Products of ratios of consecutive integers

Size: px
Start display at page:

Download "Products of ratios of consecutive integers"

Transcription

1 Products of ratios of consecutive integers Régis de la Bretèche, Carl Pomerance & Gérald Tenenbaum 27/1/23, 9h26 For Jean-Louis Nicolas, on his sixtieth birthday 1. Introduction Let {ε n } 1 n<n be a finite sequence with each ε n {, ±1}, and write a b = n εn, n n<n where the fraction is in its smallest terms. Now, define AN as the maximal value of a as {ε n } 1 n<n runs through all possible 3 N 1 sequences of, ±1. One might also consider the maximal value of b, but this is the same. We obviously have AN N!, hence log AN N log N for all N. In [6], it is shown by an elegant near-tiling of the integers in [1, N] with triples n, 2n, 2n + 1 that log AN { o1} N log N. Further, a brief argument of M. Langevin is presented that log AN {log 4 + o1}n. Our aim in this article is to establish the true order of magnitude for log AN. Put kc := log1 2c 2 c log 1 + 2c2, 1 3c Kc := 2 Theorem 1.1. For large N, we have ku du, K := max Kc.175. <c<1/5 1 1 log AN {K + o1}n log N. Let P n denote the largest prime factor of a positive integer n with the convention that P 1 = 1. The lower bound 1 1 is an easy consequence of the estimate stated in the following result. Theorem 1.2. For c [, 1], x 1, let Sx, c denote the number of those integers n not exceeding x such that min{p n, P n + 1} > x 1 c. Then, for any fixed c ], 1 5 [ and uniformly for c [, c ], x, we have 1 v 1 2 Sx, c 2x log 1 v 2c 1 v + ox. Remark. Under a suitable strong form of the Elliott Halberstam hypothesis, we get the better bound 1 3 Sx, c x 1 v log 1 v c 1 v + ox. Note that 1 1 follows from 1 2 by selecting ε n = 1 if P n > N 1 c and P n > P n + 1, ε n = 1 if P n + 1 > N 1 c and P n + 1 > P n and ε n =

2 2 R. de la Bretèche, C. Pomerance & G. Tenenbaum in all other cases. Indeed, with these choices for ε n, we obtain that for each prime p > N 1 c N 1/2, the exponent on p in the prime factorization of the rational number AN/BN is n<n P n=p 2 n<n P n+1>p n=p 2 n<n P n 1>P n=p 2. Thus, log AN We have n N P n>n 1 c n N P n,p n+1>n 1 c 2 log P n n N P n,p n+1>n 1 c 2 log min{p n,p n + 1} = 2 log min{p n, P n + 1}. 1 u log N dsn, u { = log N 1 csn, c + } SN, u du, and since the number of n < N with P n > N 1 c is N log1 c+on uniformly for c 1/2, log P n = cn log N + on. We thus obtain n<n P n>n 1 c { log AN 2log N cn 1 csn, c 2Nlog N { } gc + o1, } SN, u du + on where we have set gc := c 1 cfc fu du, with fu := 2 u log 1 v 1 v 2u 1 v. We check by computation that g c = kc. This implies the desired estimate.

3 2. Proof of Theorem 1.2 Products of ratios of consecutive integers 3 We employ the Rosser Iwaniec sieve. A sightly better bound could be obtained from a more sophisticated sieve method, but we do not pursue such improvement here. We refer to [4], [5] for a complete reference of the Rosser-Iwaniec coefficients and merely recall the property we shall use. We denote by γ the Euler constant, and we let p run over primes. Lemma 2.1. Let Q denote a set of primes, let z 2 and write Qz :=, p Q p. There exists a sequence {λ d } d=1 of real numbers, vanishing for d > z or µd =, satisfying λ 1 = 1, λ d 1, and and such that for any number α >, d Qz λ d wd d p Q µ 1 λ 1, 1 wp p {2e γ + O α uniformly for all multiplicative functions w satisfying 1 }, log z 1/3 i ii u<p v, p Q 1 wp p < wp < p p Q, 1 log v 1 + α 2 u v z. log u log u If n is counted by Sx, c, then n = ap 1 = bp 2 1, where p 1 and p 2 are primes greater than x 1 c. Then a and b are obviously coprime, and moreover 2 ab. We need an upper bound for the number Za, b of admissible pairs p 1, p 2 for given a, b. Let C be a sufficiently large constant and set z := x/a 1/2 b 1 log x C. If Q is the set of all primes not dividing a and with {λ d } d=1 the sequence from Lemma Lemma 2.1, we plainly have Za, b p 1 x/a ap 1 1 mod b d Qz λ d µ 1 ap 1 + 1/b, Qz p 1 x/a ap 1 1 mod bd Let us put, for real y 2 and integers q, l with q 1, πy; q, l := p y p l mod q 1. 1, Ey; q := max πy; q, l liy/ϕq. l,q=1

