Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA

Size: px
Start display at page:

Download "Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA"

Transcription

1 Modeling Effort on Chamber Clearing for IFE Liqid Chambers at UCLA Presented by: P. Calderoni own Meeting on IFE Liqid Wall Chamber Dynamics Livermore CA May 5-6 3

2 Otline his presentation will address two components of or modeling efforts on chamber clearing: - Vapor Condensation - Droplet clearing in a pressre decay field

3 Vapor Condensation Modeling - Approach Cople UCB model for condensation at a liqid / vapor interface (based on Schrage kinetic theory with snami calclations in -D volme Apply enhanced snami to simlate flibe vapor condensation experiments maintaining all assmptions implicit in snami and condensation model Compare with experiments Evalate effect of measred interface conditions: traces of non condensable gases vapor density dropping into transitions regime accmlation of less volatile BeF Generalize liqid / vapor interface model: add diffsional layer at the interface for non condensable gases add velocity and temperatre slip at the interface add diffsional layer at the interface for BeF

4 Gas dynamics modeling in IFE liqid chambers Gas dynamics regime characterized by Kndsen nmber: Kn λ L mean free path: λ characteristic length Kn <.1 Continm Regime 1 π d n Mean free path small compared to system - moleclar collision dominate - gas approximated as continos medim Upper limit of mean free path in HYLIFE: 4.7 cm Considering: Hard-sphere model diameter d 4 A Lowest density in HYLIFE chamber 3X1 13 #/cm 3.1 < Kn <.1 Slip regime Gas approximated as continos several mean free paths away from adjoining medim - Kinetic theory near interfaces to accont for both moleclar collisions and collision with system bondaries.1 < Kn < 3 ransition regime Moleclar collisions and collision with system bondaries are eqally important Kn > 3 Free Molecles Regime Moleclar collisions infreqent - rarefied gas kinetic theory applies

5 Condensation model assmptions -D gas dynamics calclation assmptions: wo dimensional geometry Gas phase is a continm Gas state changes are isoentropic everywhere except at shock waves which are treated as discontinities Liqid strctres are rigid - liqid inertia in the time scales of interest prevents strctres from moving or deforming - no work is transferred from gas to liqid Gas viscosity is negligible - viscos time scale L /ν >> dynamic time scale L/c Inside the volme gas is adiabatic - condction time scale L /α >> dynamic time scale L/c - radiative losses assmed to be negligible Flibe is an ideal gas law with constant γ - fitted EOS corrected for dissociation and ionization not effective in the considered range

6 Condensation model assmptions 1-D liqid / vapor interface assmptions: Vapor condenses only on liqid srfaces present as initial condition - no droplet ncleation in the volme Liqid layers are semi-infinite slabs - thermal diffsion length (α t 1/ << srface crvatre - initial layer is niform - liqid away from the interface remains constant - droplet spray cooling not considered Heat and mass transfer at the interface only in the normal direction - interface velocity de to mass addition is neglected becase of mass continity Heat transfer in the liqid layer by condction in the normal direction - a convection term de to condensing flx introdced in the energy eq Liqid srface is always in thermodynamic eqilibrim with the vapor - high mass transfer rates dring initial transient neglected - continm assmption Recombination and chemical diffsion effects for flibe are fast - vapor chemical composition is fixed by initial conditions Vapor composition is niform in the volme and at the interface Interface kinetic theory accommodation coefficients (sticking and evaporation are assmed to be 1

7 Interface condensation: Schrage theory ( [ ] dw d dv w v k m k m N dn b b w v 3/ exp π he effect of condensation on the moleclar motion is to impose a net flx in the direction normal to the interface: Integrating over v w and positive (toward : 1/ 1/ 1/ 1 exp k m erf k m k m m k n b b b b N π π φ Re-writing: ( [ ] { } s erf s e R p G s 1 1/ π π µ where ( 1/ 1/ 1/ 1/ γ γ γ µ M R R s p ρr Finally the net flx across the interface: 1/ 1/ 1 1 Γ ls ls e vs vs c k R p f R p f G π π

8 Modeling the interface and liqid layer wo eqations to cople liqid and vapor properties at the interface: mass balance G ρ G t vs vs ρ x ls ls x energy balance Vapor stagnation enthalpy: Where for flibe h fg ( sat ( p Energy eqation with bc v fg In the liqid layer: G h ref vs ( t t l k pg ( x t x pl x [ ( p ] h ( ( c c l sat v t h vs c pg [ vs sat ( pvs ] hfg [ sat ( pvs ] vs ( x t t ( x t q int kl t x ( x t x ref α condction in the vapor neglected for short diffsion length - neglect radiation p sat ( x t x ls x Convection term added to accont for condensing mass across the interface - ls evalated from G

