TensorFlow. Dan Evans

Size: px
Start display at page:

Download "TensorFlow. Dan Evans"

Transcription

1 TensorFlow Presentation references material from and Data Science From Scratch by Joel Grus, 25, O Reilly, Ch. 8 Dan Evans

2 TensorFlow An open-source software library for machine learning A system for building and training neural networks to detect and decipher patterns and correlations, analogous to (but not the same as) human learning and reasoning Used for both research and production at Google, often replacing its closed-source predecessor, DistBelief Developed by the Google Brain team for internal Google use, it was released under the Apache 2. open source license in November, 25

3 TensorFlow API s Core API is Python (also considered most flexible) Additional supported API s for C++, Java, Go Community API s for C#, Haskell, Julia, Ruby, Rust, Scala

4 TensorFlow Installation Before TensorFlow installation, install () Windows: Python 3.5.x or 3.6.x (TF GPU support available) (2) Mac: Python 2.7 or 3.3+ (3) Ubuntu: Python 2.7 or 3.x (TF GPU support available) Pick installation method virtualenv (2,3) native pip (,2,3) Docker (2,3) Anaconda (Python Data Sciences platform) (,2,3) Follow the simple command line install instructions on the web My Mac install used the virtualenv

5 Why TensorFlow? Perceptrons A perceptron is the simplest neural network It takes n inputs, computes a weighted sum, and fires if the sum is greater than or equal to p = wi+w2i wnin + bin+ outp = if x >= else (known as a step function) b, the bias, is a normalizing constant which keeps as the threshold; the input to b (in+) is always implicitly p is the dot product of the vectors [w, w2,..., wn, b][i, i2,..., in, ]

6 Perceptrons(2) Consider the three perceptrons pa = [2, 2, -3], po = [2, 2, -], and p~ab = [-2, 2, -] Table shows dot product and threshold output with and inputs Input [,] [,] [.] [,] pa po 2+2-3= 2+2-=3 p~ab -2+2-=- 2+-3=- 2+-= -2+-= =- +2-= +2-= +-3=-3 +-=- +-=-

7 AND-OR Decision Space.5. [,] [,] Input 2 AND Boundary.5 OR Boundary. [,] [,] Input..5

8 Training Perceptrons Start with estimated weights and calculate the results from the training set of inputs Use the error outputs to reestimate the weights Make successive passes until the weights converge to produce the correct output for the training set A good training algorithm will converge rapidly pa Pass [,] [,] [.] [,] [,,] +-=2 [.5,.5,-] =2 [2,2,-2.5] =.5 [2.5,2.5,-3] =2 +-=.5+-= = =-.5 +-= +.5-= = =-.5 +-= +-= = =-3

9 Layers More complicated neural networks take the output of one layer of perceptrons as input to the next (hidden) layer Deep learning uses many-layered neural networks Consider exclusive-or (xor) which is true if only one of its two operands are true Logically a xor b = not (a and b) and (a or b) a xor b = not (AND) and (OR)

10 Layers(2) Graph a b pa po Variables Input Layer Out/In Layer 2 Out a pa po pa po p~ao p~ao p~ao b pa po p~ao output pa po p~ao

11 TensorFlow - Tensors The central unit of data in TensorFlow is the tensor (perceptron weights) A tensor is a set of primitive values shaped into an array of any number of dimensions. A tensor's rank is its number of dimensions [rows, columns, layers, ] 3 #rank tensor; this is a scalar with shape [] [.,2.,3.] #rank tensor - vector with shape [3] [[.,2.,3.], [4.,5.,6.]] #rank 2 tensor - matrix with shape [2,3] [[[.,2.,3.]], [[7.,8.,9.]]] #rank 3 tensor with shape [2,,3]

12 A [2,,3] Tensor Layers(3) 3 2 Rows(2) Columns()

13 Computational Graph A series of TensorFlow operations arranged into a graph of nodes and edges Each node takes zero or more tensors as inputs and produces a tensor as an output A constant node takes no inputs, and outputs a value (tensor) it stores internally Constant Tensors with floating point values are created with the constant() method

14 A Two-node Computational Graph import tensorflow as tf node = tf.constant(3., dtype=tf.float32) node2 = tf.constant(4.) # also tf.float32 implicitly print(node, node2) The final print statement displays the two - dimensional nodes as objects and produces Tensor("Const:", shape=(), dtype=float32) Tensor("Const_:", shape=(), dtype=float32)

15 Sessions To evaluate the nodes, run the computational graph within a session A session encapsulates the control and state of the TensorFlow runtime Create a Session object and invoke its run method to evaluate the computational graph s nodes, node and node2 sess = tf.session() print(sess.run([node, node2])) When the graph is evaluated, the result is a new [2] tensor: [3., 4.]

