Eigenvalue and Eigenvector Problems

Size: px
Start display at page:

Download "Eigenvalue and Eigenvector Problems"

Transcription

1 Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş Babeş-Bolyai University April 8, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

2 Eigenvalues and Eigenvectors A C m m ; a nonzero vector x C m is an eigenvector of A, and λ C is its corresponding eigenvalue, if The set is the spectrum of A Applications: Ax = λx. Λ(A) = {λ C λ eigenvalue of A} Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

3 Eigenvalues and Eigenvectors A C m m ; a nonzero vector x C m is an eigenvector of A, and λ C is its corresponding eigenvalue, if The set is the spectrum of A Applications: Ax = λx. Λ(A) = {λ C λ eigenvalue of A} algorithmically eigenvalue analysis simplifies problems by reducing them to a collection of scalar problems Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

4 Eigenvalues and Eigenvectors A C m m ; a nonzero vector x C m is an eigenvector of A, and λ C is its corresponding eigenvalue, if The set is the spectrum of A Applications: Ax = λx. Λ(A) = {λ C λ eigenvalue of A} algorithmically eigenvalue analysis simplifies problems by reducing them to a collection of scalar problems physically study of resonance and stability Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

5 The Eigenvalue Decomposition Eigenvalue decomposition of A: A = X ΛX 1 where X is nonsingular and Λ is diagonal or equivalently AX = ΛX with eigenvectors as columns of X and eigenvalues on diagonal of Λ. Such a factorization does not always exist In eigenvector coordinates, A is diagonal: Ax = b = X 1 b = Λ(X 1 x) Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

6 Multiplicity The eigenvectors corresponding to a single eigenvalue (plus the zero vector) form an eigenspace E λ Dimension of E λ = dim(null(a λi )) = geometric multiplicity of λ The characteristic polynomial of A is p A (z) = det(zi A) = (z λ 1 )(z λ 2 )... (z λ m ) λ is eigenvalue of A p A (λ) = 0 λ is an eigenvalue x = 0, λx Ax = 0 λi A is singular det(λi A) = 0 Multiplicity of a root to p A = algebraic multiplicity of λ Any matrix A has m eigenvalues, counted with algebraic multiplicity Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

7 Similarity Transformations The map A X 1 AX is a similarity transformation of A A and B are similar if there is a similarity transformation B = X 1 AX A and X 1 AX have the same characteristic polynomials, eigenvalues, and multiplicities: The characteristic polynomials are the same: p X 1 AX (z) = det(zi X 1 AX ) = det(x 1 (zi A)X ) = det(x 1 ) det(zi A) det(x ) = det(zi A) = p A (z) Therefore, the algebraic multiplicities are the same If E λ is eigenspace for A, then X 1 E λ is eigenspace for X 1 AX, so geometric multiplicities are the same Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

8 Theorem Algebraic Multiplicity Geometric Multiplicity Proof. Let n first columns of V be an orthonormal basis of the eigenspace for λ(n is the geometric multiplicity of A). Extend V to square unitary V, and form [ ] B = V λi C AV = 0 D Since det(zi B) = det(zi λi ) det(zi D) = (z λ) n det(zi D) the algebraic multiplicity of λ (as eigenvalue of B) is n. A and B are similar; so the same is true for λ of A Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

9 Defective and Diagonalizable Matrices If the algebraic multiplicity for an eigenvalue > its geometric multiplicity, it is a defective eigenvalue If a matrix has any defective eigenvalues, it is a defective matrix A nondefective matrix has equal algebraic and geometric multiplicities for all eigenvalues The matrix A is nondefective A = X ΛX 1 ( =) If A = X ΛX 1, A is similar to Λ and has the same eigenvalues and multiplicities. But Λ is diagonal and thus nondefective. (= ) Nondefective A has m linearly independent eigenvectors. Take these as the columns of X, then A = X ΛX 1 Thus, nondefective diagonalizable Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

10 Determinant and Trace The trace of A is tr(a) = m j=1 a jj The determinant and the trace are given by the eigenvalues: det(a) = m j=1 λ j, tr(a) = m λ j, j=1 since det(a) = ( 1) m det( A) = ( 1) m p A (0) = m j=1 λ j and p A (z) = det(zi A) = z m m j=1 p A (z) = (z λ 1 )... (z λ m ) = z m a jj z m 1 + m j=1 λ j z m 1 + Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