4 4 R. de la Bretèche, C. Pomerance & G. Tenenbaum We apply Lemma 2.1 to the multiplicative function d dϕb/ϕbd. Using the fact that a, bd = 1 for each d Qz, and noticing that c bounded below 1/5 ensures that z b when x is large enough, we deduce that 2 1 Za, b Ma, b + Ra, b with Ra, b := d z Ex/a; bd and Ma, b := p>2 d Qz λ d lix/a ϕbd {2e γ + o1} lix/a ϕb = {2e γ + o1} lix/a b p ab p ab p 1 p p b p 2. p 1 Now we observe that, uniformly as x tends to and a, b vary in the specified ranges, p 2 = 2 pp 2 p 1 p e γ p A log z p>2 where Therefore, writing we obtain that the estimate A := p>2 2 2 Ma, b hn := p n p> pp 2 p 1, p 2 {8 + o1}habx Aab logx/a logx/ab 2 holds uniformly for a x c, b x c, a, b = 1, as x. Let τm denote the number of divisors of m. By the Bombieri Vinogradov theorem, we have, with X a := x/a 1/2 log x C, Ra, b τmex/a; m b x c m X a { } 1/2 Ex/a; m τm 2 Ex/a; m m X a m X a x alog x 2,

5 Products of ratios of consecutive integers 5 where we have used the trivial estimate Ex/a; m x/am and the well-known fact that m x τm2 /m log x 4. Therefore, we obtain from 2 1 and 2 2 Sx, c Za, b 2 3 We have for ν = or where Hs := p>2 1 + a x c, b x c a,b=1, 2 ab 8 + o1 x A a x c b 1 b,a=1 ha a logx/a b x c 2 ab b,a=1 hb x b logx/ab 2 + O log x h2 ν b b s = HsG a sζs Re s > 1 1 p s, G a s := 1 εa p 2 2 s p a p>2. 1 p s 1 + p s /p 2 with εa = 1 if a is even, εa = if a is odd. The functions H and G a can be analytically continued to the half-plane Re s >. Note that H1 = A, G a 1 = 2 εa ha 1. By Selberg Delange estimates see [7], chap. II.5, 2 4 yields in turn and b x c a,b=1, 2 ab b y b,a=1 hb b logx/ab 2 = h2 ν b Ay 2 εa ha y, A 1 4ha log va + o1 x 1 2c v a and v a := log a/ log x. Carrying this back into 2 3, we arrive at Sx, c {2 + o1}x 1 a logx/a log va 1 2c v a = {2 + o1}x 1 a x c, 1 v log 1 2c v 1 v. We remark that with a little more care, the bound 1/5 in the theorem may be replaced with 1/3.

6 6 R. de la Bretèche, C. Pomerance & G. Tenenbaum 3. Further remarks In [2] it is shown that if N is large, than for at least.99n values of n N we have P n > P n + 1, and for at least.99n values of n N we have P n < P n + 1. It follows from Theorem 1.2 that each inequality occurs on a set of integers n of lower asymptotic density 1 log 2 1 c 1 v log 1 v 2c 1 v for each value of c with < c < 1/5. The maximum of this expression is greater than.5544 so we have majorized the result from [2]. Presumably, the set E of integers n with P n > P n + 1 has asymptotic density 1/2. A general theorem of Hildebrand [3] also implies that E has positive lower asymptotic density, but we did not check the numerical value that can be derived from this result. In [2] it is shown that P n < P n + 1 < P n + 2 holds infinitely often, and it was conjectured that so too P n > P n + 1 > P n + 2 holds infinitely often. This conjecture was recently proved by Balog in [1]. We observe that the maximal value AN corresponds to a sequence ε = {ε n } 1 n<n where ε n { 1, 1}. Proposition 3.1. Let N 1. There exists {ε n } 1 n<n { 1, 1} N 1 such that AN BN = 1 n<n n εn. n + 1 Remark. Let A,1 N respectively A 1,1 N, A 1, N the maximum of numerators where the exponents ε n are restricted to {, 1} respectively { 1, 1}, { 1, }. By the proposition, we have A 1,1 N = AN and log A,1 N = 1 2 log AN + Olog N = log A 1,N + Olog N. For example, if {ε n } 1 n<n {, 1} N 1, we have {2ε n 1} 1 n<n { 1, 1} N 1. Since the constant sequence 1 gives the numerator N, we deduce the result. Proof. Take a sequence {ε n } 1 n<n { 1,, 1} N 1 where some ε n =. Write the associated product as A/B with A, B = 1. If we let ε n = 1, the new numerator is A A, n + 1 n B, n, while if we let ε = 1, the new numerator is A A, n n + 1 B, n + 1.

7 Products of ratios of consecutive integers 7 Assuming both of these expressions are smaller than A, we obtain n < A, n + 1B, n and n + 1 < A, nb, n + 1. Multiplying these inequalities and using A, B = n, n + 1 = 1 we obtain nn + 1 < AB, nn + 1, a contradiction. So we may choose ε n {±1} without decreasing the associated numerator. With this method we can replace each value with ±1 and the value of the associated numerator will not decrease. References [1] A. Balog, On triplets with descending largest prime factors, Studia Sci. Math. Hungar , [2] P. Erdős and C. Pomerance, On the largest prime factors of n and n + 1, Aequationes Math , [3] A. Hildebrand, On a conjecture of Balog, Proc. Amer. Math. Soc , no. 4, [4] H. Iwaniec, Rosser s sieve, Acta Arith , [5] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith , [6] J.-L. Nicolas, Nombres hautement composés, Acta Arith , [7] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge studies in advanced mathematics, no. 46, Cambridge University Press 1995.