9 Initial non-eqilibrim conditions In early stages of condensation the contact of highly sperheated vapor with the cold srface cases high mass transfer rates at the interface - the effect (sction is to increase the vapor velocity that is evalated by snami Schrage theory fails to accont for high mass transfer rates becase of the srface eqilibrim assmption - velocity associated with mass flx predicted by the Schrage eq can be higher than physical limitations associated with sper sonic choking effect Gas dynamics limiting flx: γ c γ 1 γ 1 ρ γ 1 Gv max ρ c M M M v < γ 1 γ 1 γ 1 γ 1 γ 1 γ 1 1 γ 1 c Gv max ρ v v > c Correction: G min ( G k G v max

10 Nmerical iteration scheme Vapor (p at the interface are given by snami (as well as the gas dynamic limiting flx Eqilibrim assmption redces nknown liqid properties to one srface temperatre: ls G k ( h c vs G c Iteration step: k pl pl kl l l x kl x Newton-Raphson averaging method: Condensation gives the second eq to solve for and G: G k f c p vs 1 Γ π R vs 1/ n n 1 n n 1 n n ls ls G G( ls ls ls ( G ε n 1 ls f e p ls 1 π R ls 1/ n ls low n ls high n 1 l ls ( G( n ls low n new ls high n new ls n ls ( n ls n ls low or n new ls low n new ls n ls ( n ls n ls high In the liqid layer sing an pwind scheme for the condensation case: n i n 1 i α t ( x n n 1 n 1 n 1 G t n 1 n 1 [ ] [ ] i 1 i i 1 ρ x l i i 1 t < α ( x n G ρl x 1

11 Introdcing condensation effect in snami he condensation modle evalates G at each step - the mass flx condition mst now be sed at snami bondary cells interface instead of the sal adiabatic condition adopted at cells interfaces in the volme snami nmerical scheme reqires comptation of mass (continity momentm (Riemann solver across the discontinity and energy (adiabatic assmption flxes at the edge of each cell Mass flx is G Energy flx from same interface balance - written in snami terms: Energy flx γ p vs G ( γ 1 ρvs vs Momentm flx determined by mirror node introdcing sction velocity: U U L R ( ρvs vs pvs ( ρ p vs vs s vs U * * * * ( ρ p * * * ρ G G ρ * Gnorm < ε G vmax Iteration scheme: s G ρ vs k s k s k 1 s k 1 s (1 G (1 G k 1 norm k 1 norm if if G G > <

12 Nmerical domain geometry Backgrond gas is flibe considered as an ideal gas with: m.331 C γ C p v 1.4 kg mol Initial backgrond conditions specified as: ρ p W R e R γ 1 Uniform grid: 1 x 1 cells -.5 x.5 cm each Injected gas considered by snami as DEBRIS initially available in a 3 x 3 cell volme V Initial sperheated vapor conditions specified as total injected mass [kg] and total initial energy [J]

13 Code rns - parameters case stdy snami BC recovered: s s vs Bondary conditions: Open interface Impermeable srface Condensation op and bottom bondary are impermeable Parametric stdy for: Reference case: Initial liqid temperatre (constant at solid wall interface Liqid layer thickness Sticking coefficient at the interface 6 C.5 mm fc 1

14 Liqid initial temperatre

15 Liqid layer thickness

16 Liqid initial temperatre

17 emperatre distribtion in the -D axisymmetrical nmerical domain as a fnction of time for the reference case

18 emperatre distribtion - middle cells Gas temperatres evalated by snami fall below the imposed initial backgrond temperatre when remaining mass is low

19 emperatre distribtion - op In the bondary cells at the top and bottom of the chambers the vapor interface is higher then snami evalated temperatre in the inner cells

20 Heat condction in the liqid layer

21 Pressre distribtion in the -D axisymmetrical nmerical domain as a fnction of time for the reference case

22 Pressre distribtion - middle cells Liqid srface eqilibrim assmptions not valid for transient condensation Ohno fitted eqation for flibe: p sat Ideal gas assmption for flibe overestimates vapor pressre dring high temperatres initial transient

23 Density distribtion in the -D axisymmetrical nmerical domain as a fnction of time for the reference case

24 Free moleclar regime Gas dynamics modeling in IFE liqid chambers.1 Kn L λ Direct Simlation Monte Carlo method HIBALL - Wisconsin (1989 KOYO - Osaka Un. ( solving Boltzmann eqation dv d g g t x v f t x c f t x v f t x c f c f F x nf c t nf Ω ( ] ( ( ' ( ' ( [ ( ( χ σ by decopling moleclar motion from collisions: *( (1 ( ( (1 *( x c F tj t x c F x c F td x c F Continm flid regime Hydrodynamic code snami HYLIFE - UCB ( NIF - LLNL UCB ( solving Eler eqation 1 ( ( e E p E p F E U x F t U ρ ρ ρ ρ ρ ρ ρ with the eq of state p( E p ρ