16 Operations Nodes can be combined using operations, producing a new node Add the two constant nodes to produce a node (and a new graph): node3 = tf.add(node, node2) print("node3:", node3) print("sess.run(node3):", sess.run(node3)) The last two print statements produce node3: Tensor("Add:", shape=(), dtype=float32) sess.run(node3): 7.

17 TensorBoard TensorFlow provides a utility called TensorBoard that can display a picture of the computational graph TensorBoard visualizes the graph as:

18 Placeholders The node3 graph always produces a constant result, but a graph can be parameterized to accept external inputs, known as placeholders a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) adder_node = a + b # + provides a shortcut for tf.add(a, b) adder_node acts like a function (or a lambda) which takes two input parameters (a and b) and performs an operation on them The graph can be evaluated multiple times, for example using dictionary literals to define the placeholders by name print(sess.run(adder_node, {a: 3, b: 4.5})) # a and b are [] tensors print(sess.run(adder_node, {a: [, 3], b: [2, 4]})) # a and b are [2] tensors Resulting output 7.5 [ 3. 7.]

19 adder_node in TensorBoard

20 Enhance the Graph Make a computational graph more complex by adding another operation add_and_triple = adder_node * 3. print(sess.run(add_and_triple, {a: 3, b: 4.5})) This code produces the output 22.5 Note that a and b are parameters to adder_node

21 Variables Variables are defined with initial values and types W = tf.variable([2,2,-3],dtype=tf.float32) W is defined but is not yet set After all global variables have been defined, get the initialization function and execute it using the run method of the session init = tf.global_variables_initializer() sess.run(init)

22 AND Perceptron Define the input parameter and the and node x = tf.placeholder(tf.float32) Define the and node and_node = tf.to_float(tf.less_equal(.,tf.reduce_sum(w*x,))) Compute the vector dot product of W and the parameter x (the same shape [3] as W) Compare the results element-wise to zero producing True or False Convert True or False to a float or

23 Evaluation The perceptron requires three inputs, the two operands and the bias input which is always Run the model with four cases print(sess.run(and_node, {x: [[,,], [,,],[,,],[,,]]})) Resulting output [....]

24 Training Start with estimated weights and calculate the results from a training set of inputs (inputs with known outputs) Use the errors (known as the deltas) to determine new weights that will reduce the deltas in the training set Make successive passes, modifying the weights each time until they converge to produce the correct output for the training set

25 Training(2) Training operates in the realm of calculus (continuous functions) where one of the most effective tools for weight convergence is the gradient If you are standing on the side of a hill (a continuous twodimensional surface, a function of latitude and longitude), the gradient is the direction of the steepest ascent (or descent) from your position Taking the gradient of the error function provides a guideline for a guess at the next set of weights

26 Training - Converting the Step Function The step function used in the and_node is not continuous and does not have a derivative Instead, we use the sigmoid (S-shaped) logistic function to give a fuzzy (less than.5) or (greater than.5) and_node = tf.sigmoid(tf.reduce_sum(w*x,))

27 Training(3) Create an error function that computes the sum of the square errors from each of the training set outputs - this is the function to be minimized during the training y=tf.placeholder(tf.float32) diff=tf.reduce_sum(tf.square(and_node - y)) Get a gradient optimizer - the parameter is the rate of movement along the gradient for each step opt=tf.train.gradientdescentoptimizer(.) Get a function from the optimizer that minimizes the error function train=opt.minimize(diff)

28 Train the Perceptron Assign arbitrary values to the weights, then run the training for 2 passes - x is the training set, y is the expected output of each member of the training set sess.run(tf.assign(w,[,,-])) for i in range(2): sess.run(train,{x:[[,,],[,,],[,,],[,,]],y: [,,,]}) Evaluate and display the trained weights print(sess.run(w)) [ ] print(sess.run(and_node,{x:[[,,],[,,],[,,],[,,]]})) [ ]