8 8 R. de la Bretèche, C. Pomerance & G. Tenenbaum Régis de la Bretèche École Normale Supérieure Département de Mathématiques et Applications 45, rue d Ulm 7523 Paris cedex 5 France Carl Pomerance Lucent Technologies Bell Laboratories 6 Mountain Avenue Room 2C-379 Murray Hill, NJ 7974 USA Gérald Tenenbaum Institut Élie Cartan Université de Nancy 1 BP Vandœuvre Cedex France

Fermat numbers and integers of the form a k + a l + p α

Fermat numbers and integers of the form a k + a l + p α ACTA ARITHMETICA * (200*) Fermat numbers and integers of the form a k + a l + p α by Yong-Gao Chen (Nanjing), Rui Feng (Nanjing) and Nicolas Templier (Montpellier) 1. Introduction. In 1849, A. de Polignac

More information

On the largest prime factors of consecutive integers

On the largest prime factors of consecutive integers On the largest prime factors of consecutive integers Xiaodong Lü, Zhiwei Wang To cite this version: Xiaodong Lü, Zhiwei Wang. On the largest prime factors of consecutive integers. 208. HAL

More information

On prime factors of integers which are sums or shifted products. by C.L. Stewart (Waterloo)

On prime factors of integers which are sums or shifted products. by C.L. Stewart (Waterloo) On prime factors of integers which are sums or shifted products by C.L. Stewart (Waterloo) Abstract Let N be a positive integer and let A and B be subsets of {1,..., N}. In this article we discuss estimates

More information

Flat primes and thin primes

Flat primes and thin primes Flat primes and thin primes Kevin A. Broughan and Zhou Qizhi University of Waikato, Hamilton, New Zealand Version: 0th October 2008 E-mail: kab@waikato.ac.nz, qz49@waikato.ac.nz Flat primes and thin primes

More information

Subset sums modulo a prime

Subset sums modulo a prime ACTA ARITHMETICA 131.4 (2008) Subset sums modulo a prime by Hoi H. Nguyen, Endre Szemerédi and Van H. Vu (Piscataway, NJ) 1. Introduction. Let G be an additive group and A be a subset of G. We denote by

More information

On the counting function of sets with even partition functions by

On the counting function of sets with even partition functions by Author manuscript, published in "Publ. Math. Debrecen 79, 3-4 2011) 687-697" DOI : 10.5486/PMD.2011.5106 On the counting function of sets with even partition functions by F. Ben Saïd Université de Monastir

More information

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS JEAN-MARIE DE KONINCK and FLORIAN LUCA Abstract. For each integer n 2, let β(n) be the sum of the distinct prime divisors of n and let B(x) stand for

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

SOME REMARKS ON ARTIN'S CONJECTURE

SOME REMARKS ON ARTIN'S CONJECTURE Canad. Math. Bull. Vol. 30 (1), 1987 SOME REMARKS ON ARTIN'S CONJECTURE BY M. RAM MURTY AND S. SR1NIVASAN ABSTRACT. It is a classical conjecture of E. Artin that any integer a > 1 which is not a perfect

More information

Small gaps between primes

Small gaps between primes CRM, Université de Montréal Princeton/IAS Number Theory Seminar March 2014 Introduction Question What is lim inf n (p n+1 p n )? In particular, is it finite? Introduction Question What is lim inf n (p

More information

Denser Egyptian fractions

Denser Egyptian fractions ACTA ARITHMETICA XCV.3 2000) Denser Egyptian fractions by Greg Martin Toronto). Introduction. An Egyptian fraction is a sum of reciprocals of distinct positive integers, so called because the ancient Egyptians

More information

Irreducible radical extensions and Euler-function chains

Irreducible radical extensions and Euler-function chains Irreducible radical extensions and Euler-function chains Florian Luca Carl Pomerance June 14, 2006 For Ron Graham on his 70th birthday Abstract We discuss the smallest algebraic number field which contains

More information

Goldbach's problem with primes in arithmetic progressions and in short intervals

Goldbach's problem with primes in arithmetic progressions and in short intervals Goldbach's problem with primes in arithmetic progressions and in short intervals Karin Halupczok Journées Arithmétiques 2011 in Vilnius, June 30, 2011 Abstract: We study the number of solutions in Goldbach's

More information

Prime divisors in Beatty sequences

Prime divisors in Beatty sequences Journal of Number Theory 123 (2007) 413 425 www.elsevier.com/locate/jnt Prime divisors in Beatty sequences William D. Banks a,, Igor E. Shparlinski b a Department of Mathematics, University of Missouri,

More information

A 1935 Erdős paper on prime numbers and Euler s function

A 1935 Erdős paper on prime numbers and Euler s function A 1935 Erdős paper on prime numbers and Euler s function Carl Pomerance, Dartmouth College with Florian Luca, UNAM, Morelia 1 2 3 4 Hardy & Ramanujan, 1917: The normal number of prime divisors of n is

More information

Results and conjectures related to a conjecture of Erdős concerning primitive sequences