11 Canonical Forms (Jordan canonical form) A S nonsingular, such that A = SJS 1, J is block diagonal, with J = diag(j m1 (λ 1 ),..., J mk (λ k )) and J mi (λ i ) = λ i λ i m i m i J is unique, up to permutations of its diagonal blocks, m i = m J p (λ) is a Jordan block with eigenvalue λ with algebraic multiplicity p if some m i = 1, and λ i is an eigenvalue of only that one Jordan block, then λ i is simple if all m i = 1, A is diagonalizable, otherwise defective Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

12 Canonical Forms-continued A Schur factorization of a matrix A is a factorization A = QTQ with unitary Q and upper-triangular T. The eigenvalues of A are the diagonal entries of T. A real Schur factorization of a real matrix A is a factorization A = QTQ T, where Q is orthogonal, and T is quasi-upper triangular (block upper triangular with 1 1 and 2 2 blocks on the diagonal). T eigenvalues are eigenvalues of the diagonal blocks: the 1 1 blocks correspond to real eigenvalues, and 2 2 blocks correspond to complex conjugate pairs of eigenvalues. Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

13 Unitary Diagonalization and Schur Factorization A matrix A is unitary diagonalizable if, for some unitary matrix Q, A = QΛQ A hermitian matrix is unitary diagonalizable, with real eigenvalues (because of the Schur factorization, see below) A is unitarily diagonalizable A is normal (AA = A A ) (a classical result) Summary, Eigenvalue-Revealing Factorizations Diagonalization A = X ΛX 1 (nondefective A) Unitary diagonalization A = QΛQ (normal A) Unitary triangularization (Schur factorization) A = QTQ (any A) Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

14 Theorem Every square matrix A C m m has a Schur factorization. Proof. Induction on m. m = 1, trivial; m 2. Let x be a normalized ev of A with corresponding ew λ; x the first column of a unitary matrix U. It is easy to check that U AU = [ λ B 0 C By the inductive hypothesis, a Schur factorization of C, VTV = C. [ ] 1 0 Q = U is unitary, and 0 V [ ] Q λ BV AQ = 0 T This is the Schur decomposition we seek. ]. Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

15 Eigenvalue Algorithms The most obvious method is ill-conditioned: Find roots of p A (λ) Instead, compute Schur factorization A = QTQ by introducing zeros However, this can not be done in a finite number of steps: Any eigenvalue solver must be iterative To see this, consider a general polynomial of degree m p(z) = z m + a m 1 z m a 1 z + a 0 There is no closed-form expression for the roots of p: (Abel, 1842) In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

16 Eigenvalue Algorithms (continued) However, the roots of p are the eigenvalues of the companion matrix 0 a a a 2 A = am 2 1 a m 1 Therefore, in general we cannot find the eigenvalues of a matrix in a finite number of steps (even in exact arithmetic) In practice, algorithms available converge in just a few iterations Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

17 Perturbation Theory (Bauer-Fike Theorem) Suppose A C m m is diagonalizable with A = V ΛV 1, and let δa C m m arbitrary. Then every eigenvalue of A + δa, λ i lies in at least one of the m circular disks in the complex plane of radius κ(v ) δa 2 centered at the eigenvalues of A, where κ is the 2-norm condition number. λ j λ j κ(v ) δa 2 If A is normal, for each eigenvalue λ j of A + δa, there is an eigenvalue λ j of A such that λ j λ j δa 2 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

18 Schur Factorization and Diagonalization Compute Schur factorization A = QTQ by transforming A with similarity transformations which converge to T as j. Qj... Q2 Q1 A Q 1 Q 2... Q j }{{}}{{} Q Q Note: Real matrices might need complex Schur forms and eigenvalues (or a real Schur factorization with 2 2 blocks on diagonal) For hermitian A, the sequence converges to a diagonal matrix Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

