecture

Towards the Twin Prime Conjecture A talk given at the NCTS (Hsinchu, Taiwan, August 6, 2014) and Northwest Univ. (Xi an, October 26, 2014) and Center for Combinatorics, Nankai Univ. (Tianjin, Nov. 3, 2014) Towards the Twin Prime Conjecture

More information

Repeated Values of Euler s Function. a talk by Paul Kinlaw on joint work with Jonathan Bayless

Repeated Values of Euler s Function. a talk by Paul Kinlaw on joint work with Jonathan Bayless Repeated Values of Euler s Function a talk by Paul Kinlaw on joint work with Jonathan Bayless Oct 4 205 Problem of Erdős: Consider solutions of the equations ϕ(n) = ϕ(n + k), σ(n) = σ(n + k) for fixed

More information

Sums and products: What we still don t know about addition and multiplication

Sums and products: What we still don t know about addition and multiplication Sums and products: What we still don t know about addition and multiplication Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Based on joint work with R. P. Brent, P. Kurlberg, J. C. Lagarias,

More information

Euler s ϕ function. Carl Pomerance Dartmouth College

Euler s ϕ function. Carl Pomerance Dartmouth College Euler s ϕ function Carl Pomerance Dartmouth College Euler s ϕ function: ϕ(n) is the number of integers m [1, n] with m coprime to n. Or, it is the order of the unit group of the ring Z/nZ. Euler: If a

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Twin primes (seem to be) more random than primes

Twin primes (seem to be) more random than primes Twin primes (seem to be) more random than primes Richard P. Brent Australian National University and University of Newcastle 25 October 2014 Primes and twin primes Abstract Cramér s probabilistic model

More information

SOME REMARKS ON ARTIN'S CONJECTURE

SOME REMARKS ON ARTIN'S CONJECTURE Canad. Math. Bull. Vol. 30 (1), 1987 SOME REMARKS ON ARTIN'S CONJECTURE BY M. RAM MURTY AND S. SR1NIVASAN ABSTRACT. It is a classical conjecture of E. Artin that any integer a > 1 which is not a perfect

More information

The Green-Tao theorem and a relative Szemerédi theorem

The Green-Tao theorem and a relative Szemerédi theorem The Green-Tao theorem and a relative Szemerédi theorem Yufei Zhao Massachusetts Institute of Technology Based on joint work with David Conlon (Oxford) and Jacob Fox (MIT) Green Tao Theorem (arxiv 2004;

More information

Prime Number Theory and the Riemann Zeta-Function

Prime Number Theory and the Riemann Zeta-Function 5262589 - Recent Perspectives in Random Matrix Theory and Number Theory Prime Number Theory and the Riemann Zeta-Function D.R. Heath-Brown Primes An integer p N is said to be prime if p and there is no

More information

Math212a1411 Lebesgue measure.

Math212a1411 Lebesgue measure. Math212a1411 Lebesgue measure. October 14, 2014 Reminder No class this Thursday Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Limit and Continuity

Limit and Continuity Limit and Continuity Table of contents. Limit of Sequences............................................ 2.. Definitions and properties...................................... 2... Definitions............................................

More information

ON TESTING THE DIVISIBILITY OF LACUNARY POLYNOMIALS BY CYCLOTOMIC POLYNOMIALS

ON TESTING THE DIVISIBILITY OF LACUNARY POLYNOMIALS BY CYCLOTOMIC POLYNOMIALS ON TESTING THE DIVISIBILITY OF LACUNARY POLYNOMIALS BY CYCLOTOMIC POLYNOMIALS Michael Filaseta 1 and Andrzej Schinzel August 30, 2002 1 The first author gratefully acknowledges support from the National

More information

Equidivisible consecutive integers

Equidivisible consecutive integers & Equidivisible consecutive integers Ivo Düntsch Department of Computer Science Brock University St Catherines, Ontario, L2S 3A1, Canada duentsch@cosc.brocku.ca Roger B. Eggleton Department of Mathematics

More information

Roth s Theorem on 3-term Arithmetic Progressions

Roth s Theorem on 3-term Arithmetic Progressions Roth s Theorem on 3-term Arithmetic Progressions Mustazee Rahman 1 Introduction This article is a discussion about the proof of a classical theorem of Roth s regarding the existence of three term arithmetic

More information

The number of sumsets in a finite field

The number of sumsets in a finite field The number of sumsets in a finite field Noga Alon Andrew Granville Adrián Ubis Abstract We prove that there are 2 p/2+op) distinct sumsets A + B in F p where A, B as p 1 Introduction For any subsets A