Results and conjectures related to a conjecture of Erdős concerning primitive sequences Results and conjectures related to a conjecture of Erdős concerning primitive sequences arxiv:709.08708v2 [math.nt] 26 Nov 207 Bakir FARHI Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes

More information

On the number of elements with maximal order in the multiplicative group modulo n

On the number of elements with maximal order in the multiplicative group modulo n ACTA ARITHMETICA LXXXVI.2 998 On the number of elements with maximal order in the multiplicative group modulo n by Shuguang Li Athens, Ga.. Introduction. A primitive root modulo the prime p is any integer

More information

arxiv:math/ v1 [math.nt] 27 Feb 2004

arxiv:math/ v1 [math.nt] 27 Feb 2004 arxiv:math/0402458v1 [math.nt] 27 Feb 2004 On simultaneous binary expansions of n and n 2 Giuseppe Melfi Université de Neuchâtel Groupe de Statistique Espace de l Europe 4, CH 2002 Neuchâtel, Switzerland

More information

Friable values of binary forms. joint work with Antal Balog, Valentin Blomer and Gérald Tenenbaum

Friable values of binary forms. joint work with Antal Balog, Valentin Blomer and Gérald Tenenbaum Friable values of binary forms joint work with Antal Balog, Valentin Blomer and Gérald Tenenbaum 1 An y-friable integer is an integer whose all prime factors are 6 y. Canonical decomposition N = ab with

More information

On a combinatorial method for counting smooth numbers in sets of integers

On a combinatorial method for counting smooth numbers in sets of integers On a combinatorial method for counting smooth numbers in sets of integers Ernie Croot February 2, 2007 Abstract In this paper we develop a method for determining the number of integers without large prime

More information

Squares in products with terms in an arithmetic progression

Squares in products with terms in an arithmetic progression ACTA ARITHMETICA LXXXVI. (998) Squares in products with terms in an arithmetic progression by N. Saradha (Mumbai). Introduction. Let d, k 2, l 2, n, y be integers with gcd(n, d) =. Erdős [4] and Rigge

More information

Integers without large prime factors in short intervals and arithmetic progressions

Integers without large prime factors in short intervals and arithmetic progressions ACTA ARITHMETICA XCI.3 (1999 Integers without large prime factors in short intervals and arithmetic progressions by Glyn Harman (Cardiff 1. Introduction. Let Ψ(x, u denote the number of integers up to

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (206), 303 3 wwwemisde/journals ISSN 786-009 THE INDEX OF COMPOSITION OF THE ITERATES OF THE EULER FUNCTION JEAN-MARIE DE KONINCK AND IMRE KÁTAI

More information

On the Fractional Parts of a n /n

On the Fractional Parts of a n /n On the Fractional Parts of a n /n Javier Cilleruelo Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Universidad Autónoma de Madrid 28049-Madrid, Spain franciscojavier.cilleruelo@uam.es Angel Kumchev

More information

NOTES ON ZHANG S PRIME GAPS PAPER

NOTES ON ZHANG S PRIME GAPS PAPER NOTES ON ZHANG S PRIME GAPS PAPER TERENCE TAO. Zhang s results For any natural number H, let P (H) denote the assertion that there are infinitely many pairs of distinct primes p, q with p q H; thus for

More information

On Carmichael numbers in arithmetic progressions

On Carmichael numbers in arithmetic progressions On Carmichael numbers in arithmetic progressions William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Carl Pomerance Department of Mathematics

More information

On the friable Turán Kubilius inequality

On the friable Turán Kubilius inequality On the friable Turán Kubilius inequality Régis De La Bretèche, Gérald Tenenbaum To cite this version: Régis De La Bretèche, Gérald Tenenbaum. On the friable Turán Kubilius inequality. E. Manstavičius.

More information

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A.

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A08 ON SUMS OF PRIMES FROM BEATTY SEQUENCES Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD 21252-0001,

More information

Carmichael numbers with a totient of the form a 2 + nb 2

Carmichael numbers with a totient of the form a 2 + nb 2 Carmichael numbers with a totient of the form a 2 + nb 2 William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bankswd@missouri.edu Abstract Let ϕ be the Euler function.

More information

On Values Taken by the Largest Prime Factor of Shifted Primes

On Values Taken by the Largest Prime Factor of Shifted Primes On Values Taken by the Largest Prime Factor of Shifted Primes William D. Banks Department of Mathematics, University of Missouri Columbia, MO 652 USA bbanks@math.missouri.edu Igor E. Shparlinski Department

More information

ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS

ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS Fizikos ir matematikos fakulteto Seminaro darbai, Šiaulių universitetas, 8, 2005, 5 13 ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS Boris ADAMCZEWSKI 1, Yann BUGEAUD 2 1 CNRS, Institut Camille Jordan,

More information

RECENT PROGRESS ABOUT THE CONJECTURE OF ERDÖS- STRAUS Ibrahima GUEYE 1, Michel MIZONY 2

RECENT PROGRESS ABOUT THE CONJECTURE OF ERDÖS- STRAUS Ibrahima GUEYE 1, Michel MIZONY 2 The Bulletin of Society for Mathematical Services and Standards Online: 2012-06-04 ISSN: 2277-8020, Vol. 2, pp 5-9 doi:10.18052/www.scipress.com/bsmass.2.5 2012 SciPress Ltd., Switzerland RECENT PROGRESS