25 Proposed extension to gas dynamics slip regime Kinetic theory of gas dynamics on a diffsed srface in dilte gas conditions: references inclde older theoretical stdies of Cette flow conditions and newer nmerical stdies with DSMC methods ( models are based on imposing a velocity and temperatre slip to the gas near the srface to compensate for the difference in the velocity distribtion of the particles approaching and leaving the srface DSMC simlation show model is valid for Kn <.1 Proposed extension for snami is based on Harvie and Fletcher stdy (1 that explicitly inclde the mass flx in the velocity and temperatre slip formlation: v i v v Uλ x v l 1 (1 v λu Φfc f f m m (1 fc v (1 fc x v v λ Φ x i G Φ G U λ x t 5 U 9γ 4 f f ( 1 f f c c m l λu l fc (1 Φ f t ft fc (1 Φ( γ 1 x Φ 11.35λ 1.4.4Φ x

26 Droplet Clearing in a Pressre Decay Field Problem Definition: Droplet clearing represents another aspect of the chamber clearing isse. Droplets prodced from the blast shold be cleared away before the next shot. Approach: Start with the development of an incompressible code for analyzing droplet heat and mass transfer with respect to a known pressre decay Goal: Ultimately to cople the snani code with the developed incompressible free srface heat and mass transfer code for chamber clearing evalation Movie: A hot droplet reacting to the cold srronding environment

27 Droplet Heat ransfer and Phase Change with rchas: Preliminary Evalation rchas is a software program developed at LANL to simlate solidification manfactring processes most notably metal casting and welding operations. Inclde models and algorithms for: Interfacial motion and heat transfer Properties varying with temperatre Phase change finite volme method Simlations are flly 3 dimensional on nstrctred grids. Movie: A hot droplet falling down throgh a cold environment

28 Internal circlation cased by the temperatre difference is now employed in rchas code throgh Bossinesq approximation Boyancy force ρ g αρo g y x Melting temp73k Bottom temp73 k op temp53 k Initial temp inside droplet735 k initial temp otside droplet73 k

29 Assmptions & Near erm Goal he mass evaporated from the droplet into the srronding pressre field will be discarded Incorporate a time dependent temperatre bondary condition (set at sat corresponding to satrated temperate as a fnction of known pressre decay Await approval from LLNL to modify rchas code

30

Microscale physics of fluid flows

Microscale physics of fluid flows Microscale physics of flid flows By Nishanth Dongari Senior Undergradate Department of Mechanical Engineering Indian Institte of Technology, Bombay Spervised by Dr. Sman Chakraborty Ot line What is microflidics

More information

5.1 Heat removal by coolant flow

5.1 Heat removal by coolant flow 5. Convective Heat Transfer 5.1 Heat removal by coolant flow Fel pellet Bond layer Cladding tbe Heat is transferred from the srfaces of the fel rods to the coolant. T Temperatre at center of fc fel pellet

More information

Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction

Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction A. Ahmed, M. N.Sarki, M. Ahmad Abstract In this paper the stdy of nsteady flow

More information

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63 5 Kragjevac J. Sci. 34 () 5-. UDC 53.5: 536.4:537.63 UNSTEADY MHD FLOW AND HEAT TRANSFER BETWEEN PARALLEL POROUS PLATES WITH EXPONENTIAL DECAYING PRESSURE GRADIENT Hazem A. Attia and Mostafa A. M. Abdeen

More information

Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped Wall Temperature

Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped Wall Temperature Jornal of Applied Flid Mechanics, Vol. 5, No., pp. 9-1, 1. Available online at www.jafmonline.net, ISSN 175-57, EISSN 175-645. Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

UNIT V BOUNDARY LAYER INTRODUCTION

UNIT V BOUNDARY LAYER INTRODUCTION UNIT V BOUNDARY LAYER INTRODUCTION The variation of velocity from zero to free-stream velocity in the direction normal to the bondary takes place in a narrow region in the vicinity of solid bondary. This

More information

Two-media boundary layer on a flat plate

Two-media boundary layer on a flat plate Two-media bondary layer on a flat plate Nikolay Ilyich Klyev, Asgat Gatyatovich Gimadiev, Yriy Alekseevich Krykov Samara State University, Samara,, Rssia Samara State Aerospace University named after academician

More information

PROBLEMS

PROBLEMS PROBLEMS------------------------------------------------ - 7- Thermodynamic Variables and the Eqation of State 1. Compter (a) the nmber of moles and (b) the nmber of molecles in 1.00 cm of an ideal gas

More information

arxiv: v1 [physics.flu-dyn] 4 Sep 2013

arxiv: v1 [physics.flu-dyn] 4 Sep 2013 THE THREE-DIMENSIONAL JUMP CONDITIONS FOR THE STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY, SINGULAR FORCES, AND AN INCOMPRESSIBLE INTERFACE PRERNA GERA AND DAVID SALAC arxiv:1309.1728v1 physics.fl-dyn]