19 Two Phases of Eigenvalues Computations General A: First to upper-hessenberg form, then to upper-triangular Phase 1 Phase 2 A = A H T Hermitian A: First to tridiagonal form, then to diagonal Phase 1 Phase 2 A = A T D Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

20 Hessenberg/Tridiagonal Reduction - phase 1 - We apply orthogonal transforms to convert A into an upper Hessenberg matrix H It requires O(m 3 ) flops Can be much longer than the second phase, although the latter requires (theoretically) an infinite number of steps Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

21 Introducing Zeros by Similarity Transformations Try computing the Schur factorization A = QTQ by applying Householder reflectors from left and right that introduce zeros (a bad idea): A Q Q1 A Q 1 Q1 AQ 1 The right multiplication destroys the zeros previously introduced We already knew this would not work, because of Abel s theorem However, the subdiagonal entries typically decrease in magnitude Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

22 The Hessenberg Form Instead, try computing an upper Hessenberg matrix H similar to A: Q 1 0 Q A Q1 A Q1 AQ 1 This time the zeros we introduce are not destroyed Continue in a similar way with column 2: Q 2 Q Q1 AQ 1 Q2 Q 1 AQ 1 Q2 Q 1 AQ 1Q 2 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

23 The Hessenberg Form After m 2 steps, we obtain the Hessenberg form: Qm 2... Q2 Q1 A Q 1 Q 2... Q m 2 = H = }{{}}{{} Q Q For hermitian A, zeros are also introduced above diagonals Q 1 0 Q A Q1 A Q1 AQ 1 producing a tridiagonal matrix T after m 2 steps Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

24 Householder Reduction to Hessenberg Householder Reduction to Hessenberg form for k := 1 to m 2 do x := A k+1:m,k ; v k := sign(x 1 ) x 2 e 1 + x; v k := v k / v k 2 ; A k+1:m,k:m := A k+1:m,k:m 2v k (v k A k+1:m,k:m); A 1:m,k+1:m := A 1:m,k+1:m 2 (A 1:m,k+1:m v k ) v k Operation count (not twice Householder QR): m k=1 [4(m k) 2 + 4m(m k)] 10 3 m3 For hermitian A, operation count is twice QR divided by two 4m 3 /3 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

25 Stability of Householder Hessenberg The Householder Hessenberg reduction algorithm is backward stable: Q H Q = A + δa, δa A = O(ɛ machine) where Q is an exactly unitary matrix based on ṽ k Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems April 8, / 23

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Reduction to Hessenberg and Tridiagonal Forms; Rayleigh Quotient Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Lecture 13 Eigenvalue Problems

Lecture 13 Eigenvalue Problems Lecture 13 Eigenvalue Probles MIT 18.335J / 6.337J Introduction to Nuerical Methods Per-Olof Persson October 24, 2006 1 The Eigenvalue Decoposition Eigenvalue proble for atrix A: Ax = λx with eigenvalues

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis (Numerical Linear Algebra for Computational and Data Sciences) Lecture 14: Eigenvalue Problems; Eigenvalue Revealing Factorizations Xiangmin Jiao Stony Brook University Xiangmin

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Chapter 6 Eigenvalues and eigenvectors An eigenvalue of a square matrix represents the linear operator as a scaling of the associated eigenvector, and the action of certain matrices on general vectors

More information

Draft. Lecture 14 Eigenvalue Problems. MATH 562 Numerical Analysis II. Songting Luo. Department of Mathematics Iowa State University

Draft. Lecture 14 Eigenvalue Problems. MATH 562 Numerical Analysis II. Songting Luo. Department of Mathematics Iowa State University Lecture 14 Eigenvalue Problems Songting Luo Department of Mathematics Iowa State University MATH 562 Numerical Analysis II Songting Luo ( Department of Mathematics Iowa State University[0.5in] MATH562

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 1 Eigenvalues and Eigenvectors Among problems in numerical linear algebra, the determination of the eigenvalues and eigenvectors of matrices is second in importance only to the solution of linear

More information

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS p. 2/4 Eigenvalues and eigenvectors Let A C n n. Suppose Ax = λx, x 0, then x is a (right) eigenvector of A, corresponding to the eigenvalue

More information

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Krylov Space Methods Nonstationary sounds good Radu Trîmbiţaş Babeş-Bolyai University Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Introduction These methods are used both to solve

More information

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers..