29 More Complicated Neural Networks Each 5x5 digit image can provide 25 simple inputs to 26-dimensional perceptrons Each of the can provide an input to each of -dimensional preceptors in the The output might ultimately be a -dimensional vector [,,,,,,,,,,] (e.g. a 3) (th position indicates unclassifiable) There are interesting questions about how many neurons (perceptrons) in a layer are needed and how many layers are useful. Reductions in computational requirements without compromising classification Variations that should all be recognized as a 3

30 TensorFlow Conclusions Provides an extensive platform for machine learning Provides operations that match the concepts of neural networks Suppresses the multi-dimensional computational detail in a natural way Easy to install and use on either Windows, Mac, or Linux

Introduction to TensorFlow

Introduction to TensorFlow Large Scale Data Analysis Using Deep Learning (Prof. U Kang) Introduction to TensorFlow 2017.04.17 Beunguk Ahn ( beunguk.ahn@gmail.com) 1 What is TensorFlow? Consturction Phase Execution Phase Examples

More information

(Artificial) Neural Networks in TensorFlow

(Artificial) Neural Networks in TensorFlow (Artificial) Neural Networks in TensorFlow By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Recall Supervised Learning Setup II. 2. Artificial Neural

More information

(Artificial) Neural Networks in TensorFlow

(Artificial) Neural Networks in TensorFlow (Artificial) Neural Networks in TensorFlow By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Recall Supervised Learning Setup II. 2. Artificial Neural

More information

INF 5860 Machine learning for image classification. Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018

INF 5860 Machine learning for image classification. Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018 INF 5860 Machine learning for image classification Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018 OUTLINE Deep learning frameworks TensorFlow TensorFlow graphs TensorFlow session

More information

Crash Course on TensorFlow! Vincent Lepetit!

Crash Course on TensorFlow! Vincent Lepetit! Crash Course on TensorFlow Vincent Lepetit 1 TensorFlow Created by Google for easily implementing Deep Networks; Library for Python, but can also be used with C and Java; Exists for Linux, Mac OSX, Windows;

More information

TensorFlow: A Framework for Scalable Machine Learning

TensorFlow: A Framework for Scalable Machine Learning TensorFlow: A Framework for Scalable Machine Learning You probably Outline want to know... What is TensorFlow? Why did we create TensorFlow? How does Tensorflow Work? Example: Linear Regression Example:

More information

@SoyGema GEMA PARREÑO PIQUERAS

@SoyGema GEMA PARREÑO PIQUERAS @SoyGema GEMA PARREÑO PIQUERAS WHAT IS AN ARTIFICIAL NEURON? WHAT IS AN ARTIFICIAL NEURON? Image Recognition Classification using Softmax Regressions and Convolutional Neural Networks Languaje Understanding

More information

introduction to convolutional networks using tensorflow

introduction to convolutional networks using tensorflow introduction to convolutional networks using tensorflow Jesús Fernández Bes, jfbes@ing.uc3m.es 8 de febrero de 2016 contents Install What is Tensorflow? Implementing Softmax Regression Deep Convolutional

More information

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai ECE521 W17 Tutorial 1 Renjie Liao & Min Bai Schedule Linear Algebra Review Matrices, vectors Basic operations Introduction to TensorFlow NumPy Computational Graphs Basic Examples Linear Algebra Review

More information

>TensorFlow and deep learning_

>TensorFlow and deep learning_ >TensorFlow and deep learning_ without a PhD deep Science! #Tensorflow deep Code... @martin_gorner Hello World: handwritten digits classification - MNIST? MNIST = Mixed National Institute of Standards

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax Deep Learning: Pre- Requisites Understanding gradient descent, autodiff, and softmax Gradient Descent autodiff Gradient descent requires knowledge of, well, the gradient from your cost function (MSE) Mathematically

More information

CSC 498R: Internet of Things 2

CSC 498R: Internet of Things 2 CSC 498R: Internet of Things Lecture 09: TensorFlow Instructor: Haidar M. Harmanani Fall 2017 IoT Components Things we connect: Hardware, sensors and actuators Connectivity Medium we use to connect things

More information

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Neural Networks CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Perceptrons x 0 = 1 x 1 x 2 z = h w T x Output: z x D A perceptron

More information

Pytorch Tutorial. Xiaoyong Yuan, Xiyao Ma 2018/01

Pytorch Tutorial. Xiaoyong Yuan, Xiyao Ma 2018/01 (Li Lab) National Science Foundation Center for Big Learning (CBL) Department of Electrical and Computer Engineering (ECE) Department of Computer & Information Science & Engineering (CISE) Pytorch Tutorial

More information

) (d o f. For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update equation is: 2.