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

STUDY OF AC ELECTROOSMOTIC FLOW DEVELOPED BY CO-PLANAR MICROELECTRODE ARRAY IN A SLIT MICROCHANNEL

STUDY OF AC ELECTROOSMOTIC FLOW DEVELOPED BY CO-PLANAR MICROELECTRODE ARRAY IN A SLIT MICROCHANNEL Proceedings of the International Conference on Mechanical Engineering 211 (ICME211 18-2 ecember 211, haka, Bangladesh ICME 11 225 STUY O AC EECTROOSMOTIC OW EVEOPE BY CO-PANAR MICROEECTROE ARRAY IN A SIT

More information

Lewis number and curvature effects on sound generation by premixed flame annihilation

Lewis number and curvature effects on sound generation by premixed flame annihilation Center for Trblence Research Proceedings of the Smmer Program 2 28 Lewis nmber and crvatre effects on sond generation by premixed flame annihilation By M. Talei, M. J. Brear AND E. R. Hawkes A nmerical

More information

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae Copyright c 27 ICCES ICCES, vol.4, no.1, pp.19-24, 27 Nmerical Simlation of Three Dimensional Flo in Water Tank of Marine Fish Larvae Shigeaki Shiotani 1, Atsshi Hagiara 2 and Yoshitaka Sakakra 3 Smmary

More information

Spring Semester 2011 April 5, 2011

Spring Semester 2011 April 5, 2011 METR 130: Lectre 4 - Reynolds Averaged Conservation Eqations - Trblent Flxes (Definition and typical ABL profiles, CBL and SBL) - Trblence Closre Problem & Parameterization Spring Semester 011 April 5,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN International Jornal of Scientific & Engineering Research, Volme 5, Isse 3, March-4 83 ISSN 9-558 Doble Dispersion effects on free convection along a vertical Wavy Srface in Poros Media with Variable Properties

More information

MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION

MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION Rssell Qadros, Krishnend Sinha Department of Aerospace Engineering Indian Institte of Technology Bombay Mmbai, India 476 Johan

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Study of the diffusion operator by the SPH method

Study of the diffusion operator by the SPH method IOSR Jornal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-684,p-ISSN: 2320-334X, Volme, Isse 5 Ver. I (Sep- Oct. 204), PP 96-0 Stdy of the diffsion operator by the SPH method Abdelabbar.Nait

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 3 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS TUTORIAL - PIPE FLOW CONTENT Be able to determine the parameters of pipeline

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Burning Rate, Kinetic Coupling, and Mechanism Reduction

Burning Rate, Kinetic Coupling, and Mechanism Reduction Brning Rate, Kinetic Copling, and Mechanism Redction Yigang J Mechanical and Aerospace Engineering Princeton University 27 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Srrogate Kinetic Models

More information

MAE 320 Thermodynamics HW 4 Assignment

MAE 320 Thermodynamics HW 4 Assignment MAE 0 Thermodynamics HW 4 Assignment The homework is de Friday, October 7 th, 06. Each problem is worth the points indicated. Copying of the soltion from any sorce is not acceptable. (). Mltiple choice

More information

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code A Flly-Neoclassical Finite-Orbit-Width Version of the CQL3 Fokker-Planck code CompX eport: CompX-6- Jly, 6 Y. V. Petrov and. W. Harvey CompX, el Mar, CA 94, USA A Flly-Neoclassical Finite-Orbit-Width Version

More information

Process Modeling of Wellbore Leakage for GCS Risk Assessment

Process Modeling of Wellbore Leakage for GCS Risk Assessment Process Modeling of Wellbore Leakage for CS Risk Assessment Crtis M. Oldenbrg Earth Sciences Division Lawrence Berkeley National Laboratory Contribtors: Leha Pan (LBNL) Bill Carey (LANL) IEAH- Modeling

More information

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel 4 th International Conference on Hydrogen Safety, 12-14 September 2011, San Francisco, USA Pressre limit of hydrogen spontaneos ignition in a T-shaped channel Maim Bragin, Dmitriy Makarov, Vladimir Molkov

More information

STATIC, STAGNATION, AND DYNAMIC PRESSURES

STATIC, STAGNATION, AND DYNAMIC PRESSURES STATIC, STAGNATION, AND DYNAMIC PRESSURES Bernolli eqation is g constant In this eqation is called static ressre, becase it is the ressre that wold be measred by an instrment that is static with resect

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V.