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers.. EIGENVALUE PROBLEMS Background on eigenvalues/ eigenvectors / decompositions Perturbation analysis, condition numbers.. Power method The QR algorithm Practical QR algorithms: use of Hessenberg form and

More information

The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English.

The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English. Chapter 4 EIGENVALUE PROBLEM The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English. 4.1 Mathematics 4.2 Reduction to Upper Hessenberg

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition An Important topic in NLA Radu Tiberiu Trîmbiţaş Babeş-Bolyai University February 23, 2009 Radu Tiberiu Trîmbiţaş ( Babeş-Bolyai University)The Singular Value Decomposition

More information

Jordan Normal Form and Singular Decomposition

Jordan Normal Form and Singular Decomposition University of Debrecen Diagonalization and eigenvalues Diagonalization We have seen that if A is an n n square matrix, then A is diagonalizable if and only if for all λ eigenvalues of A we have dim(u λ

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Math 489AB Exercises for Chapter 2 Fall Section 2.3 Math 489AB Exercises for Chapter 2 Fall 2008 Section 2.3 2.3.3. Let A M n (R). Then the eigenvalues of A are the roots of the characteristic polynomial p A (t). Since A is real, p A (t) is a polynomial

More information

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalue Problems Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalues also important in analyzing numerical methods Theory and algorithms apply

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 4 Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Matrices, Moments and Quadrature, cont d

Matrices, Moments and Quadrature, cont d Jim Lambers CME 335 Spring Quarter 2010-11 Lecture 4 Notes Matrices, Moments and Quadrature, cont d Estimation of the Regularization Parameter Consider the least squares problem of finding x such that

More information

Numerical Methods for Solving Large Scale Eigenvalue Problems

Numerical Methods for Solving Large Scale Eigenvalue Problems Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch arge scale eigenvalue problems, Lecture 2, February 28, 2018 1/46 Numerical Methods for Solving Large Scale Eigenvalue Problems

More information

5 Selected Topics in Numerical Linear Algebra

5 Selected Topics in Numerical Linear Algebra 5 Selected Topics in Numerical Linear Algebra In this chapter we will be concerned mostly with orthogonal factorizations of rectangular m n matrices A The section numbers in the notes do not align with

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

EIGENVALUE PROBLEMS (EVP)

EIGENVALUE PROBLEMS (EVP) EIGENVALUE PROBLEMS (EVP) (Golub & Van Loan: Chaps 7-8; Watkins: Chaps 5-7) X.-W Chang and C. C. Paige PART I. EVP THEORY EIGENVALUES AND EIGENVECTORS Let A C n n. Suppose Ax = λx with x 0, then x is a

More information

Numerical Solution of Linear Eigenvalue Problems

Numerical Solution of Linear Eigenvalue Problems Numerical Solution of Linear Eigenvalue Problems Jessica Bosch and Chen Greif Abstract We review numerical methods for computing eigenvalues of matrices We start by considering the computation of the dominant

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

LinGloss. A glossary of linear algebra

LinGloss. A glossary of linear algebra LinGloss A glossary of linear algebra Contents: Decompositions Types of Matrices Theorems Other objects? Quasi-triangular A matrix A is quasi-triangular iff it is a triangular matrix except its diagonal

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Eigenvalue Problems and Singular Value Decomposition

Eigenvalue Problems and Singular Value Decomposition Eigenvalue Problems and Singular Value Decomposition Sanzheng Qiao Department of Computing and Software McMaster University August, 2012 Outline 1 Eigenvalue Problems 2 Singular Value Decomposition 3 Software

More information

Math 577 Assignment 7

Math 577 Assignment 7 Math 577 Assignment 7 Thanks for Yu Cao 1. Solution. The linear system being solved is Ax = 0, where A is a (n 1 (n 1 matrix such that 2 1 1 2 1 A =......... 1 2 1 1 2 and x = (U 1, U 2,, U n 1. By the

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Lecture 4 Eigenvalue problems

Lecture 4 Eigenvalue problems Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Math 504 (Fall 2011) 1. (*) Consider the matrices