More information

THE SUM OF DIGITS OF n AND n 2

THE SUM OF DIGITS OF n AND n 2 THE SUM OF DIGITS OF n AND n 2 KEVIN G. HARE, SHANTA LAISHRAM, AND THOMAS STOLL Abstract. Let s q (n) denote the sum of the digits in the q-ary expansion of an integer n. In 2005, Melfi examined the structure

More information

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES Y. O. HAMIDOUNE AND J. RUÉ Abstract. Let A be a finite nonempty set of integers. An asymptotic estimate of several dilates sum size was obtained

More information

SOME RESULTS AND PROBLEMS IN PROBABILISTIC NUMBER THEORY

SOME RESULTS AND PROBLEMS IN PROBABILISTIC NUMBER THEORY Annales Univ. Sci. Budapest., Sect. Comp. 43 204 253 265 SOME RESULTS AND PROBLEMS IN PROBABILISTIC NUMBER THEORY Imre Kátai and Bui Minh Phong Budapest, Hungary Le Manh Thanh Hue, Vietnam Communicated

More information

Notes on the second moment method, Erdős multiplication tables

Notes on the second moment method, Erdős multiplication tables Notes on the second moment method, Erdős multiplication tables January 25, 20 Erdős multiplication table theorem Suppose we form the N N multiplication table, containing all the N 2 products ab, where

More information

The ranges of some familiar arithmetic functions

The ranges of some familiar arithmetic functions The ranges of some familiar arithmetic functions Carl Pomerance Dartmouth College, emeritus University of Georgia, emeritus based on joint work with K. Ford, F. Luca, and P. Pollack and T. Freiburg, N.

More information

Journal of Number Theory

Journal of Number Theory Journal of Number Theory 130 (2010) 1737 1749 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt A binary linear recurrence sequence of composite numbers Artūras

More information

THE GENERALIZED ARTIN CONJECTURE AND ARITHMETIC ORBIFOLDS

THE GENERALIZED ARTIN CONJECTURE AND ARITHMETIC ORBIFOLDS THE GENERALIZED ARTIN CONJECTURE AND ARITHMETIC ORBIFOLDS M. RAM MURTY AND KATHLEEN L. PETERSEN Abstract. Let K be a number field with positive unit rank, and let O K denote the ring of integers of K.

More information

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n Florian Luca IMATE de la UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacan, Mexico e-mail: fluca@matmor.unain.inx

More information

Proposed by Jean-Marie De Koninck, Université Laval, Québec, Canada. (a) Let φ denote the Euler φ function, and let γ(n) = p n

Proposed by Jean-Marie De Koninck, Université Laval, Québec, Canada. (a) Let φ denote the Euler φ function, and let γ(n) = p n 10966. Proposed by Jean-Marie De Koninck, Université aval, Québec, Canada. (a) et φ denote the Euler φ function, and let γ(n) = p n p, with γ(1) = 1. Prove that there are exactly six positive integers

More information

HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? 1. Introduction

HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? 1. Introduction HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? PAUL POLLACK Abstract. Fix an integer k 2. We investigate the number of n x for which ϕn) is a perfect kth power. If we assume plausible conjectures on the

More information

On the number of co-prime-free sets. Neil J. Calkin and Andrew Granville *

On the number of co-prime-free sets. Neil J. Calkin and Andrew Granville * On the number of co-prime-free sets. by Neil J. Calkin and Andrew Granville * Abstract: For a variety of arithmetic properties P such as the one in the title) we investigate the number of subsets of the

More information

On prime factors of subset sums

On prime factors of subset sums On prime factors of subset sums by P. Erdös, A. Sárközy and C.L. Stewart * 1 Introduction For any set X let X denote its cardinality and for any integer n larger than one let ω(n) denote the number of

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

More information

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS JÁNOS PINTZ Rényi Institute of the Hungarian Academy of Sciences CIRM, Dec. 13, 2016 2 1. Patterns of primes Notation: p n the n th prime, P = {p i } i=1,

More information

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS J. Aust. Math. Soc. 88 (2010), 313 321 doi:10.1017/s1446788710000169 ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS WILLIAM D. BANKS and CARL POMERANCE (Received 4 September 2009; accepted 4 January

More information

On Gauss sums and the evaluation of Stechkin s constant

On Gauss sums and the evaluation of Stechkin s constant On Gauss sums and the evaluation of Stechkin s constant William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bankswd@missouri.edu Igor E. Shparlinski Department of Pure

More information

Collatz cycles with few descents

Collatz cycles with few descents ACTA ARITHMETICA XCII.2 (2000) Collatz cycles with few descents by T. Brox (Stuttgart) 1. Introduction. Let T : Z Z be the function defined by T (x) = x/2 if x is even, T (x) = (3x + 1)/2 if x is odd.