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V. International Jornal of Atomotive and Mechanical Engineering (IJAME) ISSN: 9-8649 (int); ISSN: 18-166 (Online); Volme pp. 31-38 Jly-December 1 niversiti Malaysia Pahang DOI: http://dx.doi.org/1.158/ijame..11.11.19

More information

Study of Thermal Radiation and Ohmic Heating for Steady Magnetohydrodynamic Natural Convection Boundary Layer Flow in a Saturated Porous Regime

Study of Thermal Radiation and Ohmic Heating for Steady Magnetohydrodynamic Natural Convection Boundary Layer Flow in a Saturated Porous Regime International Jornal on Recent and Innovation Trends in Compting and Commnication ISSN: -869 Volme: Isse: 9 796 8 Std of Thermal Radiation and Ohmic Heating for Stead Magnetohdrodnamic Natral Convection

More information

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS Forth International Conference on CFD in the Oil and Gas, Metallrgical & Process Indstries SINTEF / NTNU Trondheim, Noray 6-8 Jne 005 DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS John MORUD 1 1 SINTEF

More information

Two Phase Flow Analysis in Electro-Chemical Machining using CFD

Two Phase Flow Analysis in Electro-Chemical Machining using CFD Two Phase Flow Analysis in Electro-Chemical Machining sing CFD 1 Usharani Rath, 2 Chandan Kmar Biswas 1,2 Department of Mechanical Engineering, National Institte of Technology, Rorkela, 769008, India e-mail:

More information

TRANSONIC EVAPORATION WAVES IN A SPHERICALLY SYMMETRIC NOZZLE

TRANSONIC EVAPORATION WAVES IN A SPHERICALLY SYMMETRIC NOZZLE TRANSONIC EVAPORATION WAVES IN A SPHERICALLY SYMMETRIC NOZZLE XIAOBIAO LIN AND MARTIN WECHSELBERGER Abstract. This paper stdies the liqid to vapor phase transition in a cone shaped nozzle. Using the geometric

More information

Numerical Study on Bouncing and Separation Collision Between Two Droplets Considering the Collision-Induced Breakup

Numerical Study on Bouncing and Separation Collision Between Two Droplets Considering the Collision-Induced Breakup Jornal of Mechanical Science and Technology (007) 585~59 Jornal of Mechanical Science and Technology Nmerical Stdy on Boncing and Separation Collision Between Two Droplets Considering the Collision-Indced

More information

FLUID FLOW FOR CHEMICAL ENGINEERING

FLUID FLOW FOR CHEMICAL ENGINEERING EKC FLUID FLOW FOR CHEMICL ENGINEERING CHTER 8 (SOLUTION WI EXERCISE): TRNSORTTION SYSTEM & FLUID METERING Dr Mohd zmier hmad Tel: +60 (4) 5996459 Email: chazmier@eng.sm.my . Benzene at 7.8 o C is pmped

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY APPLIED PHYSICS MEDICAL WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY L. CÃPITANU, A. IAROVICI, J. ONIªORU Institte of Solid Mechanics, Romanian Academy, Constantin Mille 5, Bcharest Received

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Design and Data Acquisition for Thermal Conductivity Matric Suction Sensors

Design and Data Acquisition for Thermal Conductivity Matric Suction Sensors 68 TRANSPORTATION RSARCH RCORD 1432 Design and Data Acqisition for Thermal Condctivity Matric Sction Sensors J. K.-M. GAN, D. G. FRDLUND, A. XING, AND W.-X. LI The principles behind sing the thermal condctivity

More information

Diffraction of light due to ultrasonic wave propagation in liquids

Diffraction of light due to ultrasonic wave propagation in liquids Diffraction of light de to ltrasonic wave propagation in liqids Introdction: Acostic waves in liqids case density changes with spacing determined by the freqency and the speed of the sond wave. For ltrasonic

More information

Numerical verification of the existence of localization of the elastic energy for closely spaced rigid disks

Numerical verification of the existence of localization of the elastic energy for closely spaced rigid disks Nmerical verification of the existence of localization of the elastic energy for closely spaced rigid disks S. I. Rakin Siberian State University of transport Rssia, 6349, Novosibirsk, Dsy Kovalchk street,

More information

Thermal balance of a wall with PCM-enhanced thermal insulation

Thermal balance of a wall with PCM-enhanced thermal insulation Thermal balance of a wall with PCM-enhanced thermal inslation E. Kossecka Institte of Fndamental Technological esearch of the Polish Academy of Sciences, Warsaw, Poland J. Kośny Oak idge National aboratory;

More information

Appendix A: The Fully Developed Velocity Profile for Turbulent Duct Flows

Appendix A: The Fully Developed Velocity Profile for Turbulent Duct Flows Appendix A: The lly Developed Velocity Profile for Trblent Dct lows This appendix discsses the hydrodynamically flly developed velocity profile for pipe and channel flows. The geometry nder consideration

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

Finite Difference Method of Modelling Groundwater Flow

Finite Difference Method of Modelling Groundwater Flow Jornal of Water Resorce and Protection, 20, 3, 92-98 doi:0.4236/warp.20.33025 Pblished Online March 20 (http://www.scirp.org/ornal/warp) Finite Difference Method of Modelling Grondwater Flow Abstract Magns.