Math 504 (Fall 2011) 1. (*) Consider the matrices Math 504 (Fall 2011) Instructor: Emre Mengi Study Guide for Weeks 11-14 This homework concerns the following topics. Basic definitions and facts about eigenvalues and eigenvectors (Trefethen&Bau, Lecture

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem. Math 422 Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

More information

MTH 102: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur. Problem Set

MTH 102: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur. Problem Set MTH 102: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set 6 Problems marked (T) are for discussions in Tutorial sessions. 1. Find the eigenvalues

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Today: eigenvalue sensitivity, eigenvalue algorithms Reminder: midterm starts today

Today: eigenvalue sensitivity, eigenvalue algorithms Reminder: midterm starts today AM 205: lecture 22 Today: eigenvalue sensitivity, eigenvalue algorithms Reminder: midterm starts today Posted online at 5 PM on Thursday 13th Deadline at 5 PM on Friday 14th Covers material up to and including

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm References: Trefethen & Bau textbook Eigenvalue problem: given a matrix A, find

More information

The QR Factorization

The QR Factorization The QR Factorization How to Make Matrices Nicer Radu Trîmbiţaş Babeş-Bolyai University March 11, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) The QR Factorization March 11, 2009 1 / 25 Projectors A projector

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

More information

Cheat Sheet for MATH461

Cheat Sheet for MATH461 Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

More information

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS SECINS 5/54 BSIC PRPERIES F EIGENVUES ND EIGENVECRS / SIMIRIY RNSFRMINS Eigenvalues of an n : there exists a vector x for which x = x Such a vector x is called an eigenvector, and (, x) is called an eigenpair

More information

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to: MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Eigenpairs and Similarity Transformations

Eigenpairs and Similarity Transformations CHAPTER 5 Eigenpairs and Similarity Transformations Exercise 56: Characteristic polynomial of transpose we have that A T ( )=det(a T I)=det((A I) T )=det(a I) = A ( ) A ( ) = det(a I) =det(a T I) =det(a

More information

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Key Terms Symmetric matrix Tridiagonal matrix Orthogonal matrix QR-factorization Rotation matrices (plane rotations) Eigenvalues We will now complete

More information

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems.

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems. Lecture 2: Eigenvalues, eigenvectors and similarity The single most important concept in matrix theory. German word eigen means proper or characteristic. KTH Signal Processing 1 Magnus Jansson/Emil Björnson

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Math Homework 8 (selected problems)

Math Homework 8 (selected problems) Math 102 - Homework 8 (selected problems) David Lipshutz Problem 1. (Strang, 5.5: #14) In the list below, which classes of matrices contain A and which contain B? 1 1 1 1 A 0 0 1 0 0 0 0 1 and B 1 1 1

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 34 The powers of matrix Consider the following dynamic

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - 4 (Alberto Bressan, Spring 27) Review of complex numbers In this chapter we shall need to work with complex numbers z C These can be written in the form z = a+ib,

More information

Linear Algebra. Rekha Santhanam. April 3, Johns Hopkins Univ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

Linear Algebra. Rekha Santhanam. April 3, Johns Hopkins Univ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7 Linear Algebra Rekha Santhanam Johns Hopkins Univ. April 3, 2009 Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, 2009 1 / 7 Dynamical Systems Denote owl and wood rat populations at time k

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

The QR Decomposition

The QR Decomposition The QR Decomposition We have seen one major decomposition of a matrix which is A = LU (and its variants) or more generally PA = LU for a permutation matrix P. This was valid for a square matrix and aided

More information

Lecture 2: Numerical linear algebra

Lecture 2: Numerical linear algebra Lecture 2: Numerical linear algebra QR factorization Eigenvalue decomposition Singular value decomposition Conditioning of a problem Floating point arithmetic and stability of an algorithm Linear algebra

More information

Synopsis of Numerical Linear Algebra

Synopsis of Numerical Linear Algebra Synopsis of Numerical Linear Algebra Eric de Sturler Department of Mathematics, Virginia Tech sturler@vt.edu http://www.math.vt.edu/people/sturler Iterative Methods for Linear Systems: Basics to Research

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information