More information

P -adic root separation for quadratic and cubic polynomials

P -adic root separation for quadratic and cubic polynomials P -adic root separation for quadratic and cubic polynomials Tomislav Pejković Abstract We study p-adic root separation for quadratic and cubic polynomials with integer coefficients. The quadratic and reducible

More information

RESEARCH PROBLEMS IN NUMBER THEORY

RESEARCH PROBLEMS IN NUMBER THEORY Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 267 277 RESEARCH PROBLEMS IN NUMBER THEORY Nguyen Cong Hao (Hue, Vietnam) Imre Kátai and Bui Minh Phong (Budapest, Hungary) Communicated by László Germán

More information

ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION

ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION Annales Univ. Sci. Budapest., Sect. Comp. 44 (205) 79 9 ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION Jean-Marie De Koninck (Québec,

More information

Some Arithmetic Functions Involving Exponential Divisors

Some Arithmetic Functions Involving Exponential Divisors 2 3 47 6 23 Journal of Integer Sequences, Vol. 3 200, Article 0.3.7 Some Arithmetic Functions Involving Exponential Divisors Xiaodong Cao Department of Mathematics and Physics Beijing Institute of Petro-Chemical

More information

The number of solutions of linear equations in roots of unity

The number of solutions of linear equations in roots of unity ACTA ARITHMETICA LXXXIX.1 (1999) The number of solutions of linear equations in roots of unity by Jan-Hendrik Evertse (Leiden) 1. Introduction. We deal with equations (1.1) a 1 ζ 1 +... + a n ζ n = 1 in

More information

18-29 mai 2015: Oujda (Maroc) École de recherche CIMPA-Oujda Théorie des Nombres et ses Applications. Continued fractions. Michel Waldschmidt

18-29 mai 2015: Oujda (Maroc) École de recherche CIMPA-Oujda Théorie des Nombres et ses Applications. Continued fractions. Michel Waldschmidt 18-29 mai 2015: Oujda (Maroc) École de recherche CIMPA-Oujda Théorie des Nombres et ses Applications. Continued fractions Michel Waldschmidt We first consider generalized continued fractions of the form

More information

arxiv:math/ v3 [math.co] 15 Oct 2006

arxiv:math/ v3 [math.co] 15 Oct 2006 arxiv:math/060946v3 [math.co] 15 Oct 006 and SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds

More information

ON THE SEMIPRIMITIVITY OF CYCLIC CODES

ON THE SEMIPRIMITIVITY OF CYCLIC CODES ON THE SEMIPRIMITIVITY OF CYCLIC CODES YVES AUBRY AND PHILIPPE LANGEVIN Abstract. We prove, without assuming the Generalized Riemann Hypothesis, but with at most one exception, that an irreducible cyclic

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

arxiv: v1 [math.nt] 2 Oct 2015

arxiv: v1 [math.nt] 2 Oct 2015 PELL NUMBERS WITH LEHMER PROPERTY arxiv:1510.00638v1 [math.nt] 2 Oct 2015 BERNADETTE FAYE FLORIAN LUCA Abstract. In this paper, we prove that there is no number with the Lehmer property in the sequence

More information

NUMBER FIELDS WITHOUT SMALL GENERATORS

NUMBER FIELDS WITHOUT SMALL GENERATORS NUMBER FIELDS WITHOUT SMALL GENERATORS JEFFREY D. VAALER AND MARTIN WIDMER Abstract. Let D > be an integer, and let b = b(d) > be its smallest divisor. We show that there are infinitely many number fields

More information

ON THE DISTANCE BETWEEN SMOOTH NUMBERS

ON THE DISTANCE BETWEEN SMOOTH NUMBERS #A25 INTEGERS (20) ON THE DISTANCE BETWEEN SMOOTH NUMBERS Jean-Marie De Koninc Département e mathématiques et e statistique, Université Laval, Québec, Québec, Canaa jm@mat.ulaval.ca Nicolas Doyon Département

More information

ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J. McGown

ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J. McGown Functiones et Approximatio 462 (2012), 273 284 doi: 107169/facm/201246210 ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J McGown Abstract: We give an explicit

More information

The theory of numbers

The theory of numbers 1 AXIOMS FOR THE INTEGERS 1 The theory of numbers UCU Foundations of Mathematics course 2017 Author: F. Beukers 1 Axioms for the integers Roughly speaking, number theory is the mathematics of the integers.

More information

IRREDUCIBILITY CRITERIA FOR SUMS OF TWO RELATIVELY PRIME POLYNOMIALS

IRREDUCIBILITY CRITERIA FOR SUMS OF TWO RELATIVELY PRIME POLYNOMIALS IRREDUCIBILITY CRITERIA FOR SUMS OF TWO RELATIVELY PRIME POLYNOMIALS NICOLAE CIPRIAN BONCIOCAT, YANN BUGEAUD, MIHAI CIPU, AND MAURICE MIGNOTTE Abstract. We provide irreducibility conditions for polynomials

More information

COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50.

COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50. MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 0025-5718(XX)0000-0 COMPUTATION OF JACOBSTHAL S FUNCTION h(n) FOR n < 50. THOMAS R. HAGEDORN Abstract. Let j(n) denote the smallest positive

More information

#A20 INTEGERS 11 (2011) ON CONGRUENT NUMBERS WITH THREE PRIME FACTORS. Lindsey Reinholz

#A20 INTEGERS 11 (2011) ON CONGRUENT NUMBERS WITH THREE PRIME FACTORS. Lindsey Reinholz #A20 INTEGERS 11 (2011) ON CONGRUENT NUMBERS WITH THREE PRIME FACTORS Lindsey Reinholz Department of Mathematics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7. reinholz@interchange.ubc.ca

More information

Playing Ball with the Largest Prime Factor

Playing Ball with the Largest Prime Factor Playing Ball with the Largest Prime Factor An Introduction to Ruth-Aaron Numbers Madeleine Farris Wellesley College July 30, 2018 The Players The Players Figure: Babe Ruth Home Run Record: 714 The Players

More information

On additive decompositions of the set of primitive roots modulo p

On additive decompositions of the set of primitive roots modulo p On additive decompositions of the set of primitive roots modulo p Cécile Dartyge, András Sárközy To cite this version: Cécile Dartyge, András Sárközy. On additive decompositions of the set of primitive

More information

Homework 3, solutions

Homework 3, solutions Homework 3, solutions Problem 1. Read the proof of Proposition 1.22 (page 32) in the book. Using simialr method prove that there are infinitely many prime numbers of the form 3n 2. Solution. Note that

More information

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds in finite fields using incidence theorems

More information

Distribution of Fourier coefficients of primitive forms

Distribution of Fourier coefficients of primitive forms Distribution of Fourier coefficients of primitive forms Jie WU Institut Élie Cartan Nancy CNRS et Nancy-Université, France Clermont-Ferrand, le 25 Juin 2008 2 Presented work [1] E. Kowalski, O. Robert

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 3 06, 3 3 www.emis.de/journals ISSN 786-009 A NOTE OF THREE PRIME REPRESENTATION PROBLEMS SHICHUN YANG AND ALAIN TOGBÉ Abstract. In this note, we

More information

1 i<j k (g ih j g j h i ) 0.

1 i<j k (g ih j g j h i ) 0. CONSECUTIVE PRIMES IN TUPLES WILLIAM D. BANKS, TRISTAN FREIBERG, AND CAROLINE L. TURNAGE-BUTTERBAUGH Abstract. In a stunning new advance towards the Prime k-tuple Conjecture, Maynard and Tao have shown

More information

JEAN-MARIE DE KONINCK AND IMRE KÁTAI

JEAN-MARIE DE KONINCK AND IMRE KÁTAI BULLETIN OF THE HELLENIC MATHEMATICAL SOCIETY Volume 6, 207 ( 0) ON THE DISTRIBUTION OF THE DIFFERENCE OF SOME ARITHMETIC FUNCTIONS JEAN-MARIE DE KONINCK AND IMRE KÁTAI Abstract. Let ϕ stand for the Euler

More information

Research Statement. Enrique Treviño. M<n N+M

Research Statement. Enrique Treviño. M<n N+M Research Statement Enrique Treviño My research interests lie in elementary analytic number theory. Most of my work concerns finding explicit estimates for character sums. While these estimates are interesting

More information

#A5 INTEGERS 18A (2018) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT

#A5 INTEGERS 18A (2018) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT #A5 INTEGERS 8A (208) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT Yann Bugeaud IRMA, UMR 750, Université de Strasbourg et CNRS, Strasbourg, France bugeaud@math.unistra.fr

More information

Divisibility. 1.1 Foundations

Divisibility. 1.1 Foundations 1 Divisibility 1.1 Foundations The set 1, 2, 3,...of all natural numbers will be denoted by N. There is no need to enter here into philosophical questions concerning the existence of N. It will suffice

More information

On pseudosquares and pseudopowers

On pseudosquares and pseudopowers On pseudosquares and pseudopowers Carl Pomerance Department of Mathematics Dartmouth College Hanover, NH 03755-3551, USA carl.pomerance@dartmouth.edu Igor E. Shparlinski Department of Computing Macquarie

More information

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE THOMAS WRIGHT Abstract. In light of the recent work by Maynard and Tao on the Dickson k-tuples conjecture, we show that with a small improvement

More information

Small Sets Which Meet All the k(n)-term Arithmetic Progressions in the Interval [1;n]

Small Sets Which Meet All the k(n)-term Arithmetic Progressions in the Interval [1;n] Small Sets Which Meet All the k(n)-term Arithmetic Progressions in the Interval [1;n] Tom C. Brown and Allen R. Freedman Citation data: T.C. Brown and A.R. Freedman, Small sets which meet every f (n)-term

More information

The zeros of the derivative of the Riemann zeta function near the critical line

The zeros of the derivative of the Riemann zeta function near the critical line arxiv:math/07076v [mathnt] 5 Jan 007 The zeros of the derivative of the Riemann zeta function near the critical line Haseo Ki Department of Mathematics, Yonsei University, Seoul 0 749, Korea haseoyonseiackr

More information

A Diophantine Inequality Involving Prime Powers

A Diophantine Inequality Involving Prime Powers A Diophantine Inequality Involving Prime Powers A. Kumchev 1 Introduction In 1952 I. I. Piatetski-Shapiro [8] studied the inequality (1.1) p c 1 + p c 2 + + p c s N < ε where c > 1 is not an integer, ε