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

Experimental Study of an Impinging Round Jet

Experimental Study of an Impinging Round Jet Marie Crie ay Final Report : Experimental dy of an Impinging Rond Jet BOURDETTE Vincent Ph.D stdent at the Rovira i Virgili University (URV), Mechanical Engineering Department. Work carried ot dring a

More information

Numerical Model for Studying Cloud Formation Processes in the Tropics

Numerical Model for Studying Cloud Formation Processes in the Tropics Astralian Jornal of Basic and Applied Sciences, 5(2): 189-193, 211 ISSN 1991-8178 Nmerical Model for Stdying Clod Formation Processes in the Tropics Chantawan Noisri, Dsadee Skawat Department of Mathematics

More information

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-1 April 01, Tallinn, Estonia UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL Põdra, P. & Laaneots, R. Abstract: Strength analysis is a

More information

Microscopic Properties of Gases

Microscopic Properties of Gases icroscopic Properties of Gases So far we he seen the gas laws. These came from observations. In this section we want to look at a theory that explains the gas laws: The kinetic theory of gases or The kinetic

More information

Polymer confined between two surfaces

Polymer confined between two surfaces Appendix 4.A 15 Polymer confined between two srfaces In this appendix we present in detail the calclations of the partition fnction of a polymer confined between srfaces with hard wall bondary conditions.

More information

Finite Element Analysis of Heat and Mass Transfer of a MHD / Micropolar fluid over a Vertical Channel

Finite Element Analysis of Heat and Mass Transfer of a MHD / Micropolar fluid over a Vertical Channel International Jornal of Scientific and Innovative Mathematical Research (IJSIMR) Volme 2, Isse 5, Ma 214, PP 515-52 ISSN 2347-37X (Print) & ISSN 2347-3142 (Online) www.arcjornals.org Finite Element Analsis

More information

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion CFD-Simlation thermoakstischer Resonanzeffekte zr Bestimmng der Flammentransferfnktion Ator: Dennis Paschke Technische Universität Berlin Institt für Strömngsmechanik nd Technische Akstik FG Experimentelle

More information

Computational Fluid Dynamics Simulation and Wind Tunnel Testing on Microlight Model

Computational Fluid Dynamics Simulation and Wind Tunnel Testing on Microlight Model Comptational Flid Dynamics Simlation and Wind Tnnel Testing on Microlight Model Iskandar Shah Bin Ishak Department of Aeronatics and Atomotive, Universiti Teknologi Malaysia T.M. Kit Universiti Teknologi

More information

Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Porous Rotating Disk

Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Porous Rotating Disk Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Poros otating Disk Hemant Poonia * * Asstt. Prof., Deptt. of Math, Stat & Physics, CCSHAU, Hisar-54.. C. Chadhary etd. Professor, Deptt.

More information

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method CIVL 7/87 Chater - The Stiffness Method / Chater Introdction to the Stiffness (Dislacement) Method Learning Objectives To define the stiffness matrix To derive the stiffness matrix for a sring element

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R.

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R. On the importance of horizontal trblent transport in high resoltion mesoscale simlations over cities. A. Martilli (CIEMAT, Spain), B. R. Rotnno, P. Sllivan, E. G. Patton, M. LeMone (NCAR, USA) In an rban

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds NATURA CONVECTION No mechanical force to psh the flid pmp, fan etc. No predefined flid flowrate and velocit can t prescribe Renolds nmber Flid moves as a reslt of densit difference Flid velocit established

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE

EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE A.N. Jadhav Department of Electronics, Yeshwant Mahavidyalaya, Ned. Affiliated to

More information

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas.

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas. Two identical flat sqare plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHAE areas. F > F A. A B F > F B. B A C. FA = FB. It depends on whether the bondary

More information

Discussion of The Forward Search: Theory and Data Analysis by Anthony C. Atkinson, Marco Riani, and Andrea Ceroli

Discussion of The Forward Search: Theory and Data Analysis by Anthony C. Atkinson, Marco Riani, and Andrea Ceroli 1 Introdction Discssion of The Forward Search: Theory and Data Analysis by Anthony C. Atkinson, Marco Riani, and Andrea Ceroli Søren Johansen Department of Economics, University of Copenhagen and CREATES,

More information

Wall treatment in Large Eddy Simulation

Wall treatment in Large Eddy Simulation Wall treatment in arge Edd Simlation David Monfort Sofiane Benhamadoche (ED R&D) Pierre Sagat (Université Pierre et Marie Crie) 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation Tye of Flows Continity Eqation Bernolli Eqation Steady Flow Energy Eqation Alications of Bernolli Eqation Flid Dynamics Streamlines Lines having the direction of the flid velocity Flids cannot cross a