More information

We only consider r finite. P. Erdős, On integers of the form 2 k +p and some related problems, Summa Brasil. Math. 2 (1950),

We only consider r finite. P. Erdős, On integers of the form 2 k +p and some related problems, Summa Brasil. Math. 2 (1950), U niv e rsit y o f S o u th C ar o l ina e lf i las e ta b y M i cha A covering of the integers is a system of congruences x a j (mod m j ), j = 1, 2,..., r, with a j and m j integral and with m j 1, such

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

arxiv: v6 [math.nt] 6 Nov 2015

arxiv: v6 [math.nt] 6 Nov 2015 arxiv:1406.0429v6 [math.nt] 6 Nov 2015 Periodicity related to a sieve method of producing primes Haifeng Xu, Zuyi Zhang, Jiuru Zhou November 9, 2015 Abstract In this paper we consider a slightly different

More information

18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve

18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve 18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve In this unit, we describe a more intricate version of the sieve of Eratosthenes, introduced by Viggo Brun in order

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Generalized Euler constants

Generalized Euler constants Math. Proc. Camb. Phil. Soc. 2008, 45, Printed in the United Kingdom c 2008 Cambridge Philosophical Society Generalized Euler constants BY Harold G. Diamond AND Kevin Ford Department of Mathematics, University

More information

EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS

EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS #A5 INTEGERS 5 (205) EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS Steve Butler Department of Mathematics, Iowa State University, Ames, Iowa butler@iastate.edu Paul Erdős

More information

REFINED GOLDBACH CONJECTURES WITH PRIMES IN PROGRESSIONS

REFINED GOLDBACH CONJECTURES WITH PRIMES IN PROGRESSIONS REFINED GOLDBACH CONJECTURES WITH PRIMES IN PROGRESSIONS KIMBALL MARTIN Abstract. We formulate some refinements of Goldbach s conjectures based on heuristic arguments and numerical data. For instance,

More information

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3) M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation

More information

TWO REMARKS ON ITERATES OF EULER S TOTIENT FUNCTION

TWO REMARKS ON ITERATES OF EULER S TOTIENT FUNCTION TWO REMARKS ON ITERATES OF EULER S TOTIENT FUNCTION PAUL POLLACK Abstract. Let ϕ k denote the kth iterate of Euler s ϕ-function. We study two questions connected with these iterates. First, we determine

More information

Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid

Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid Like much of mathematics, the history of the distribution of primes begins with Euclid: Theorem

More information

ON THE RESIDUE CLASSES OF π(n) MODULO t

ON THE RESIDUE CLASSES OF π(n) MODULO t ON THE RESIDUE CLASSES OF πn MODULO t Ping Ngai Chung Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts briancpn@mit.edu Shiyu Li 1 Department of Mathematics, University

More information

Counting Prime Numbers with Short Binary Signed Representation

Counting Prime Numbers with Short Binary Signed Representation Counting Prime Numbers with Short Binary Signed Representation José de Jesús Angel Angel and Guillermo Morales-Luna Computer Science Section, CINVESTAV-IPN, Mexico jjangel@computacion.cs.cinvestav.mx,

More information

VARIANTS OF KORSELT S CRITERION. 1. Introduction Recall that a Carmichael number is a composite number n for which

VARIANTS OF KORSELT S CRITERION. 1. Introduction Recall that a Carmichael number is a composite number n for which VARIANTS OF KORSELT S CRITERION THOMAS WRIGHT Abstract. Under sufficiently strong assumptions about the first term in an arithmetic progression, we prove that for any integer a, there are infinitely many

More information

Research Problems in Arithmetic Combinatorics

Research Problems in Arithmetic Combinatorics Research Problems in Arithmetic Combinatorics Ernie Croot July 13, 2006 1. (related to a quesiton of J. Bourgain) Classify all polynomials f(x, y) Z[x, y] which have the following property: There exists

More information

Kolmogorov complexity

Kolmogorov complexity Kolmogorov complexity In this section we study how we can define the amount of information in a bitstring. Consider the following strings: 00000000000000000000000000000000000 0000000000000000000000000000000000000000

More information

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Providence College Math/CS Colloquium April 2, 2014 Sums and products Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Providence College Math/CS Colloquium April 2, 2014 Let s begin with products. Take the N N multiplication table. It has

More information