) (d o f. For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update equation is: 2. 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2011 Recitation 8, November 3 Corrected Version & (most) solutions

More information

ECE521 Lecture 7/8. Logistic Regression

ECE521 Lecture 7/8. Logistic Regression ECE521 Lecture 7/8 Logistic Regression Outline Logistic regression (Continue) A single neuron Learning neural networks Multi-class classification 2 Logistic regression The output of a logistic regression

More information

Introduction to Machine Learning Spring 2018 Note Neural Networks

Introduction to Machine Learning Spring 2018 Note Neural Networks CS 189 Introduction to Machine Learning Spring 2018 Note 14 1 Neural Networks Neural networks are a class of compositional function approximators. They come in a variety of shapes and sizes. In this class,

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Vinod Variyam and Ian Goodfellow) sscott@cse.unl.edu 2 / 35 All our architectures so far work on fixed-sized inputs neural networks work on sequences of inputs E.g., text, biological

More information

Deep neural networks and fraud detection

Deep neural networks and fraud detection U.U.D.M. Project Report 2017:38 Deep neural networks and fraud detection Yifei Lu Examensarbete i matematik, 30 hp Handledare: Kaj Nyström Examinator: Erik Ekström Oktober 2017 Department of Mathematics

More information

Tensor Flow. Tensors: n-dimensional arrays Vector: 1-D tensor Matrix: 2-D tensor

Tensor Flow. Tensors: n-dimensional arrays Vector: 1-D tensor Matrix: 2-D tensor Tensor Flow Tensors: n-dimensional arrays Vector: 1-D tensor Matrix: 2-D tensor Deep learning process are flows of tensors A sequence of tensor operations Can represent also many machine learning algorithms

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted,

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow,

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow, Index A Activation functions, neuron/perceptron binary threshold activation function, 102 103 linear activation function, 102 rectified linear unit, 106 sigmoid activation function, 103 104 SoftMax activation

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler + Machine Learning and Data Mining Multi-layer Perceptrons & Neural Networks: Basics Prof. Alexander Ihler Linear Classifiers (Perceptrons) Linear Classifiers a linear classifier is a mapping which partitions

More information

Machine Learning (CSE 446): Neural Networks

Machine Learning (CSE 446): Neural Networks Machine Learning (CSE 446): Neural Networks Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 6, 2017 1 / 22 Admin No Wednesday office hours for Noah; no lecture Friday. 2 /

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Nonlinear Classification

Nonlinear Classification Nonlinear Classification INFO-4604, Applied Machine Learning University of Colorado Boulder October 5-10, 2017 Prof. Michael Paul Linear Classification Most classifiers we ve seen use linear functions

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Classification with Perceptrons. Reading:

Classification with Perceptrons. Reading: Classification with Perceptrons Reading: Chapters 1-3 of Michael Nielsen's online book on neural networks covers the basics of perceptrons and multilayer neural networks We will cover material in Chapters

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Artificial Neuron (Perceptron)

Artificial Neuron (Perceptron) 9/6/208 Gradient Descent (GD) Hantao Zhang Deep Learning with Python Reading: https://en.wikipedia.org/wiki/gradient_descent Artificial Neuron (Perceptron) = w T = w 0 0 + + w 2 2 + + w d d where

More information

Machine Learning. Boris

Machine Learning. Boris Machine Learning Boris Nadion boris@astrails.com @borisnadion @borisnadion boris@astrails.com astrails http://astrails.com awesome web and mobile apps since 2005 terms AI (artificial intelligence)

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Machine Learning (CSE 446): Backpropagation

Machine Learning (CSE 446): Backpropagation Machine Learning (CSE 446): Backpropagation Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 8, 2017 1 / 32 Neuron-Inspired Classifiers correct output y n L n loss hidden units

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Philipp Koehn 4 April 205 Linear Models We used before weighted linear combination of feature values h j and weights λ j score(λ, d i ) = j λ j h j (d i ) Such models can

More information

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!!