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

M. Moeini 1 and M. R. Chamani 2. Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran 2

M. Moeini 1 and M. R. Chamani 2. Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran 2 Jornal of Applied Flid Mechanics, Vol. 1, No. 4, pp. 171-177, 17. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-3645. DOI: 1.18869/acadpb.jafm.73.41.7544 New Perspectives on the Laminar

More information

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION Latin merican pplied Research 8:7-4 (8 THE EFFECTS OF RDITION ON UNSTEDY MHD CONVECTIVE HET TRNSFER PST SEMI-INFINITE VERTICL POROUS MOVING SURFCE WITH VRIBLE SUCTION. MHDY Math. Department Science, Soth

More information

Uncertainty Analysis of the Thunder Scientific Model 1200 Two-Pressure Humidity Generator

Uncertainty Analysis of the Thunder Scientific Model 1200 Two-Pressure Humidity Generator Uncertainty Analysis of the hnder cientific Model 100 wo-ressre Hmidity Generator 1.0 Introdction escribed here is the generated hmidity ncertainty analysis, following the Gidelines of NI and NL International

More information

Pendulum Equations and Low Gain Regime

Pendulum Equations and Low Gain Regime WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dynamics Grop :: Pal Scherrer Institte Pendlm Eqations and Low Gain Regime CERN Accelerator School FELs and ERLs Interaction with Radiation

More information

Proceedings of the 51st Anniversary Conference of KSME PHYSICAL MODELING OF ATMOSPHERIC FLOW AND ENVIRONMENTAL APPLICATIONS B. R.

Proceedings of the 51st Anniversary Conference of KSME PHYSICAL MODELING OF ATMOSPHERIC FLOW AND ENVIRONMENTAL APPLICATIONS B. R. Proceedings of the 51st Anniversary Conference of KSME PHYSICAL MODELING OF ATMOSPHERIC FLOW AND ENVIRONMENTAL APPLICATIONS B. R. WHITE Faclty of Mechanical and Aeronatical Engineering University of California,

More information

Modeling and control of water disinfection process in annular photoreactors

Modeling and control of water disinfection process in annular photoreactors Modeling and control of water disinfection process in annlar photoreactors K. J. Keesman, D. Vries, S. van Morik and H. Zwart Abstract As an alternative or addition to complex physical modeling, in this

More information

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS 7 TH INTERNATIONAL CONGRESS O THE AERONAUTICAL SCIENCES REQUENCY DOMAIN LUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS Yingsong G, Zhichn Yang Northwestern Polytechnical University, Xi an, P. R. China,

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Production of Chilled Air by Melting Ice in Cool-Thermal Discharge Systems

Production of Chilled Air by Melting Ice in Cool-Thermal Discharge Systems amkang Jornal of Science and Engineering, Vol., No. 2, pp. 87-9 (2 87 Prodction of Chilled Air y Melting Ice in Cool-hermal Discharge Systems Wen-Pen Wang and Chii-Dong Ho 2 Department of Chemical Engineering,

More information

Computational Geosciences 2 (1998) 1, 23-36

Computational Geosciences 2 (1998) 1, 23-36 A STUDY OF THE MODELLING ERROR IN TWO OPERATOR SPLITTING ALGORITHMS FOR POROUS MEDIA FLOW K. BRUSDAL, H. K. DAHLE, K. HVISTENDAHL KARLSEN, T. MANNSETH Comptational Geosciences 2 (998), 23-36 Abstract.

More information

DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD

DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD N. ZANGENEH and R. POPESCU Faclt of Engineering & Applied Science, Memorial Universit, St. John s, Newfondland, Canada A1B 3X5 Abstract

More information

Shock wave structure for Generalized Burnett Equations

Shock wave structure for Generalized Burnett Equations Shock wave strctre for Generalized Brnett Eqations A.V. Bobylev, M. Bisi, M.P. Cassinari, G. Spiga Dept. of Mathematics, Karlstad University, SE-65 88 Karlstad, Sweden, aleander.bobylev@ka.se Dip. di Matematica,

More information

Mathematical and Numerical Modeling of Tsunamis in Nearshore Environment: Present and Future

Mathematical and Numerical Modeling of Tsunamis in Nearshore Environment: Present and Future Mathematical and Nmerical Modeling of Tsnamis in Nearshore Environment: Present and Ftre Philip L.-F. Li Cornell University DFG-Rond Table Discssion: Near- and Onshore Tsnami Effects FZK, Hannover, Germany,

More information

DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS (H/U < 20) AND CONSEQUENCES ON CRITICALITY SAFETY

DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS (H/U < 20) AND CONSEQUENCES ON CRITICALITY SAFETY DEFINITION OF A NEW UO 2 F 2 DENSITY LAW FOR LOW- MODERATED SOLUTIONS ( < 20) AND CONSEQUENCES ON CRITICALITY SAFETY N. Leclaire, S. Evo, I.R.S.N., France Introdction In criticality stdies, the blk density

More information

Calculations involving a single random variable (SRV)

Calculations involving a single random variable (SRV) Calclations involving a single random variable (SRV) Example of Bearing Capacity q φ = 0 µ σ c c = 100kN/m = 50kN/m ndrained shear strength parameters What is the relationship between the Factor of Safety

More information

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory International Jornal of Scientific and Research Pblications, Volme, Isse 11, November 1 1 ISSN 5-15 Flere of Thick Simply Spported Beam Using Trigonometric Shear Deformation Theory Ajay G. Dahake *, Dr.