More information

ON THE RESIDUE CLASSES OF π(n) MODULO t

ON THE RESIDUE CLASSES OF π(n) MODULO t ON THE RESIDUE CLASSES OF πn MODULO t Ping Ngai Chung Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts briancpn@mit.edu Shiyu Li 1 Department of Mathematics, University

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

Average value of the Euler function on binary palindromes

Average value of the Euler function on binary palindromes Average value of the Euler function on binary palindromes William D. Banks Department of Mathematics, University of Missouri Columbia, MO 652 USA bbanks@math.missouri.edu Igor E. Shparlinski Department

More information

Towards the Twin Prime Conjecture

Towards the Twin Prime Conjecture A talk given at the NCTS (Hsinchu, Taiwan, August 6, 2014) and Northwest Univ. (Xi an, October 26, 2014) and Center for Combinatorics, Nankai Univ. (Tianjin, Nov. 3, 2014) Towards the Twin Prime Conjecture

More information

The Diophantine equation x(x + 1) (x + (m 1)) + r = y n

The Diophantine equation x(x + 1) (x + (m 1)) + r = y n The Diophantine equation xx + 1) x + m 1)) + r = y n Yu.F. Bilu & M. Kulkarni Talence) and B. Sury Bangalore) 1 Introduction Erdős and Selfridge [7] proved that a product of consecutive integers can never

More information

On the Divisibility of Fermat Quotients

On the Divisibility of Fermat Quotients Michigan Math. J. 59 (010), 313 38 On the Divisibility of Fermat Quotients Jean Bourgain, Kevin Ford, Sergei V. Konyagin, & Igor E. Shparlinski 1. Introduction For a prime p and an integer a the Fermat

More information

Long Arithmetic Progressions in A + A + A with A a Prime Subset 1. Zhen Cui, Hongze Li and Boqing Xue 2

Long Arithmetic Progressions in A + A + A with A a Prime Subset 1. Zhen Cui, Hongze Li and Boqing Xue 2 Long Arithmetic Progressions in A + A + A with A a Prime Subset 1 Zhen Cui, Hongze Li and Boqing Xue 2 Abstract If A is a dense subset of the integers, then A + A + A contains long arithmetic progressions.

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China J. Number Theory 16(016), 190 11. A RESULT SIMILAR TO LAGRANGE S THEOREM Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 10093, People s Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

Arithmetic properties of the Ramanujan function

Arithmetic properties of the Ramanujan function Proc. Indian Acad. Sci. (Math. Sci.) Vol. 116, No. 1, February 2006, pp. 1 8. Printed in India Arithmetic properties of the Ramanujan function FLORIAN LUCA 1 and IGOR E SHPARLINSKI 2 1 Instituto de Matemáticas,

More information

Equidivisible consecutive integers

Equidivisible consecutive integers & Equidivisible consecutive integers Ivo Düntsch Department of Computer Science Brock University St Catherines, Ontario, L2S 3A1, Canada duentsch@cosc.brocku.ca Roger B. Eggleton Department of Mathematics

More information

arxiv: v2 [math.nt] 9 Oct 2013

arxiv: v2 [math.nt] 9 Oct 2013 UNIFORM LOWER BOUND FOR THE LEAST COMMON MULTIPLE OF A POLYNOMIAL SEQUENCE arxiv:1308.6458v2 [math.nt] 9 Oct 2013 SHAOFANG HONG, YUANYUAN LUO, GUOYOU QIAN, AND CHUNLIN WANG Abstract. Let n be a positive

More information

arxiv: v1 [math.co] 22 May 2014

arxiv: v1 [math.co] 22 May 2014 Using recurrence relations to count certain elements in symmetric groups arxiv:1405.5620v1 [math.co] 22 May 2014 S.P. GLASBY Abstract. We use the fact that certain cosets of the stabilizer of points are

More information

Arithmetic progressions in sumsets

Arithmetic progressions in sumsets ACTA ARITHMETICA LX.2 (1991) Arithmetic progressions in sumsets by Imre Z. Ruzsa* (Budapest) 1. Introduction. Let A, B [1, N] be sets of integers, A = B = cn. Bourgain [2] proved that A + B always contains

More information

Product of integers in an interval, modulo squares

Product of integers in an interval, modulo squares Product of integers in an interval, modulo squares Andrew Granville Department of Mathematics, University of Georgia Athens, GA 30602-7403 and J.L. Selfridge Department of Mathematics,

More information

On some inequalities between prime numbers

On some inequalities between prime numbers On some inequalities between prime numbers Martin Maulhardt July 204 ABSTRACT. In 948 Erdős and Turán proved that in the set of prime numbers the inequality p n+2 p n+ < p n+ p n is satisfied infinitely

More information

Dense product-free sets of integers

Dense product-free sets of integers Dense product-free sets of integers Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Joint Mathematics Meetings Boston, January 6, 2012 Based on joint work with P. Kurlberg, J. C. Lagarias,

More information

GUO-NIU HAN AND KEN ONO

GUO-NIU HAN AND KEN ONO HOOK LENGTHS AND 3-CORES GUO-NIU HAN AND KEN ONO Abstract. Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions,

More information