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! November 18, 2015 THE EXAM IS CLOSED BOOK. Once the exam has started, SORRY, NO TALKING!!! No, you can t even say see ya

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

CSC 411 Lecture 10: Neural Networks

CSC 411 Lecture 10: Neural Networks CSC 411 Lecture 10: Neural Networks Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 10-Neural Networks 1 / 35 Inspiration: The Brain Our brain has 10 11

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

APPLIED DEEP LEARNING PROF ALEXIEI DINGLI

APPLIED DEEP LEARNING PROF ALEXIEI DINGLI APPLIED DEEP LEARNING PROF ALEXIEI DINGLI TECH NEWS TECH NEWS HOW TO DO IT? TECH NEWS APPLICATIONS TECH NEWS TECH NEWS NEURAL NETWORKS Interconnected set of nodes and edges Designed to perform complex

More information

Introduction to TensorFlow

Introduction to TensorFlow Introduction to TensorFlow Oliver Dürr Datalab-Lunch Seminar Series Winterthur, 17 Nov, 2016 1 Abstract Introduc)on to TensorFlow TensorFlow is a mul/purpose open source so2ware library for numerical computa/on

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Multi-layer Perceptron Networks

Multi-layer Perceptron Networks Multi-layer Perceptron Networks Our task is to tackle a class of problems that the simple perceptron cannot solve. Complex perceptron networks not only carry some important information for neuroscience,

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Neural Network Tutorial & Application in Nuclear Physics. Weiguang Jiang ( 蒋炜光 ) UTK / ORNL

Neural Network Tutorial & Application in Nuclear Physics. Weiguang Jiang ( 蒋炜光 ) UTK / ORNL Neural Network Tutorial & Application in Nuclear Physics Weiguang Jiang ( 蒋炜光 ) UTK / ORNL Machine Learning Logistic Regression Gaussian Processes Neural Network Support vector machine Random Forest Genetic

More information

Unit 8: Introduction to neural networks. Perceptrons

Unit 8: Introduction to neural networks. Perceptrons Unit 8: Introduction to neural networks. Perceptrons D. Balbontín Noval F. J. Martín Mateos J. L. Ruiz Reina A. Riscos Núñez Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Perceptron. (c) Marcin Sydow. Summary. Perceptron

Perceptron. (c) Marcin Sydow. Summary. Perceptron Topics covered by this lecture: Neuron and its properties Mathematical model of neuron: as a classier ' Learning Rule (Delta Rule) Neuron Human neural system has been a natural source of inspiration for

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Deep Learning. Basics and Intuition. Constantin Gonzalez Principal Solutions Architect, Amazon Web Services

Deep Learning. Basics and Intuition. Constantin Gonzalez Principal Solutions Architect, Amazon Web Services Deep Learning Basics and Intuition Constantin Gonzalez Principal Solutions Architect, Amazon Web Services glez@amazon.de September 2017 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Time Series Data I. 1.1. Deterministic II. 1.2. Stochastic III. 1.3. Dealing

More information

Learning Deep Architectures for AI. Part I - Vijay Chakilam

Learning Deep Architectures for AI. Part I - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part I - Vijay Chakilam Chapter 0: Preliminaries Neural Network Models The basic idea behind the neural network approach is to model the response as a

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

9 Classification. 9.1 Linear Classifiers

9 Classification. 9.1 Linear Classifiers 9 Classification This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive

More information

Deep Neural Networks (1) Hidden layers; Back-propagation

Deep Neural Networks (1) Hidden layers; Back-propagation Deep Neural Networs (1) Hidden layers; Bac-propagation Steve Renals Machine Learning Practical MLP Lecture 3 4 October 2017 / 9 October 2017 MLP Lecture 3 Deep Neural Networs (1) 1 Recap: Softmax single

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Kirk Borne Booz Allen Hamilton

Kirk Borne Booz Allen Hamilton OPEN DATA @ODSC SCIENCE CONFERENCE Santa Clara November 4-6th 2016 Machine Learning Fundamentals through the Lens of TensorFlow: A Calculus of Variations for Data Science Kirk Borne Booz Allen Hamilton

More information

Introduction to Deep Learning CMPT 733. Steven Bergner

Introduction to Deep Learning CMPT 733. Steven Bergner Introduction to Deep Learning CMPT 733 Steven Bergner Overview Renaissance of artificial neural networks Representation learning vs feature engineering Background Linear Algebra, Optimization Regularization

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Practicals 5 : Perceptron

Practicals 5 : Perceptron Université Paul Sabatier M2 SE Data Mining Practicals 5 : Perceptron Framework The aim of this last session is to introduce the basics of neural networks theory through the special case of the perceptron.

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information