More information

SIt1ILARITY SOLUTIONS FOR CONVECTION OF GROUNDWATER ADJACENT TO HORIZONTAL IMPERMEABLE SURFACES WITH AXISYMMETRIC TEMPERATURE DISTRIBUTION

SIt1ILARITY SOLUTIONS FOR CONVECTION OF GROUNDWATER ADJACENT TO HORIZONTAL IMPERMEABLE SURFACES WITH AXISYMMETRIC TEMPERATURE DISTRIBUTION .. :.... St1LARTY SOLTONS FOR CONVECTON OF GRONDWATER ADJACENT TO HORZONTAL MPERMEABLE SRFACES WTH AXSYMMETRC TEMPERATRE DSTRBTON. TECHNCAL REPORT No. 14 April 30 1976 Prepared nder. NATONAL SCENCE FONDATON

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

Mass Transfer Models for Oxygen-Water Co-Current Flow in Vertical Bubble Columns. Quinta de Santa Apolónia, Bragança, Portugal and

Mass Transfer Models for Oxygen-Water Co-Current Flow in Vertical Bubble Columns. Quinta de Santa Apolónia, Bragança, Portugal and 386 Single and Two-Phase Flows on Chemical and Biomedical Engineering, 212, 386-411 CHAPTER 14 Mass Transfer Models for Oxygen-Water Co-Crrent Flow in Vertical Bbble Colmns Valdemar Garcia 1 and João Sobrinho

More information

FLUCTUATING HYDRODYNAMICS AS A TOOL TO INVESTIGATE NUCLEATION OF CAVITATION BUBBLES

FLUCTUATING HYDRODYNAMICS AS A TOOL TO INVESTIGATE NUCLEATION OF CAVITATION BUBBLES M. Gallo, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. (18) 345 357 FLUCTUATING HYDRODYNAMICS AS A TOOL TO INVESTIGATE NUCLEATION OF CAVITATION BUBBLES MIRKO GALLO, FRANCESCO MAGALETTI & CARLO

More information

On the Optimization of Numerical Dispersion and Dissipation of Finite Difference Scheme for Linear Advection Equation

On the Optimization of Numerical Dispersion and Dissipation of Finite Difference Scheme for Linear Advection Equation Applied Mathematical Sciences, Vol. 0, 206, no. 48, 238-2389 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.206.6463 On the Optimization of Nmerical Dispersion and Dissipation of Finite Difference

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics o Flids and Transport Processes Chapter 9 Proessor Fred Stern Fall 01 1 Chapter 9 Flow over Immersed Bodies Flid lows are broadly categorized: 1. Internal lows sch as dcts/pipes, trbomachinery,

More information

The Bow Shock and the Magnetosheath

The Bow Shock and the Magnetosheath Chapter 6 The Bow Shock and the Magnetosheath The solar wind plasma travels sally at speeds which are faster than any flid plasma wave relative to the magnetosphere. Therefore a standing shock wave forms

More information

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 4, Jul - Aug pp ISSN:

International Journal of Modern Engineering Research (IJMER)   Vol. 3, Issue. 4, Jul - Aug pp ISSN: Vol. 3, sse. 4, Jl - Ag. 3 pp-89-97 SSN: 49-6645 Effect of Chemical Reaction and Radiation Absorption on Unstead Convective Heat and Mass Transfer Flow in a Vertical Channel with Oscillator Wall Temperatre

More information

Analysis of Saturated Film Boiling Heat Transfer in Reflood Phase of PWR-LOCA

Analysis of Saturated Film Boiling Heat Transfer in Reflood Phase of PWR-LOCA Jornal of Nclear Science and Technology ISSN: 22-3131 (Print) 1881-1248 (Online) Jornal homepage: http://www.tandfonline.com/loi/tnst2 Analysis of Satrated Film Boiling Heat Transfer in Reflood Phase of

More information

Similarity Solution for MHD Flow of Non-Newtonian Fluids

Similarity Solution for MHD Flow of Non-Newtonian Fluids P P P P IJISET - International Jornal of Innovative Science, Engineering & Technology, Vol. Isse 6, Jne 06 ISSN (Online) 48 7968 Impact Factor (05) - 4. Similarity Soltion for MHD Flow of Non-Newtonian

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information